

ETH Mathematical Modeling of Physical Systems Eligenössische Technische Hochschule Zünich Swiss Federall Institute of Technology Zunich **Numerical Differential Equation Solvers** • Most of the *differential equation solvers* that are currently on the market operate on *polynomial extrapolation*. • The value of a state variable x at time t+h, where h is the current *integration step size*, is approximated by fitting a *polynomial of nth order* through known supporting values of x and dx/dt at the current time t as well as at past instances of time. • The value of the extrapolation polynomial at time t+hrepresents the approximated solution of the differential equation. • In the case of *implicit integration algorithms*, the state derivative at time t+h is also used as a supporting value. November 1, 2012 Start Presentation 公 © Prof. Dr. François E. Cellier

Implicit Euler Integration Algorithm of 1st Order:

November 1, 2012

 $x(t+h) \approx x(t) + h \cdot \dot{x}(t+h)$

© Prof. Dr. François E. Cellier

ancois F Cellier Start Presentation

 $\langle \downarrow \downarrow \rangle$

	The Friction Characteristic II					
• W	• We distinguish between five situations:					
v = 0 a = 0		tion force compensates the sum of all force, except if $2f / > R_0$.				
v > 0	<u>Moving forward</u> :	The friction force is computed as: $f_B = \mathbf{R}_v \cdot \mathbf{v} + \mathbf{R}_m$.				
v < 0	Moving backward:	The friction force is computed as: $f_B = R_v \cdot v - R_m$.				
$v = 0 \\ a > 0$	<u>Beginning of</u> <u>forward motion</u> :	The friction force is computed as: $f_B = R_m$.				
$v = 0 \\ a < 0$	<u>Beginning of</u> backward motion:	The friction force is computed as: $f_{R} = -R_{m}$.				

The Friction Model I		
odel Friction;		
parameter Real R0, I	Rm, Rv;	
parameter Boolean id	c=false;	
Real fB, fc;		
Boolean Sticking (find	$il \ start = ic);$	
oolean Forward (fin	al start = ic), Backward (f	final start = ic);
Boolean StartFor (find	al start = ic), StartBack (f	final start = ic);
$fB = \mathbf{if} Forward \mathbf{ther}$	$\mathbf{R}v^*v + Rm$ else	
if Backward then		
if StartFor the	n Rm else	
if StartBack the	n -Rm else fc;	
0 = <mark>if</mark> Sticking or initi	al() then a else fc:	

EXErce State State State States States - Robert Frederic and States Series - Robert Frederic and Technology States	Mathematical Modeling of Physical Systems
The Fr	iction Model III
	and not $(v > 0$ or $a \le 0$ and not $v > 0$;
November 1, 2012 © Prof	Dr. François E. Cellier Start Presentation

	References II
•	Elmqvist, H., F.E. Cellier, and M. Otter (1994), "Object- oriented modeling of power-electronic circuits using Dymola," Proc. CISS'94, First Joint Conference of International Simulation Societies, Zurich, Switzerland, pp. 156-161.
•	Glaser, J.S., F.E. Cellier, and A.F. Witulski (1995), "Object-oriented switching power converter modeling using Dymola with event-handling," <i>Proc. OOS'95, SCS</i> <i>Object-Oriented Simulation Conference</i> , Las Vegas, NV, pp. 141-146.

