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3D Mechanics

* We shall now look at a second application of
multi-bond graphs: 3D mechanics.

» 3D mechanical models look superficially just like
planar mechanical models. There are additional
types of joints, but other than that, there seem to
be few surprises.

* Yet, the seemingly similar appearance is
deceiving. There are a substantial number of
complications that the modeler has to cope with
when dealing with 3D mechanics. These are the
subject of this lecture.
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Degrees of Freedom

» 1D mechanical systems exhibit exactly one degree
of freedom (either translational or rotational).

» 2D mechanical systems have three degrees of
freedom. They can translate along two axes, and
they can rotate around an axis that is perpendicular
to the plane spanned by the two translational axes.

» 3D mechanical systems allow six degrees of
freedom. They can translate along three spatial
axes, and they can rotate around each of those
three axes as well.

3D Mechanical Multi-bonds

e Consequently, the 3D mechanical multi-bonds are
expected to contain six parallel regular bonds, one for each
degree of freedom:

f Composition of a
i multi-bond for 3D
mechanics
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3D Mechanical Connectors

» The 3D mechanical multi-bond connectors
should carry 13 variables, an effort vector, e, of
length 6, a flow vector, f, also of length 6, plus
the directional variable, d.

* The 3D mechanical multi-body connectors F=——
would need to carry 18 variables, namely 12 [
potential variables describing the 6 generalized
positions and the 6 generalized velocities, and |+
6 flow variables describing the generalized e
forces.

* In reality, they carry 24 variables, as shown on
the next slide.

3D Mechanical Connectors |1
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The orientation matrix R rotates
the axes of the world model into
the axes accompanying the body.

Dpoiy =R+ 0
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Orientation of the Orientation of the
axes in the body axes in the world 1
coordinate system. coordinate system. 9
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The Body-fixed Coordinate System

e In 3D mechanics, the inertial tensor depends on the
orientation of the body relative to its coordinate system.

* Hence, if the world coordinate system is being used for
formulating the d’Alembert principle for rotational motion,
the inertial tensor must be constantly updated.

» Alternatively, we can formulate the d’Alembert principle
in a body-fixed coordinate system. In this way, the inertial
tensor remains constant.

» However, we now must calculate the relative coordinate
transformations across joints.

» We must also take into account the gyroscopic torques that
result from formulating the d’Alembert principle in an
accelerated frame.

The Body-fixed Coordinate System 11

* In planar mechanics, this wasn’t a problem yet.
There is a single axis of rotation that is always
perpendicular to the plane of translation.

» Consequently, the inertia remains constant, and we
can (and have been) calculating all motions in the
world coordinate system.

» This fact makes planar mechanics considerably
simpler and more easy to understand than 3D
mechanics.

November 15, 2012 ‘ © Prof. Dr. Frangois E. Cellier ‘ Start Presentation <:]|::>

November 15, 2012 ‘ © Prof. Dr. Fran(;ois E. Cellier Start Presentation <]|:>




i ‘ Mathematical Mobdeling of LPHhydical Sydtems
fiwiss. Gederall ins: e sd Texhrols gy Fusich

The Orientation Matrix

* The orientation matrix, R, is a unitary matrix.

¢ Hence:

» Each row vector and each column vector of R is of length
1, hence there are 6 constraint equations connecting the 9
matrix elements.

» As expected, there are only 3 degrees of freedom,

describing the relative rotation of one coordinate system to
another.
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Coordinate Transformations

« Coordinate transformations can be interpreted as an act of
transformation in a bond graph sense:
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Coordinate Transformations |1

» We must separately also transform the angular positions:
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Efficient Simulation Equations

e— =3i « Dymola doesn’t understand the

concept of a unitary matrix.

e Hence, if the computational
causality requires an inversion of
the R matrix, that is what

o ARZ-$-ih B

Dymola will provide ... in
! symbolic form.
e This leads to highly inefficient
R,=R.,- R, equations at run time.

e Thus, it is better to help Dymola

= | R,=R," R,=R,, - R2| by specifying the direction of
computational flow explicitly.
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Computation of Orientation Matrix
* One way to compute the orientation matrix, R, in a non-redundant

fashion is by means of Cardan angles. These are the angles of
rotation around the Carthesian coordinates: ¢, , ¢,, and ¢. .

(1 0 0 ) = [R=R,-R,‘R,
R, =

0 cos(y,)  sin(e,)
0 —sin(p,) cos(y,) e Whereas R can always be computed

out of ¢, ¢,, and ¢. in a unique

cos(ip,) 0 —sin(p,) fashion, the opposite is unfortunately
R, = 0 1 0 not true.
sin(,) 0 coslip,) e If ¢, = 90°, the other two axes are

aligned, and ¢, and ¢. cannot be
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Computation of Orientation Matrix |1
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. costy:) - sinlps) 8 determined in a unique fashion.
= 75"6("“") COS(()“"") { + Hence Cardan angles are not always
a good choice.
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Computation of Orientation Matrix I11

» Any 3D rotation can be expressed as a planar rotation, ¢,
perpendicular to a translational plane, ».

» Given the rotation angle, ¢, and the translational plane, n,
the orientation matrix can be computed as follows:

R =n-n"+ (I - n-n")cos(p) — Nsin(p) |

» where:
0 -n; n,
N=| n; 0 n (axb=A4-b)
-n, n; 0
November 15, 2012 © Prof. Dr Frangois E. Cellier Start Presentation <:]|::>

Urwi | | Modeing E""‘“"‘ ]
November 15, 2012 © Prof. Dr. Frangois E. Cellier Start Presentation <;|::>
st e i ‘ Mathematical Mobdeling of Physical Sysdtems ‘
Computation of Orientation Matrix IV
o T T | e e BT
il
=  Pplanar | [==
..- e = |:!I'\|u.¢:
Rotation sy
]
et Fhewdrhotsten L]
— [D“'_"ql““"_]ﬂ -
K NESN

R =nn"+ (I - n-n")cos(p) — Nsin(p) |

« Unfortunately, also the planar rotation method is not always invertible
in a unique fashion. A null rotation does not have a well defined axis
of rotation. Hence, this method should only be used if the axis of
rotation is always known, as in a revolute joint.
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Quaternions

« A redundant way of describing orientation that works in all situations
is by means of quaternions.

« Quaternions are a four-dimensional extension to complex numbers:

|Q=c+ui+vj+wk=c+u

¢ Quaternions are characterized by the three imaginary components, i, j,
and £ that satisfy the following computational rules:

j=k ji=-k i#=-1
jk=i; k=-ii P2=-I
ki=j; ik=-; Rk=-I
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Quaternions Il

¢ The product of two quaternions can be written as:

Q0’=(ctu)(c’+u’)=(cc’—uw)+ uxu’)tcu+cu

¢ The complement of a quaternion is being defined as:

Q=ctu =c—u

e The norm of a quaternion is the product of the quaternion with its
complement:

[00=10|=c+u |

¢ Aunit quaternion is a quaternion with norm 1:

llel=c+u=1]
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Quaternions 11

¢ Inaccordance with trigonometry:

|cos((p/2)2 + sin(p/2)’ = 1 |

it is always possible to find an angle ¢ such that:

[c = coso/2); || =sinpr2) |

« This enables us to encode the orientation of a coordinate system as a
quaternion, whereby the axis of rotation is encoded as «, where
[u,v,w]" is being interpreted as a vector pointing in the direction of the
axis of rotation. The fourth quantity, ¢, of the quaternion encodes the
angle of rotation, ¢.

e Then:

|R = 2uul + 2c0+2¢2 - T |
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Computation of Orientation Matrix V
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* The multi-bond graph library uses all three representations. It uses the
planar rotation method inside revolute joints, and either Cardan
angles or quaternions (user’s choice) within more general joints, such
as the spherical joints.
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The Wrapper Models

¢ In the multi-bond graph library, the equations of motion are formulated
in the world coordinate system for translational motions, and in a
body-fixed coordinate system for rotational motions.

¢ For this reason, the bond graphs for translational and rotational
motions are kept separate from each other, and the 3D mechanics
multi-bonds have therefore still a cardinality of 3.

— Translational
multi-bond graph

Tational positi
Tr 1
™M 30
e
30
fran R Ip e b

— Rotational multi- —
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Equations of Motion in Body System

e Let us formulate the equations of motion in a body-fixed coordinate

bond graph
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The Eulerian Junction Structure

¢ The gyroscopic torque can be formulated, in terms of bond graphs, as
a so-called Eulerian Junction Structure (EJS):

system:
d

= | = E(RTJbadywbady)

= | T = RTJbody(bbady + RTJbodywbady |

= | R0 = RV Zs0ip + R B0 0 P00y |

body body*body body*” body™~ body
= | Thody = Tbody@body T Piody * Jpoay®pody
| Gyroscopic torque |
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The Model of a Body

« We are now ready to model a general body using the multi-bond graph
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The Model of a Body I
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The Model of a Body Il
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The Model of a Body 1V

Every 3D mechanical wrapped
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“name’ | The Model of a Body V
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The Model of a Body VI

Body! Body ST
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= 1 :3'"]9\( « The center of the gravitational pool is specified in
' the equation window. The corresponding graphical
H element is only a drawing. The user is reminded of
~ this fact, by not connecting the “connections” all the
M way to the connectors. The user then knows that
“something is fishy.”
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