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Treatment of Discontinuities 11

* We shall today once more look at the modeling of
discontinuous systems.

o First, an additional method to their mathematical
description shall be discussed. This method makes use of
a parameterized description of curves.

» Subsequently, we shall deal with the problem of variable
causality.

» Finally, a method shall be discussed that permits to solve
causality problems elegantly.
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Parameterized Curve Descriptions

* It is always possible to describe discontinuous functions by
means of parameterized curves. This technique shall be
illustrated by means of the diode characteristic.

= Si Domain: Condition: | Equations:
c
st blocking: s<0 u=s;i=0
o 2l
c - . _ .
blocking8 conducting:[ s>0 u=0;i=s
—00 ¢S s=0 u

Domain = if s<0 then blocking else conducting;
u = if Domain == blocking then s else 0 ;

i = if Domain == blocking then O else s ;

The Causality of the Switch Equation |

e Let us consider once more the switch equation in its
algebraic form:

Switch open: s=1

0=si+(1l-s)-u Switch closed: s =0

* We can solve this equation either for u or for i :
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= =2 j= =1
us=gs-gi i s u
Switch open: Division by 0! i=0
Switch closed: u=0 Division by 0!
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The Causality of the Switch Equation Il

» Neither of the two causal equations can be used in both
switch positions. Either one or the other switch position
leads to a division by 0.

 This is exactly what happens in the simulation, when the
causality of the switch equation is fixed.

= The causality of the switch equation must always be
free.

= The switch equation must always be placed in an
algebraic loop.
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An Example |
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Both causalities are possible.

Hence there is no problem
[ with the simulation. o = =
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A Second Example The causality is fixed.
L D Thus, a problem exists
with the simulation. (=]
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Not So Ideal Diode |

e One possibility for circumventing the causality problem
consists in defining a leakage resistance R, for the closed
switch, as well as a leakage conductance G for the open
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switch.
it Domain: Condition: | Equations:
g blocking: $<0 U=s;i=Gy s
1538 d
=] . .
2 conducting:| s>0 U=R,,-s;i=s
blocking 3
—0 ¢S e _
Domain = if s <0 then blocking else conducting;
u = s*( if Domain == blocking then 1 else R, );
i =s*(if Domain == blocking then G else 1);
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Not So Ideal Diode 11

 This is the solution that was chosen in the standard library
of Modelica.

e The same solution is also offered in BondL.ib in the form
of a “leaky” diode model.
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Not So Ideal Diode 111
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Problems |

» For electrical applications, the solution with the
leaking diode is frequently acceptable.

* One problem has to do with the numerics. When a
circuit using the ideal diode is plagued by division
problems, the circuit with the leaking diode leads
invariably to a stiff system.

« Stiff systems can be integrated in Modelica by
means of the (standard) DASSL integration
algorithm.

» However, this is time consuming and may not be
suitable, at least for real-time applications.

Problems I

* In the case of mechanical applications, the
method is less suitable, since for example friction
characteristics must frequently be computed rather
accurately, and since in mechanical applications,
the causalities are almost invariably fixed.

» The masses (and inertias) determine all velocities,
and the friction as well as spring forces (and
torques) must therefore be determined by the R-
and C-elements in a pre-set causality.

» Consequently, another solution approach should
be sought for these applications.
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“Inline” Integration Algorithm

* When using Inline Integration, the integration algorithm is
directly substituted into the model equations (or inversely: the
model equations are being substituted into the integration
algorithm).

 Let us consider an inductor integrated by means of the implicit
Euler algorithm.

U =L di_/dt
i, (t) = i, (t=h) + h - di () /dt

= i (t) =i (t=h) + (h/L) - u, (¥

The Causality of Inline Integration

i) =i (t=h) + (/L) - u (1) +

I

Known, since computed
in the past.

This constitutes an algebraic relation between i and u.
This now looks like a resistor. Hence the causality is
now free.

When using the inline integration algorithm, the causalities of
the so integrated storage elements are being freed up.
Consequently, the division by zero problem disappears.
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Ideal Diode With Inline Integration 11
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