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Mathematical Modeling of Physical Systems

Bond Graphs for Mechanical Systems
• We shall look today in a bit more detail at theWe shall look today in a bit more detail at the

modeling of 1D mechanical systems using bond
graphs.

• First, we shall look at the problem of holonomic
constraints in mechanical systems.

• Then, we shall discuss how a wrapped mechanical
b d h lib b d
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bond graph library may be constructed.
• Finally, we shall look at a symbolic algorithm for

state selection.
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State Variables in Mechanical Systems
• We have already seen that masses (inertias) can beWe ave a eady see t at asses ( e t as) ca be

modeled using bond graph inductors, whereas
springs can be modeled using bond graph
capacitors. Hence the natural state variables in a
bond graph description of a mechanical system are
the absolute (angular) velocities of the bodies and
the spring forces (torques).
I d l f h i l t d ib d i
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• In a model of a mechanical system described in
this fashion, the (angular) positions are missing.
They are not needed for a proper and complete
description of the dynamics of the system.
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Holonomic Constraints
• This causes problems, as it is relevant to know whetherp ,

two bodies occupy the same space at the same time, i.e.,
whether they bump into each other or not.

• Also, when two bodies are connected at a point (e.g.
through a joint), it is insufficient to state that the velocities
of these points are equal. It should be stated that their
positions are identical.

• Such positional constraints are being referred to as
h l i t i t i th h i l lit t
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holonomic constraints in the mechanical literature.
• The corresponding velocity constraints (non-holonomic

constraints) don’t need to be specified separately, because
they can be derived automatically from the holonomic
constraints.
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Holonomic Constraints II
• For this reason, it may be better to find an alternateFor this reason, it may be better to find an alternate

description that uses the absolute velocities and positions
of bodies as state variables, leaving the spring forces out.

• Can this be done within the framework of the bond graph
methodology?

• It can, and this is how the two wrapped 1D mechanical
bond graph libraries (for translational and rotational

ti ) h b b ilt
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motions) have been built.
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The Mechanical Connectors
• We introduce two translational flange

connectors. These are similar to those of the
standard library, but they are not identical, as
they shall contain a second across variable: the
velocity, v.

• Hence our mechanical models will be
incompatible with those of the standard library.

• The two flange models are actually identical.
They are both offered for optical reasons only.
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The Mechanical Connectors II
• We also need a real signal connector. This is similar to theWe a so eed a ea s g a co ecto . s s s a to t e

input and output connectors of the blocks library, but the
signal is bidirectional, rather than being unidirectional.
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The Wrapper Models
• We need wrapper models that convert the mechanical

connectors to bond graph connectors and backconnectors to bond graph connectors and back.
• Since the bond graph connector cannot include the

positional information, this must be separated out into a
second signal connector.
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The Wrapper Models II

• Since the mechanical connector corresponds to a
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Since the mechanical connector corresponds to a
mechanical node, i.e., a point where the sum of all forces
(torques) adds up to zero, it corresponds to a bond graph 1-
junction, rather than to a bond graph 0-junction.
Consequently, it is here the effort variable that must get the
negative sign.
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The Sliding Mass Model
• We are now ready to look at the model of a sliding mass.
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The two state variables
are the f variable of the
inductor model and the
output of the internal
integrator of the q sensor.
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The Sliding Mass Model II
• The model is split into an upper

(bond graph) part that deals with
velocities and forces, and a lower
(signal) part that deals with
positional information.

• The position s calculated by the
sensor is the position of the center
of the mass bar.

• The position of the left connector
is L/2 to the left of the center, and
the position of the right connector

bond graph 
model (v,f)
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p g
is L/2 to the right of the center.

• These positional values are
distributed out to the left and to the
right through the mechanical
connectors

signal graph 
model (s)
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The Sliding Mass Model III
• The natural state variables of this

model are the internal variables
I.f and sAbs.Integrator1.y. This
is inconvenient.

• The user of the model would
prefer to use the local variables
v and s of the mass model as state
variables.

• Dymola can be told to modify the
equations such that, if possible, the
desired variables are being used as
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g
state variables, i.e., show up in the
simulation code with a der()
operator.

• We shall discuss later in this
lecture, how this can actually be
accomplished.
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The Sliding Mass Model IV
• One question that remains is, for

which variables we now have to
specify the initial conditions.

• Do we do it for the new state
variables s and v, or do we still do
it for the natural state variables?

• It turns out that we can do either
or, but not both.

• Dymola will use the specified
values as start values of an
iteration and iterate on the
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iteration and iterate on the
unknown initial values of the new
state variables, until it finds a set
of initial conditions that is
consistent with the information
that has been specified by the user.
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The Spring Model
• We are now ready to look at the model of a spring.

The spring is modeled as a
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p g
modulated effort source,
i.e., without an integrator
of its own. It imports the
positional information
through its two terminals.

Mathematical Modeling of Physical Systems

The Spring Model II
• The spring can be either

described using the equation:described using the equation:

• or using the differentiated form:

• Until now, we always used the
latter representation, i.e., a

fx = k · (xleft – xright )

dfx/dt = k · (vleft – vright )
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p , ,
capacitor, whereas now, we are
using the former equation.

• Both work equally well, in
principle.
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The Spring Model III
• There is however a problem.
• The new spring model importsThe new spring model imports

the needed positional information
through its two terminals.

• Since positional information is
only computed by masses and
inertial frames, this spring model
can only be placed either
between two masses or between a

d th d
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mass and the ground.
• In particular, it is not possible to

place a spring and a damper in
series with each other.

(Placing two springs in series would have worked correctly if we had used a-causal models for
signal processing rather than relying on the causal blocks from the block library.)
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The Spring Model IV
• The former model (using a

it ) did t h thicapacitor) did not share this
limitation.

• Hence our new spring model is a
bit of a dirty trick.

• … the same dirty trick by the
way that the standard library is
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using, albeit without offering a
bond graph interpretation.
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The Spring Model V
• The equation layer doesn’t offer

iany surprises.
• The relative position and velocity

of the spring are calculated here,
since these are variables that the
user may like to display.

The remaining models of the
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e e g ode s o e
library are what we would
expect them to be, thus they
don’t need to be discussed
here.
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Wrapping Tightly – Protected Variables
• Let’s now look at the expanded view of

the equation layer of the spring model.
• I manually placed the keyword

protected in front of the declarations of
variables to the inside of the wrapper
models.

• The effect of this measure is to prevent
these variables from being displayed in
the simulation window.

• In this way, the model parameters will
look exactly the same in the simulation
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look exactly the same in the simulation
window as using the corresponding
model of the standard library.

• The model has been wrapped tightly.
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An Example
• Given the following mechanical system:
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An Example II
• Using the translational sub-library of the mechanics library

of the BondLib library, this system can be modeled asy y
follows:
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An Example III

Th i iti l diti l l t d
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The initial conditions were calculated 
correctly.

Due to information hiding (protected variables), only
those variables external to the wrapper models are
visible.
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The Selection of State Variables
• Until now, we have always used the “capacitor”y p

voltages and “inductor” currents of our bond
graph models as our state variables.

• Sometimes, this is not desirable. We may have
specific wishes as to which variables should be
used as state variables.

• In some cases (as we shall see later), the choice of
t t i bl l i fl th ti
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state variables also influences the run-time
efficiency of the generated simulation code.

• The number of generated equations may depend
heavily on a wise choice of state variables.
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The Selection of State Variables II
• Dymola supports the concept of selecting state variables

differently from those that the system would normally
choose.

• To this end, the user declares a desired state variable as
follows:

Real x(stateSelect = StateSelect.prefer)
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• Dymola complies with the request by means of a variant of
the Pantelides algorithm.
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The Selection of State Variables III
• If the desired state variable already appears in

differentiated form, use it whenever possible as a state.
• If the desired state variable does not already appear in

differentiated form, differentiate the equation that
computes the desired state, add it to the set of equations,
and create a new integrator for it.

• We now have one equation too many.
If i th f diff ti ti dditi l l b i
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• If in the process of differentiation additional algebraic
variables are being differentiated, differentiate the
equations defining those variables as well, add them also to
the set of equations, but don’t add new integrators for
them.
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The Selection of State Variables IV
• In the process of these additional differentiations, newp ,

variables and new equations are added to the set, so that at
the end of the process, there is still one equation too many.

• If the desired state variable is legitimate, at least one of the
previous state variables occurs among the set of equations
that were differentiated.

• Throw the integrator associated with one of those state
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Throw the integrator associated with one of those state
variables away to once again end up with an identical
number of equations and unknowns.
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The Selection of State Variables V
• Given our “standard” electrical circuit.
• We have already learnt how to retrieve a causal set ofy

equations from it.
1: U0 = f(t)
2: v2 = uC
3: uR2 = uC
4: uL = U0
5: v1 = U0
6: iR2 = uR2 / R2
7: uR1 = v1 – v2


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8: iR1 = uR1 / R1
9: iC = iR1 – iR2
10: i0 = iL + iR1
11: diL/dt = uL / L1
12: duC/dt = iC / C1

Mathematical Modeling of Physical Systems

The Selection of State Variables VI
• We wish to derive a different set of simulationWe w s to de ve a d e e t set o s u at o

equations that uses uR1 as a state variable, while
eliminating one of the two former state variables
from the set.

• To this end, we manually implement the state
selection algorithm described earlier.
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The Selection of State Variables VII

1: U0 = f(t) duR1/dt = dv1 – dv2
Continue with this equation.

1: U0  f(t)
2: v2 = uC
3: uR2 = uC
4: uL = U0
5: v1 = U0
6: iR2 = uR2 / R2
7: uR1 = v1 – v2
8: iR1 = uR1 / R1
9 i i i

Differentiate this equation, while
creating a new derivative for uR1, but

d i i f d

R1 1 2

Now differentiate these two equations. dv1 = dU0

dv2 = duC

dU0 = df(t)/dt
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9: iC = iR1 – iR2
10: i0 = iL + iR1
11: diL/dt = uL / L1
12: duC/dt = iC / C1

no new derivatives for v1 and v2.

Eliminate this integrator.
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The Selection of State Variables VIII
• We can now apply the Tarjan algorithm to the new set of equations.

1: U0 = f(t)
2: v2 = uC
3: uR2 = uC
4: uL = U0
5: v1 = U0
6: iR2 = uR2 / R2
7: uR1 = v1 – v2
8: i = u / R

duR1/dt = dv1 – dv2
dv1 = dU0
dv2 = duC

dU0 = df(t)/dt



1: U0 = f(t)
2: v2 = uC
3: uR2 = uC
4: uL = U0
5: v1 = U0
6: iR2 = uR2 / R2
7: uR1 = v1 – v2
8: i = u / R

duR1/dt = dv1 – dv2
dv1 = dU0
dv2 = duC

dU0 = df(t)/dt
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8: iR1 = uR1 / R1
9: iC = iR1 – iR2
10: i0 = iL + iR1
11: diL/dt = uL / L1
12: duC = iC / C1

8: iR1 = uR1 / R1
9: iC = iR1 – iR2
10: i0 = iL + iR1
11: diL/dt = uL / L1
12: duC = iC / C1
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The Selection of State Variables IX



1: U0 = f(t)
2: v2 = uC
3: uR2 = uC
4: uL = U0
5: v1 = U0
6: iR2 = uR2 / R2
7: uR1 = v1 – v2
8: i = u / R

duR1/dt = dv1 – dv2
dv1 = dU0
dv2 = duC

dU0 = df(t)/dt

1: U0 = f(t)
2: v2 = uC
3: uR2 = uC
4: uL = U0
5: v1 = U0
6: iR2 = uR2 / R2
7: uR1 = v1 – v2
8: i = u / R

duR1/dt = dv1 – dv2
dv1 = dU0
dv2 = duC

dU0 = df(t)/dt
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8: iR1 = uR1 / R1
9: iC = iR1 – iR2
10: i0 = iL + iR1
11: diL/dt = uL / L1
12: duC = iC / C1

8: iR1 = uR1 / R1
9: iC = iR1 – iR2
10: i0 = iL + iR1
11: diL/dt = uL / L1
12: duC = iC / C1
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The Selection of State Variables X



1: U0 = f(t)
2: v2 = uC
3: uR2 = uC
4: uL = U0
5: v1 = U0
6: iR2 = uR2 / R2
7: uR1 = v1 – v2
8: i = u / R

duR1/dt = dv1 – dv2
dv1 = dU0
dv2 = duC

dU0 = df(t)/dt

1: U0 = f(t)
2: v2 = uC
3: uR2 = uC
4: uL = U0
5: v1 = U0
6: iR2 = uR2 / R2
7: uR1 = v1 – v2
8: i = u / R

duR1/dt = dv1 – dv2
dv1 = dU0
dv2 = duC

dU0 = df(t)/dt
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8: iR1 = uR1 / R1
9: iC = iR1 – iR2
10: i0 = iL + iR1
11: diL/dt = uL / L1
12: duC = iC / C1

8: iR1 = uR1 / R1
9: iC = iR1 – iR2
10: i0 = iL + iR1
11: diL/dt = uL / L1
12: duC = iC / C1
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The Selection of State Variables XI



1: U0 = f(t)
2: v2 = uC
3: uR2 = uC
4: uL = U0
5: v1 = U0
6: iR2 = uR2 / R2
7: uR1 = v1 – v2
8: i = u / R

duR1/dt = dv1 – dv2
dv1 = dU0
dv2 = duC

dU0 = df(t)/dt

1: U0 = f(t)
2: v2 = uC
3: uR2 = uC
4: uL = U0
5: v1 = U0
6: iR2 = uR2 / R2
7: uR1 = v1 – v2
8: i = u / R

duR1/dt = dv1 – dv2
dv1 = dU0
dv2 = duC

dU0 = df(t)/dt
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8: iR1 = uR1 / R1
9: iC = iR1 – iR2
10: i0 = iL + iR1
11: diL/dt = uL / L1
12: duC = iC / C1

8: iR1 = uR1 / R1
9: iC = iR1 – iR2
10: i0 = iL + iR1
11: diL/dt = uL / L1
12: duC = iC / C1
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The Selection of State Variables XII
1: U0 = f(t) duR1/dt = dv1 – dv2

d dU2: v2 = uC
3: uR2 = uC
4: uL = U0
5: v1 = U0
6: iR2 = uR2 / R2
7: uR1 = v1 – v2
8: iR1 = uR1 / R1
9: iC = iR1 – iR2

dv1 = dU0
dv2 = duC

dU0 = df(t)/dt

• We ended up with 16 equations in 16
unknowns instead of the former 12
equations in 12 unknowns.
Thi l ti i bit l ti
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C R1 R2
10: i0 = iL + iR1
11: diL/dt = uL / L1
12: duC = iC / C1

• This solution is a bit less run-time
efficient.

• However, the variables that now appear
differentiated in the model are the inductor
current, iL, and the resistive voltage, uR1.


