
Mathematical Modeling of Physical Systems

3D Mechanics
• We shall now look at a second application of

multi-bond graphs: 3D mechanics.
• 3D mechanical models look superficially just like

planar mechanical models. There are additional
types of joints, but other than that, there seem to
be few surprises.

• Yet, the seemingly similar appearance is
deceiving. There are a substantial number of

li ti th t th d l h t ithcomplications that the modeler has to cope with
when dealing with 3D mechanics. These are the
subject of this lecture
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Degrees of Freedom
• 1D mechanical systems exhibit exactly one degree

of freedom (either translational or rotational)of freedom (either translational or rotational).
• 2D mechanical systems have three degrees of

freedom They can translate along two axes andfreedom. They can translate along two axes, and
they can rotate around an axis that is perpendicular
to the plane spanned by the two translational axes.p p y

• 3D mechanical systems allow six degrees of
freedom. They can translate along three spatialy g p
axes, and they can rotate around each of those
three axes as well.
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3D Mechanical Multi-bonds
• Consequently, the 3D mechanical multi-bonds are

expected to contain six parallel regular bonds, one for each
degree of freedom:degree of freedom:
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3D Mechanical Connectors
• The 3D mechanical multi-bond connectors

should carry 13 variables, an effort vector, e, of
length 6 a flow vector f also of length 6 pluslength 6, a flow vector, f, also of length 6, plus
the directional variable, d.

• The 3D mechanical multi-body connectorsy
would need to carry 18 variables, namely 12
potential variables describing the 6 generalized
positions and the 6 generalized velocities andpositions and the 6 generalized velocities, and
6 flow variables describing the generalized
forces.

• In reality, they carry 24 variables, as shown on
the next slide.
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3D Mechanical Connectors II

The orientation matrix R rotates
the axes of the world model intot e axes of t e wo ld odel i to
the axes accompanying the body.

ωbody = R ·  ω0

Orientation of the
axes in the world

Orientation of the
axes in the body
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The Body-fixed Coordinate System
• In 3D mechanics, the inertial tensor depends on the

orientation of the body relative to its coordinate system.
H if th ld di t t i b i d f• Hence, if the world coordinate system is being used for
formulating the d’Alembert principle for rotational motion,
the inertial tensor must be constantly updated.y p

• Alternatively, we can formulate the d’Alembert principle
in a body-fixed coordinate system. In this way, the inertial
t i t ttensor remains constant.

• However, we now must calculate the relative coordinate
transformations across joints.transformations across joints.

• We must also take into account the gyroscopic torques that
result from formulating the d’Alembert principle in an
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The Body-fixed Coordinate System II
• In planar mechanics, this wasn’t a problem yet.

There is a single axis of rotation that is alwaysThere is a single axis of rotation that is always
perpendicular to the plane of translation.
C l h i i i d• Consequently, the inertia remains constant, and we
can (and have been) calculating all motions in the

ld diworld coordinate system.
• This fact makes planar mechanics considerably

simpler and more easy to understand than 3D
mechanics.
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The Orientation Matrix
• The orientation matrix, R, is a unitary matrix.
• Hence:• Hence:

||R||2 = 1 R-1 = RT

• Each row vector and each column vector of R is of length
1 hence there are 6 constraint equations connecting the 91, hence there are 6 constraint equations connecting the 9
matrix elements.

• As expected there are only 3 degrees of freedomAs expected, there are only 3 degrees of freedom,
describing the relative rotation of one coordinate system to
another.
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Coordinate Transformations
• Coordinate transformations can be interpreted as an act of

transformation in a bond graph sense:transformation in a bond graph sense:

ω2 = R ·  ω1

τ1 = RT ·  τ2
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Coordinate Transformations II
• We must separately also transform the angular positions:

ω2 = Rrel ·  ω1

φ2 = Rrel ·  φ1
R R R
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Efficient Simulation Equations
• Dymola doesn’t understand the

concept of a unitary matrix.
• Hence, if the computational

causality requires an inversion of
the R matrix that is whatthe R matrix, that is what
Dymola will provide … in
symbolic form.

• This leads to highly inefficient
equations at run time.
Th i i b h l D l

R2 = Rrel ·  R1
• Thus, it is better to help Dymola

by specifying the direction of
computational flow explicitly.

 R1 = Rrel
-1 ·  R2 = Rrel

T ·  R2
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Computation of Orientation Matrix
• One way to compute the orientation matrix, R, in a non-redundant

fashion is by means of Cardan angles. These are the angles of
rotation around the Carthesian coordinates: φx , φy , and φz .

R = Rz · Ry · Rx

• Whereas R can always be computed
out of φx , φy , and φz in a unique
fashion, the opposite is unfortunatelypp y
not true.

• If φy = 90o, the other two axes are
aligned, and φx and φz cannot beg , φx φz
determined in a unique fashion.

• Hence Cardan angles are not always
a good choice.
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Computation of Orientation Matrix II
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Computation of Orientation Matrix III
• Any 3D rotation can be expressed as a planar rotation, φ,

perpendicular to a translational plane, n.
• Given the rotation angle, φ, and the translational plane, n,

the orientation matrix can be computed as follows:

• where:

R = n·nT + (I - n·nT)cos(φ) – Ñsin(φ)

• where:

0   -n3 n2

( )~
Ñ = n3 0   -n1

-n2 n1 0

(a × b = A · b)
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Computation of Orientation Matrix IV

R = n·nT + (I - n·nT)cos(φ) – Ñsin(φ)

• Unfortunately, also the planar rotation method is not always invertible
in a unique fashion. A null rotation does not have a well defined axis
of rotation. Hence, this method should only be used if the axis of

i i l k i l j i
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Quaternions
• A redundant way of describing orientation that works in all situations

is by means of quaternions.
Q aternions are a fo r dimensional e tension to comple n mbers:• Quaternions are a four-dimensional extension to complex numbers:

Q = c + ui + vj + wk = c + u

• Quaternions are characterized by the three imaginary components, i, j,
and k that satisfy the following computational rules:

ij = k;      ji = -k;     i2 = -1

jk = i;     kj = -i;      j2 = -1

ki = j;     ik = -j;     k2 = -1
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Quaternions II
• The product of two quaternions can be written as:

QQ’ = (c + u)(c’ + u’) = (cc’ – u·u’) + (u × u’) + cu’ + c’u

• The complement of a quaternion is being defined as:

QQ   (c + u)(c  + u )  (cc  u u ) + (u × u ) + cu + c u

Q

• The norm of a quaternion is the product of the quaternion with its
complement:

Q = c + u = c – u

complement:

QQ = | Q | = c2 + |u|2

• A unit quaternion is a quaternion with norm 1:

| Q | = c2 + |u|2 = 1
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Quaternions III
• In accordance with trigonometry:

cos(φ/2)2 + sin(φ/2)2 = 1

• it is always possible to find an angle φ such that:

cos(φ/2) + sin(φ/2)  1

( /2) | | ( /2)

• This enables us to encode the orientation of a coordinate system as a
quaternion whereby the axis of rotation is encoded as u where

c = cos(φ/2);    |u| = sin(φ/2)

quaternion, whereby the axis of rotation is encoded as u, where
[u,v,w]T is being interpreted as a vector pointing in the direction of the
axis of rotation. The fourth quantity, c, of the quaternion encodes the
angle of rotation φangle of rotation, φ.

• Then:
R = 2u·uT + 2cU +2c2I - I~
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Computation of Orientation Matrix V

R = 2u·uT + 2cU +2c2I - I~

• The multi-bond graph library uses all three representations. It uses the
planar rotation method inside revolute joints, and either Cardan
angles or quaternions (user’s choice) within more general joints, such

Start Presentation© Prof. Dr. François E. CellierNovember 15, 2012

as the spherical joints.



Mathematical Modeling of Physical Systems

The Wrapper Models
• In the multi-bond graph library, the equations of motion are formulated

in the world coordinate system for translational motions, and in a
body-fixed coordinate system for rotational motions.

• For this reason, the bond graphs for translational and rotational
motions are kept separate from each other, and the 3D mechanics
multi-bonds have therefore still a cardinality of 3.

Translational 
multi-bond graph

Translational positions

i l i i

Rotational multi-
bond graph

Rotational positions
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Equations of Motion in Body System
• Let us formulate the equations of motion in a body-fixed coordinate

system:
τ0 = J0 · ω0

.
0 0 0

 τ0 = 
d
dt ( )RTJbodyωbodydt

τ0 = RTJbodyωbody + RTJbodyωbody
. .

RTτbody = RTJbodyzbody + RTΩbodyJbodyωbody ~

 τbody = Jbodyzbody + ωbody × Jbodyωbody
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The Eulerian Junction Structure
• The gyroscopic torque can be formulated, in terms of bond graphs, as

a so-called Eulerian Junction Structure (EJS):

E l d i iExternal description

Bond graph descriptionMulti-bond graph implementation
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The Model of a Body
• We are now ready to model a general body using the multi-bond graph

library:
• The translational equations of

f = ma mg

q
motion are formulated in world
coordinates.

• The rotational equations offwld = mawld - mgwld
The rotational equations of
motion are formulated in body-
fixed coordinates.

• The gravitational pool is
Translation

Rotation

The gravitational pool is
computed by the world model
of wrapped 3D mechanics.

τbdy = Jbdyzbdy
+ ωbdy × Jbdyωbdy
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The Model of a Body II

}General parameters

}
Parameters 

}grouped into 
separate list on 
main parameter 
windowwindow

Final parameters are computed
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The Model of a Body III

Parameters grouped 
into separate sub-
windows of the 

l} general parameter 
window
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E 3D h i l d
The Model of a Body IV

• Every 3D mechanical wrapped
multi-bond graph model must
invoke the world3D model that
must be declared in each

d l i b d hwrapped multi-bond graph
component model as an outer
model.
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The Model of a Body V

• The shapes and sizes of bodies can
be declared for the purpose of
animation.

• This feature is borrowed from the
multi-body systems sub-library of
the standard Modelica mechanics
librarylibrary.

• You find documentation there for
predefined shapes under the sub-
heading Visualizers, and more

ll d th b b t fgenerally under the sub-sub-entry of
Advanced → Shape.
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The Model of a Body VI

• The center of the gravitational pool is specified in
th ti i d Th di hi lthe equation window. The corresponding graphical
element is only a drawing. The user is reminded of
this fact, by not connecting the “connections” all the
way to the connectors. The user then knows that
“ thi i fi h ”
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