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Mathematical Modeling of Physical Systems

Treatment of Discontinuities
• Today we shall look at the problem of dealingToday, we shall look at the problem of dealing

with discontinuities in models.
• Models from engineering often exhibit

discontinuities that describe situations such as
switching, limiters, dry friction, impulses, or
similar phenomena.

h d li i d l i h h
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• The modeling environment must deal with these
problems in special ways, since they influence
strongly the numerical behavior of the underlying
differential equation solver.
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Numerical Differential Equation Solvers
• Most of the differential equation solvers that are currentlyost o t e diffe ential equation solve s t at a e cu e t y

on the market operate on polynomial extrapolation.
• The value of a state variable x at time t+h, where h is the

current integration step size, is approximated by fitting a
polynomial of nth order through known supporting values
of x and dx/dt at the current time t as well as at past
instances of time.
Th l f th t l ti l i l t ti h
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• The value of the extrapolation polynomial at time t+h
represents the approximated solution of the differential
equation.

• In the case of implicit integration algorithms, the state
derivative at time t+h is also used as a supporting value.
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Examples

E li it E l I t ti Al ith f 1st O dExplicit Euler Integration Algorithm of 1st Order:

x(t+h)   x(t) + h · x(t)·

Implicit Euler Integration Algorithm of 1st Order:

x(t+h)   x(t) + h · x(t+h)·
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Discontinuities in State Equations
• Polynomials are always continuous and continuouslyPolynomials are always continuous and continuously

differentiable functions.
• Therefore, when the state equations of the system:

• exhibit a discontinuity, the polynomial extrapolation is a
very poor approximation of reality.

x(t)  =  f(x(t),t)·
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y p pp y
• Consequently, integration algorithms with a fixed step

size exhibit a large integration error, whereas integration
algorithms with a variable step size reduce the step size
dramatically in the vicinity of a discontinuity.
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Integration Across Discontinuities
• An integration algorithm of variable step size reduces the

t i t di ti itstep size at every discontinuity.
• After passing the discontinuity, the step size is only slowly

enlarged again, as the integration algorithm cannot
distinguish between a discontinuity on one hand and a
point of large local stiffness (with a large absolute value
of the derivative) on the other.

h
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Discontinuities
The step size is constantly
too small. Thus, the
integration algorithm is at
least highly inefficient, if
not even inaccurate.
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The State Event
• These problems can be avoided by telling the integration

algorithm explicitly when and where discontinuities arealgorithm explicitly, when and where discontinuities are
contained in the model description.

Example: Limiter Function

f(x)

x

fp


f  =  fm

f
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xxp

fm

xm 

m = tg()
1

2
f  =  m·x
f  =  fp

f  =  if x < xm then fm else if x < xp then m*x else fp ;
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Event Handling I
f(x)
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Event
Step size reduction during 
process of iteration
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Event Handling II

h

t

h

t
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Step size as function of time 
without event handling

Step size as function of time 
with event handling
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Representation of Discontinuities
f = if x < xm then fm else if x < xp then m*x else fp ;

• In Modelica, discontinuities are represented as if-statements.
• In the process of translation, these statements are

transformed into correct event descriptions (sets of models
with switching conditions).

f  =  if x < xm then fm else if x < xp then m x else fp ;
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• The modeler does not need to concern him- or herself with
the mechanisms of event descriptions. These are hidden
behind the if-statements.
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Problems
• The modeler needs to take into account that thee ode e eeds to ta e to accou t t at t e

discontinuous solution is temporarily left during iteration.

• may be dangerous, since absp can become temporarily
negative.

q =  | p | p = p1 – p2 ;
absp = if p > 0 then p else –p ;
q = sqrt(absp) ;
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g

• solves this problem.

 p = p1 – p2 ;
absp = noEvent( if p > 0 then p else –p ) ;
q = sqrt(absp) ;
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The “noEvent” Construct
p = p1 – p2 ;

• The noEvent construct has the effect that if-statements or
Boolean expressions, which normally would be translated
into simulation code containing correct event handling
instructions, are handed over to the integration algorithm

absp = noEvent( if p > 0 then p else –p ) ;
q = sqrt(absp) ;
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instructions, are handed over to the integration algorithm
untouched.

• Thereby, management of the simulation across these
discontinuities is left to the step size control of the
numerical Integration algorithm.
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Multi-valued Functions I
• The language constructs that have been introduced so far

don’t suffice to describe multi-valued functions, such asdon t suffice to describe multi valued functions, such as
the dry hysteresis function shown below.

x

f(x)

xpxm

fp

fm
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• When x becomes greater than xp, f must be switched from
fm to fp.

• When x becomes smaller than xm, f must be switched from
fp to fm.
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Multi-valued Functions II
f(x)

f

xxpxm

fp

fm

when initial() then
reinit(f , fp);

Executed at the beginning of the 
simulation.
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end when;
when  x > xp  or  x < xm  then

f  =  if  x > 0  then fp  else  fm;
end when;

}These statements are only executed,
when either x becomes larger than
xp, or when x becomes smaller
than xm.

is larger

becomes larger
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Multi-valued Functions III
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The Electrical Switch I

i

u

When the switch is open, the current is i=0. 
When the switch is closed, the voltage is u=0.

0  =  if open then i else u ;

The if-statement in Modelica is a-causal It is being
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The if statement in Modelica is a causal.  It is being 
sorted together with all other statements.
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The Electrical Switch II

Possible Implementation: Switch open:  s = 1
Switch closed: s = 0

 0  =  s · i  +  ( 1 – s ) · u

Switch open:
e
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Sf

Switch closed:

Se

f = 0

e = 0

 Sws e
f

The causality of the switch element is a 
function of the value of the control signal s.
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The Ideal Diode I
i When u < 0, the switch is

u

Switch 
closed

Switch open

i
u

open. No current flows
through.

When u > 0, the switch is
closed. Current may flow.
The ideal diode behaves
like a short circuit.
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open  =  u < 0 ;
0  =  if open then i else u ; D e

f
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The Ideal Diode II

• Since current flowing through a diode cannot• Since current flowing through a diode cannot
simply be interrupted, it is necessary to slightly
modify the diode model.

open  =  u <= 0 and not i > 0 ;
0  =  if open then i else u ;
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• The variable open must be declared as Boolean.
The value to the right of the Boolean expression is
assigned to it.

Mathematical Modeling of Physical Systems

The Friction Characteristic I
• More complex phenomena such as friction characteristicsMore complex phenomena, such as friction characteristics,

must be carefully analyzed case by case.
• The approach is discussed here by means of the friction

example.
fB

R0
Rm Viscous 

friction

When v    the friction
force is a function of the
velocity.
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v

-Rm
-R0

Dry friction
When v   , the friction
force is computed such
that the velocity remains
0.
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The Friction Characteristic II
• We distinguish between five situations:

Sticking: The friction force compensates the sum of all forces
attached, except if |f | > R0 .

Moving forward: The friction force is computed as:
fB = Rv · v + Rm.

Moving backward: The friction force is computed as:
fB = Rv · v  Rm.

v = 0  
a = 0

v > 0

v < 0
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Beginning of 
forward motion:

The friction force is computed as:
fB = Rm.

Beginning of 
backward motion:

The friction force is computed as:
fB = Rm.

v = 0  
a > 0

v = 0  
a < 0
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The State Transition Diagram
• The set of events can be described by a state transitionThe set of events can be described by a state transition 

diagram.

Start
v < 0 v > 0

v = 0
f  <  R0 f  >  R0v <   v >  

Start Presentation© Prof. Dr. François E. CellierNovember 1, 2012

Backward 
motion      
(v < 0)

Backward 
acceleration   

(a < 0)

Sticking 
(a = 0)

Forward 
acceleration  

(a > 0)

Forward 
motion    
(v > 0)

a  0 and not  v < 0 a  0 and not  v > 0

v  0 v  0
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The Friction Model I
model Friction;

parameter Real R0 Rm Rv;parameter Real R0, Rm, Rv;
parameter Boolean ic=false;
Real fB, fc;
Boolean Sticking (final start = ic);
Boolean Forward (final start = ic), Backward (final start = ic);
Boolean StartFor (final start = ic), StartBack (final start = ic);

fB = if Forward   then Rv*v + Rm else
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if Backward then Rv*v - Rm  else
if StartFor    then Rm             else
if StartBack  then -Rm            else fc;

0 = if Sticking or initial() then a else fc;
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The Friction Model II

h S i ki d t i iti l() thwhen Sticking and not initial() then
reinit(v,0);

end when;

Forward =   initial()              and v > 0 or
pre(StartFor) and v > 0 or
pre(Forward)    and not v <= 0;

Backward = initial()              and v < 0 or

Start Presentation© Prof. Dr. François E. CellierNovember 1, 2012

()
pre(StartBack) and v < 0 or
pre(Backward)  and not v >= 0;
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The Friction Model III

StartFor   = pre(Sticking)    and fc > R0 or
pre(StartFor) and not (v > 0 or a <= 0 and not v > 0);

StartBack = pre(Sticking)     and fc < -R0 or
pre(StartBack) and not (v < 0 or a >= 0 and not v < 0);

Sticking = not (Forward or Backward or StartFor or StartBack);

end Friction;

Start Presentation© Prof. Dr. François E. CellierNovember 1, 2012

Mathematical Modeling of Physical Systems

References I
• Cellier, F.E. (1979), Combined Continuous/Discrete

System Simulation by Use of Digital Computers:System Simulation by Use of Digital Computers:
Techniques and Tools, PhD Dissertation, Swiss Federal
Institute of Technology, ETH Zürich, Switzerland.

• Elmqvist, H., F.E. Cellier, and M. Otter (1993), “Object-
oriented modeling of hybrid systems,” Proc. ESS'93,
SCS European Simulation Symposium, Delft, The
Netherlands, pp.xxxi-xli.

Start Presentation© Prof. Dr. François E. CellierNovember 1, 2012

, pp

• Cellier, F.E., M. Otter, and H. Elmqvist (1995), “Bond
graph modeling of variable structure systems,” Proc.
ICBGM'95, 2nd SCS Intl. Conf. on Bond Graph Modeling
and Simulation, Las Vegas, NV, pp. 49-55.

Mathematical Modeling of Physical Systems

References II
• Elmqvist, H., F.E. Cellier, and M. Otter (1994), “Object-qv st, ., . . Ce e , a d . Otte ( 99 ), Object

oriented modeling of power-electronic circuits using
Dymola,” Proc. CISS'94, First Joint Conference of
International Simulation Societies, Zurich, Switzerland,
pp. 156-161.

• Glaser, J.S., F.E. Cellier, and A.F. Witulski (1995),
“Object-oriented switching power converter modeling

Start Presentation© Prof. Dr. François E. CellierNovember 1, 2012

j g p g
using Dymola with event-handling,” Proc. OOS'95, SCS
Object-Oriented Simulation Conference, Las Vegas, NV,
pp. 141-146.


