## **Treatment of Discontinuities II**

- We shall today once more look at the *modeling of discontinuous systems*.
- First, an additional method to their mathematical description shall be discussed. This method makes use of a *parameterized description of curves*.
- Subsequently, we shall deal with the problem of variable causality.
- Finally, a method shall be discussed that permits to solve causality problems elegantly.



## **Table of Contents**

- Parameterized curve descriptions
- Causality of the switch equation
- <u>Leaking diodes</u>
- <u>Singularity of switch equation</u>
- <u>Inline integration</u>
- Causality of inline integration





## **Parameterized Curve Descriptions**

• It is always possible to describe discontinuous functions by means of parameterized curves. This technique shall be illustrated by means of the diode characteristic.





## The Causality of the Switch Equation I

• Let us consider once more the switch equation in its algebraic form:

$$0 = s \cdot i + (1-s) \cdot u$$

Switch open: s = 1Switch closed: s = 0

• We can solve this equation either for *u* or for *i* :





## The Causality of the Switch Equation II

- Neither of the two causal equations can be used in both switch positions. Either one or the other switch position leads to a *division by 0*.
- This is exactly what happens in the simulation, when the causality of the switch equation is fixed.
  - ⇒ The causality of the switch equation must always be free.

# ⇒ The switch equation must always be placed in an algebraic loop.





#### An Example I





November 1, 2012





#### An Example II



November 1, 2012

© Prof. Dr. François E. Cellier



#### An Example III



November 1, 2012

© Prof. Dr. François E. Cellier





November 1, 2012

© Prof. Dr. François E. Cellier



## Not So Ideal Diode I

• One possibility for circumventing the causality problem consists in defining a *leakage resistance*  $R_{on}$  for the closed switch, as well as a *leakage conductance*  $G_{off}$  for the open switch.





Start Presentation

## Not So Ideal Diode II

- This is the solution that was chosen in the standard library of *Modelica*.
- The same solution is also offered in *BondLib* in the form of a "leaky" diode model.

| Image: Second Lib Switches.D2 - [roon]         Image: Second Lib Switches.D2 - [roon] | D2 - BondLib.Switches.D2 - [Modelica Text]       _□×         E Ele Edit Simulation Plot Animation Commands Window Help       _■×         I 2 4 5 100%       III 2 4 100%                                                                                                                                                                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| switches<br>Switches<br>Switches<br>Switches<br>Switches<br>D<br>D<br>D<br>D<br>D<br>D<br>Z<br>Switches<br>Switches<br>D<br>D<br>D<br>D<br>D<br>C<br>D<br>D<br>C<br>D<br>D<br>C<br>D<br>D<br>C<br>D<br>C<br>D<br>C<br>D<br>C<br>D<br>C<br>D<br>C<br>D<br>C<br>D<br>C<br>D<br>C<br>C<br>D<br>C<br>D<br>C<br>C<br>D<br>C<br>C<br>D<br>C<br>C<br>D<br>C<br>C<br>D<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <pre>model D2 "Electrical leaking diode of the Modelica bond graph library" extends Interfaces.PassiveOnePort; parameter Real Ron=1E-5 "Leakage Resistance"; parameter Real Goff=1E-5 "Leakage Conductance"; parameter Real e0=0 "Forward threshold effort"; Real s "Curve parameter"; Boolean blocking; equation blocking = s &lt; 0; f = s*(if blocking then Goff else 1) + Goff*e0; e = s*(if blocking then 1 else Ron) + e0; end D2; </pre> |
| B Modeling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Line: 1 Hodeling                                                                                                                                                                                                                                                                                                                                                                                                                                |

November 1, 2012

#### **Not So Ideal Diode III**



November 1, 2012

© Prof. Dr. François E. Cellier



## **Problems I**

- For *electrical applications*, the solution with the leaking diode is frequently acceptable.
- One problem has to do with the numerics. When a circuit using the ideal diode is plagued by division problems, the circuit with the leaking diode leads invariably to a *stiff system*.
- Stiff systems can be integrated in *Modelica* by means of the (standard) *DASSL integration algorithm*.
- However, this is time consuming and may not be suitable, at least for real-time applications.



## **Problems II**

- In the case of *mechanical applications*, the method is less suitable, since for example friction characteristics must frequently be computed rather accurately, and since in mechanical applications, the causalities are almost invariably fixed.
- The masses (and inertias) determine all velocities, and the friction as well as spring forces (and torques) must therefore be determined by the *R*and *C*-elements in a pre-set causality.
- Consequently, another solution approach should be sought for these applications.



## "Inline" Integration Algorithm

- When using *Inline Integration*, the integration algorithm is directly substituted into the model equations (or inversely: the model equations are being substituted into the integration algorithm).
- Let us consider an inductor integrated by means of the *implicit Euler algorithm*.

$$u_L = L \cdot di_L / dt$$
  
$$i_L(t) = i_L(t - h) + h \cdot di_L(t) / dt$$

$$i_L(t) = i_L(t-h) + (h/L) \cdot u_L(t)$$



## **The Causality of Inline Integration**



When using the inline integration algorithm, the causalities of the so integrated storage elements are being freed up. Consequently, the division by zero problem disappears.

November 1, 2012



Start Presentation

### **Ideal Diode With Inline Integration I**



November 1, 2012

#### **Ideal Diode With Inline Integration II**



November 1, 2012

© Prof. Dr. François E. Cellier



#### **References I**

- Elmqvist, H., M. Otter, and F.E. Cellier (1995), "Inline integration: A new mixed symbolic/numeric approach for solving differential-algebraic equation systems," Proc. ESM'95, European Simulation Multi-conference, Prague, Czech Republic, pp. xxiii – xxxiv.
- Otter, M., H. Elmqvist, and S.E. Mattsson (1999), "<u>Hybrid</u> modeling in Modelica based on the synchronous data flow principle," *Proc. CACSD'99, Computer-Aided Control System Design*, Hawaii.

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich



### **References II**

- Krebs, M. (1997), <u>Modeling of Conditional Index</u> <u>Changes</u>, MS Thesis, Dept. of Electr. & Comp. Engr., University of Arizona, Tucson, AZ.
- Cellier, F.E. and M. Krebs (2007), "<u>Analysis and simulation of variable structure systems using bond graphs and inline integration</u>," *Proc. ICBGM'07, 8<sup>th</sup> Intl. Conf. Bond Graph Modeling and Simulation*, San Diego, CA, pp. 29-34.

