

EFERS Fölgarð Ball Till Þeirins her Hachtacharla T. Zörik h Havisa Facker skinnskin trað Tiller ban sigg Paneta	Mathematical Modeling of Physical Systems						
An Example II							
h h	Component equations:						
	$U_0 = f(t)$	$i_C = C \cdot du_C / dt$					
Au b	$u_I = R_I \cdot i_I$	$u_L = L \cdot di_L/dt$					
$\begin{array}{c} \bullet \\ c \end{array} = \begin{array}{c} u_c \\ u_c \end{array}$	$u_2 = R_2 \cdot i_2$						
l l i ·	Node equations:						
The circuit contains 5 components	$i_0 = i_I + i_L$	$i_1 = i_2 + i_C$					
\Rightarrow We require 10	Mesh equations:						
equations in 10 unknowns	$U_0 = u_1 + u_C$	$u_L = u_1 + u_2$					
	$u_C = u_2$						
September 20, 2012	© Prof. Dr. François E. Cellier	Start of Presentation					

ETTH (dynálisska Teckni a beltschochula Tärkb Iniss Federaðins Gutessf Terin olagy Yurkb		Mathematical Modeling of Physical Systems		
$U_0 = f(t)$ $u_1 = R_1 \cdot i_1$ $u_2 = R_2 \cdot i_2$ $i_C = C \cdot du_C/dt$ $u_L = L \cdot di_L/dt$	$i_0 = i_1 + i_L$ $i_1 = i_2 + i_C$ $U_0 = u_1 + u_C$ $u_C = u_2$ $u_L = u_1 + u_2$	ightarrow	$U_0 = f(t)$ $u_1 = R_1 \cdot i_1$ $u_2 = R_2 \cdot i_2$ $i_C = C \cdot du_C/dt$ $u_L = L \cdot di_L/dt$	$i_0 = i_1 + i_L$ $i_1 = i_2 + i_C$ $U_0 = u_1 + u_C$ $u_C = u_2$ $u_L = u_1 + u_2$
The algorithm is applied, until every equation defines exactly one variable that is being solved for.		$U_0 = f(t)$ $u_1 = R_1 \cdot i_1$ $u_2 = R_2 \cdot i_2$ $i_C = C \cdot du_C/dt$ $u_L = L \cdot di_L/dt$	$i_0 = i_1 + i_L$ $i_1 = i_2 + i_C$ $U_0 = u_1 + u_C$ $u_C = u_2$ $u_L = u_1 + u_2$	
tember 20, 2012 © Prof. Dr. François E. Cellier Start of Presentation				

egen danis dha Tisi brini ke Hashashada Zilikin njas finderski razili stvaf Tisi bari olggi Turisia	Mathematical Modeling of Bhysical Systems			
	Sorting			
• The sorti	ng algorithms are applied just like before.			
purely m	ng algorithm has already been reduced to a athematical (informational) structure without ining knowledge of electrical circuit theory.			
• Therefore two sub-j	e, the overall modeling task can be reduced to problems:			
 Mapping of the physical topology to a system of implicitly formulated DAEs. 				
	version of the DAE system into an executable program ture.			
eptember 20, 2012	© Prof. Dr. François E. Cellier Start of Presentation			

Ergensteinschurfelschurfen zusein inweis feiturzikrechterber Technologer Lunku							
State-space Representation							
			A∈	$\Re^{n \times n}$			
• Linear system	ıs:	x e \$	R ⁿ B ∈	$\mathfrak{R}^{n \times m}$			
$\frac{d\mathbf{x}}{dt} = \mathbf{A} \cdot \mathbf{x} + \mathbf{B} \cdot \mathbf{u}$	$\mathbf{v}(t) = \mathbf{v}$	u ∈ \$	\mathbf{R}^m C \in	$\mathbf{R}^{p \times n}$			
$dt = \mathbf{A} \cdot \mathbf{x} + \mathbf{D} \cdot \mathbf{u}$ $\mathbf{y} = \mathbf{C} \cdot \mathbf{x} + \mathbf{D} \cdot \mathbf{u}$, $\mathbf{x}(t_0) - \mathbf{x}_0$	y ∈ \$	\mathfrak{R}^p $\mathbf{D} \in$	$\mathbf{R}^{p \times m}$			
37 7	stems:		$\mathbf{x} = $ State vector				
• Non-linear sy			$\mathbf{u} = $ Input vector				
$\frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x},\mathbf{u},t)$; $\mathbf{x}(t_0) = \mathbf{x_0}$	$\mathbf{y} = \mathbf{O}$	Output vector				
$\mathbf{y} = \mathbf{g}(\mathbf{x},\mathbf{u},t)$							
		n = Number of state variables					
		m = N	m = Number of inputs				
p = Number of outputs							
September 20, 2012	© Prof. Dr. François	s E. Cellier	Start of Prese	ntation			

