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Mathematical Modeling of Physical Systems

Thermodynamics
• Until now we have ignored the thermal domainUntil now, we have ignored the thermal domain.

However, it is fundamental for the understanding
of physics.

• We mentioned that energy can neither be
generated nor destroyed ... yet, we immediately
turned around and introduced elements such as
sources and resistors which shouldn’t exist at all
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sources and resistors, which shouldn t exist at all
in accordance with the above statement.

• In today’s lecture, we shall analyze these
phenomena in more depth.
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• Thermal resistors and capacitors
• Radiation
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Energy Sources and Sinks
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The Resistive Source

• The resistor converts free energy irreversibly into entropy.
• This fact is represented in the bond graph by a resistive

source, the RS-element.
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• The causality of the thermal side is always such that the
resistor is seen there as a source of entropy, never as a
source of temperature.

• Sources of temperature are non-physical.
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Heat Conduction I
• Heat conduction in a well insulated rod can be described byy

the one-dimensional heat equation:

• Discretization in space leads to:
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Heat Conduction II
• Consequently, the following electrical equivalence circuit

may be considered:may be considered:
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dvi /dt = iC /C
iC  = iR1  – iR2 
vi-1 – vi = R· iR1
vi – vi+1 = R· iR2

dvi /dt = (iR1  – iR2 ) /C
= (vi+1 – 2·vi + vi-1 ) /(R · C)

(R · C)·
dvi
dt = vi+1 – 2·vi + vi-1
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Heat Conduction III
• As a consequence heat conduction can be described by aAs a consequence, heat conduction can be described by a 

series of such T-circuits:

• In bond graph representation:

Start Presentation© Prof. Dr. François E. CellierOctober 11, 2012

g p p

Mathematical Modeling of Physical Systems

Heat Conduction IV

• This bond graph is exceedingly beautiful ...
It only has one drawback ...

It is most certainly incorrect!
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It is most certainly incorrect!
. There are no energy sinks!

A resistor may make sense in an electrical circuit, if the
heating of the circuit is not of interest, but it is most certainly
not meaningful, when the system to be described is itself in the
thermal domain.
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Heat Conduction V
• The problem can be corrected easily by replacing eachThe problem can be corrected easily by replacing each

resistor by a resistive source.
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• The temperature gradient leads to additional entropy,
which is re-introduced at the nearest 0-junction.
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Heat Conduction VI
• This provides a good approximation of the physical reality.

Unfortunately, the resulting bond graph is asymmetrical,
although the heat equation itself is symmetrical.

• A further correction removes the asymmetry.
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Heat Flow
• The thermal power is the heat flow dQ/dt It is commonlyThe thermal power is the heat flow dQ/dt. It is commonly

computed as the product of two adjugate thermal variables,
i.e.:

• It is also possible to treat heat flow as the primary physical
h d d i tl f it ti

P = Q = T·S··
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phenomenon, and derive consequently from it an equation
for computing the entropy:

S = Q / T··
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The Computation of R and C  I
• The capacity of a long well insulated rod to conduct heat isThe capacity of a long well insulated rod to conduct heat is

proportional to the temperature gradient.

T =  · Q =  · (T · S) = ( · T) · S = R · S · · · ·

 R =  · T  = thermal resistance

 ifi th l d t
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• where:  = 
1 · A

l  = specific thermal conductance
l = length of the rod
A = cross-section of the rod

 R =  · T = 
x · T
 · A x = length of a segment
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The Computation of R and C  II
• The capacity of a long well insulated rod to store heat

S =     ·· dT
dt


T

dT
dt

The capacity of a long well insulated rod to store heat
satisfies the capacitive law:

 C =  / T = heat capacity

c = specific heat capacity

Q =  ·· dT
dt = (T·S) = T·S· ·  = C·

explained at a later time

Start Presentation© Prof. Dr. François E. CellierOctober 11, 2012

• where: = c · m
c = specific heat capacity
m = mass of the rod

m =  · V
 = material density
V = volume of a segment
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The Computation of R and C  III
 C =  / T = c ·  · V / T = c ·  · A · x / T

• The diffusion time constant R·C is independent of
temperature.

• The thermal resistance is proportional to the temperature.

  

 R · C =  ·  = 
c · 


· x2 = 
1 · x2
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• The thermal capacity is inverse proportional to the
temperature.

• The thermal R and C elements are, contrary to their
electrical and mechanical counterparts, not constant.
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Is the Thermal Capacity truly capacitive?
• We have to verify that the derived capacitive law is not inWe have to verify that the derived capacitive law is not in 

violation of the general rule of capacitive laws.

S =     ·· dT
dt


T  f  =     ·

de
dt


e  q =  · ln(e/e0 )

q is indeed a (non-linear) function of e.  
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Therefore, the derived law satisfies the general 
rule for capacitive laws.
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Computation of R for the 
Modified Bond Graph

Th i t l h b t d f th i i l i it• The resistor value has been computed for the original circuit
configuration. We need to analyze, what the effects of the
symmetrization of the bond graph have on the computation of
the resistor value.

• We evidently can replace the original resistor by two resistors
of double size that are connected in parallel : 2R
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Modification of the Bond Graph
• The bond graph can be modified by means of the diamondThe bond graph can be modified by means of the diamond 

rule:
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• This is exactly the structure in use.

C C
2R

C C

Mathematical Modeling of Physical Systems

Radiation I
• A second fundamental phenomenon of thermodynamicsA second fundamental phenomenon of thermodynamics

concerns the radiation. It is described by the law of
Stephan-Boltzmann.

• The emitted heat is proportional to the radiation and to the
emitting surface.

 =  · T 4

Q A T 4.
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• Consequently, the emitted entropy is proportional to the
third power of the absolute temperature.

Q =  · A · T 4

S =  · A · T 3
.
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Radiation II
• Radiation describes a dissipative phenomenon (we knowRadiation describes a dissipative phenomenon (we know

this because of its static relationship between T and S).
• Consequently, the resistor can be computed as follows:

• The radiation resistance is thus inverse proportional to the
square of the (absolute) temperature.

.

R = T / S = 1 / ( · A · T 2)
.
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Radiation III
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