

Start Presentation

 $\langle \downarrow \downarrow \rangle$

Cirige nössische Teshnische Hochschule Zühlch Swiss. Federal Institutie af Vechnology Zuhlch

Mathematical Modeling of Physical Systems

The Spherical Joint

- A spherical joint is similar to a revolute joint in that it only rotates.
- Yet, a spherical joint has three degrees of freedom, rather than only one. Any rotation is possible.
- Hence we cannot compute easily a plane perpendicular to the rotation, and therefore, the planar rotation method is not suitable.
- We can use either Cardan angles or quaternions. Each method requires to represent the correct vector of angles in a different way.
- Hence the bond graph only determines the angular velocities, using a Df element. The Cardan angles or the quaternion vector respectively are integrated from the velocities using special elements.

November 15, 2012

© Prof. Dr. François E. Cellier Start Presentation

公众

ETH Mathematical Modeling of Physical Systems Eligenössische Technische Hochschule Zürich Swiss Gederal Institute af Technology Zurich The Selection of State Variables • When dealing with multi-body systems, it matters greatly, which variables are being selected as state variables, as this will influence strongly the efficiency of the generated simulation code. • If we choose our state variables wisely, the number of simulation equations of a tree-structured multi-body system grows linearly in the number of degrees of freedom. • If we make a poor choice of our state variables, the number of run-time equations grows with the fourth power of the number of degrees of freedom. • To this end, we should use the relative positions and velocities of joints as our preferred state variables. November 15, 2012 Start Presentation 公众 © Prof. Dr. Francois E. Cellier

4

© Prof. Dr. François E. Cellier

November 15, 2012

Kinematically closed loops

Start Presentation

公众

Mathematical Modeling of Physical Systems Eidgenössische Technische Hochschule Zühlch Swiss Rederal Institute af Technology Zuhlch

Planar Loops in 3D Mechanics II

- The problem is the following: There are two planar closed kinematic loops each defined by three revolute joints and a prismatic joint.
- Two revolute joints with the same rotation axis suffice to restrict the freedom of motion to a single axis. The constraint of the third revolute joint is therefore superfluous, which leads to an additional redundancy that doesn't get removed by the automated loop-breaker algorithm.
- For this reason, a special *revolute cut joint* was introduced in the 3D mechanics library that can be used to break *planar* closed kinematic loops in 3D mechanics.

```
November 15, 2012
```

ETH

Start Presentation © Prof. Dr. François E. Cellier

公

ETTH Eifgen össische Techn ische Hochschu Swiss. Rederel Institute ef Technolog		5	Mathematical Modeling of Physical Systems				
	•	y of Si					ter
	good cardan angle seq.		quater	nions	bad cardan angle seq.		
tolerance	-	steps	error	steps	error	steps	
$1.0 \cdot 10^{-4}$	$4.9 \cdot 10^{-4}$		$5.0 \cdot 10^{-3}$		1.8.10-0	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	1
$1.0 \cdot 10^{-6}$			3.1.10-4		$2.9 \cdot 10^{-4}$		
$1.0 \cdot 10^{-8}$			C	$8.4 \cdot 10^{4}$	$3.5 \cdot 10^{-5}$		
$1.0 \cdot 10^{-10}$	$1.2 \cdot 10^{-7}$	$2.3 \cdot 10^{4}$	$1.1 \cdot 10^{-6}$	$1.4 \cdot 10^{5}$	$3.0 \cdot 10^{-6}$	$4.4 \cdot 10^{5}$	
orientatio execution simulation	n matrix o speed (nu n.	choice of f the spheri mber of int thwhile exp	ical joint h tegration s	ad a hug teps) and	e influence on the ac	e both on curacy of	the the
		ne simulatio		, while the		parameters	
ovember 15, 2012	(Drof. Dr.	François	E. Cellier	Start	Presentation	¢¢

ETTH Cidge rössische Technische Mochschule Zünich Swiss. Rederall Institutie of Technology Zunich

Mathematical Modeling of Physical Systems

Efficiency of Simulation Run

• The following table compares the efficiency of the simulation code obtained using the multi-body library contained as part of the standard *Modelica* library with that obtained using the 3D mechanics sub-library of the multi-bond graph library.

experiment	linear equ.	MultiBody non-lin. equ.	steps	linear equ.	non-lin. equ.	steps
Pendulum	0	0	207	0	0	207
Double pendulum	2	õ	549	2	õ	549
Crane crab.	2	0	205	4	0	205
Gyroscopic exp. with Cardans	2,2	0	294	3,2	0	294
Gyroscopic exp. with Quaternions	4,3	4	24438	4,2	4	25574
Planar Loop	8.2	2	372	6,2,2	2	372
Centrifugal exp.	10,2,2	2,2	70	16,2,2	2,2	70
Four bar loop*	10,5,2	5	446	9,5,2	5	625
Bicycle*	15,5,3,2	1	97	15,3	1	84
lovember 15, 2012		Prof. Dr. Fran			Start Presentation	י לאל

Multi-bond Graphs: A Modeling Complex Proc. 20 th European and Simulation, Bonn,	immer (2006), " <u>Wrapping</u> <u>Structured Approach to</u> <u>Multi-body Dynamics</u> ," <i>Conference on Modeling</i>
Multi-bond Graphs: A Modeling Complex Proc. 20 th European and Simulation, Bonn,	<u>Structured Approach to</u> <u>Multi-body Dynamics</u> ," <i>Conference on Modeling</i>
• Andres, M. (2009), <i>Ol</i>	Germany, pp. 7-15.
<u>Wheels and Tires</u> in Thesis, Mechatronic	<i>ject-Oriented Modeling of</i> <u>Dymola/Modelica</u> , MS Program, Vorarlberg and Technology, Dornbirn,

	ische rischschule zinkn er ef konnenlege kunne
	References III
•	Andres, M., D. Zimmer, and F.E. Cellier (2009), " <u>Object-Oriented Decomposition of Tire Characteristics Based on Semi-empirical Models</u> ," <i>Proc.</i> 7 th International <i>Modelica Conference</i> , Como, Italy, pp. 9-18.
•	Schmitt, T. (2009), <u>Modeling of a Motorcycle in</u> <u>Dymola/Modelica</u> , Mechatronics Program, Vorarlberg University of Science and Technology, Dornbirn, Austria.
•	Schmitt, T., D. Zimmer, and F.E. Cellier (2009), " <u>A</u> <u>Virtual Motorcycle Rider Based on Automatic Controller</u> <u>Design</u> ," <i>Proc.</i> 7 th <i>International Modelica Conference</i> , Como, Italy, pp. 19-28.
November 15,	2012 © Prof. Dr. François E. Cellier Start Presentation