

Mathematical Modeling of Physical Systems

Problems II

- In the case of *mechanical applications*, the method is less suitable, since for example friction characteristics must frequently be computed rather accurately, and since in mechanical applications, the causalities are almost invariably fixed.
- The masses (and inertias) determine all velocities, and the friction as well as spring forces (and torques) must therefore be determined by the *R*-and *C*-elements in a pre-set causality.
- Consequently, another solution approach should be sought for these applications.

```
November 1, 2012
```

ETH

Sidgenössische Technische Hochschule Zühich Swiss Federal Institute af Technology Zuhich

© Prof. Dr. François E. Cellier

Start Presentation

igenössische Technische Hochachule Zünich iss. Tederail institute of Technologge Zunich	Mathematical Modeling of Physical Systems
	References I
integration: A ne solving differen	. Otter, and F.E. Cellier (1995), " <u>Inline</u> ew mixed symbolic/numeric approach for tial-algebraic equation systems," <i>Proc.</i> <i>van Simulation Multi-conference</i> , Prague, pp. xxiii – xxxiv.
modeling in Mod	nqvist, and S.E. Mattsson (1999), " <u>Hybrid</u> delica based on the synchronous data flow CACSD'99, Computer-Aided Control Iawaii.

