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The Dymola Thermo-Bond-Graph Library

e In this lecture, we shall introduce a third bond-graph
library, one designed explicitly to deal with convective
flows.

» To this end, we shall need to introduce a new type of
bonds, bonds carrying in parallel three distinct, yet
inseparable, power flows: a heat flow, a volume flow, and
a mass flow.

» These new bus-bonds, together with their corresponding
bus-0-junctions, enable the modeler to describe convective
flows at a high abstraction level.

» The example of a pressure cooker model completes the
presentation.
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The Thermo-Bond Graph Connectors |

e We shall need to introduce new thermo-bond graph
connectors to carry the six variables associated with the
three flows. They are designed as an 11-tuple.
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The Thermo-Bond Graph Connectors Il

» Like in the case of the general bond-graph library, also the
thermo-bond-graph library offers causal next to a-causal
bonds.

The Thermo-Bond Graph Connectors |11
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« Either the three efforts or the three flows are treated as input
variables.

- - P
November 22, 2012 © Prof. Dr. Frangois E. Cellier ‘ Start Presentation <:]|:>

- - P
November 22, 2012 ‘ © Prof. Dr. Francois E. Cellier ‘ Start Presentation (70>

prise—— ‘ Mathematical Mobdeling of Physical Sydtems ‘

prises— ‘ Mathematical Mobdeling of Physical Sysdtems

The Causal Thermo-Bond Blocks

| s all -
] z: o Using these connectors, causal

thermo-bond blocks can be defined.

e The f-connector is used at the side
of the causality stroke.

e The e-connector is used at the other
side.

e The causal thermo-bond-graph
connectors are only used in the
Sdot,q,Mdot —~ context of the thermo-bond blocks.
o Everywhere else, the a-causal
thermo-bond-graph connectors are
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The Bus-0-Junction
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The junctions can now be programmed. Let us
look at a bus-0-junction with three bond
attachments.
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The Heat Exchanger
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The Thermo Bond Heat Exchange Element
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both substances to the left
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The conductance is split

Conversion in two. Half goes to the
from thermo- left, half to the right.
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The Volume Work
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The Pressure Volume Exchange Element
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Forced Volume Flow |

The forced volume flow
causes a proportional
forced mass flow and an
also proportional forced
entropy flow.
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Forced VVolume Flow 11

* The model presented here cannot yet be used to
represent e.g. @ pump or a compressor, because it
doesn’t consider the power needed to move the fluid
around.

e The model is acceptable to describe small mass
movements such as pressure equilibrations between
the bulk and a (mathematical) boundary layer.

* An improved forced volume flow model shall be
discussed later in this lecture.
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The Resistive Field
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Pressure Equilibration With Constant Volume

e Sometimes it is useful to allow a mass flow to take place,
while the volume doesn’t change (remember the gas
cartridge).

Pressure equilibration causes a

o volume flow to occur.

R

A flow sensor element measures
the volume flow taking place.

. B =) A counter volume flow of equal
size is forced.
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The Pressure Cooker |
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Evaporation and Condensation | Evaporation and Condensation |1

» The models describing evaporation and condensation are constructed by nodad BeliCondlaver "Soiling wud sondencarion of vacer 1
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Simulation of Pressure Cooker
» We are now ready to compile and simulate the model.
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Simulation Results 11

o= il Dt Heating is sufficiently slow that the
T L L L K — LR temperature values of the different
o (=2 media are essentially
| indistinguishable. The  heat
i i exchangers have a smaller time
- constant than the heating.
0 During the cooling phase, the
= picture is very different. When cold
water is poured over the pressure
w cooker, air and steam in the small
0 boundary layer cool down almost
" instantly. Air and steam in the bulk
) cool down more slowly, and the
s liquid water cools down last.
0
e 7 = = i

Simulation Results 111

I pressure values are essentially

indistinguishable throughout the

wl

=

simulation.

During the heating phase, the
pressures rise first due to rising
temperature.  After about 150
seconds, the liquid water begins to
boil, after which the pressure rises
faster, because more steam is
produced (water vapor occupies
more space at the same
temperature than liquid water).

layer and bulk pressure values in
the cooling phase is a numerical
artifact.

|
'| The difference between boundary
|
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Simulation Results IV
e «libd The relative humidity decreases at
{ e first, because the saturation

| | pressure rises with temperature,
| | | i, more humidity can be stored
Il | | athigher temperatures.

'Ii | | As boiling begins, the humidity
I | | rises sharply, since additional
vapor is produced.

In the cooling phase, the humidity

o4 quickly goes into saturation, and
e A stays there, because the only way
dan |/ to ever get out of saturation again
I\ / would be by reheating the water.
v
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Simulation Results V

R The mass fraction defines the

percentage  of  water  vapor

—— Mass_fiac —— Maas_ra_boundary
LEE —

o
A

(T8

(1]

o0en 5063 1064

contained in the air/steam mixture.

Until the water begins to boil, the
mass fraction is constant. It then
rises rapidly until it reaches a new
equilibrium, where evaporation
and condensation balance out.

During the cooling phase, the
boundary layer cools down
quickly, and can no longer hold
the water vapor contained. Some
falls out as water, whereas other
_h steam gets pushed into the bulk,
temporarily increasing the mass
fraction there even further.
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Free Convective Mass Flow

» We are now ready to discuss free convective
mass flow, such as mass flow occurring in a
segment of a pipe.

» The convective mass flow occurs because
more mass is pushed in from one end, pushing
the mass currently inside the pipe segment out
by the other end.

e To this end, we need to introduce some more
models.
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The Forced Flow Source

« This model describes an element of the regular bond-graph library.
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E File Edit  Simulation Blot Animation Commands  Window  Help i 5'5]
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The primary side is a flow source,
the secondary side can be either a
flow or an effort source. Its
equation is defined to satisfy
power continuity across the
element.

Hfuode1 ustz

Packages : extends Interfaces.ModTwoPort;
=,
T =
p—

==
el*il = ez*iZ;
end m3£2;
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Density and Specific Entropy |
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* As mentioned some lectures ago, we shall need modulated flow
sources (as introduced one slide ago) that are modulated by the
specific entropy and/or the specific mass (i.e., the density).
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Density and Specific Entropy |1

» These models are created as blocks:
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The State Sensor

e Many elements that are related to substances require state
information. This is generated by a specialized thermo-bond,
the so-called state sensor element.
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Free Convective Volume Flow

» We are now ready to describe the
free convective volume flow. <= |
ﬁ 7 "
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The volume flow is modeled as a wave
equation with friction. The friction is
in parallel with the inertia.

The flow is measured using a flow
sensor element. The additional
entropy generated by friction is
reintroduced in the down-wind
direction, i.e., in the direction of the
flow. Switch elements are used to
determine the reintroduction point.

Non-linear flow sources are used to
model the parallel thermal and mass

L4 == Volume flow
= e RN}
- 1 e
L LE e 1 822 O e 1 e BT
z8 T
- i G -
— = e —
- - L -
: - O == O —= ST e~ O e | -
g — =
e EE ] > O 8 e S
sl 7z .
= = s
- 1 Mass flow
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~E e Q & 1 e Fio flows.
)
23 These are computed by converting the
y volume flows to consistent entropy and
’ mass flows.
= 1
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State sensor elements are used to
determine the current values of
volume, entropy, and mass.

Up-wind state information is being
used to convert the volume flow into

consistent entropy and mass flows.
L2 e |1 & 0w A e B0
] Since entropy doesn’t need to be
L 178 18 L 2 preserved, the non-linear flow source
=] i o = is inserted directly into the thermal
8], R g ) ik I8 branch.
0wt O QA s O b O
Since mass flow must be preserved,
sw2 swi the non-linear flow source is inserted
o w0 e S under a 1-junction in the mass flow

ER branch.
@7 ‘;"il
LX)—@ To move mass with the volume,
additional energy is needed that is

taken from the thermal domain.

Forced Convective Volume Flow

* We are now ready to describe the
forced convective mass flow.

The model is almost the same as the free
convective flow model, except that a
volume flow is forced on the system
through the regular bond connector at
the top, replacing the inductor.
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e The pump forces a flow, thereby creating a higher pressure
at the outflow, while creating a lower pressure at the
inflow.

e Mass is transported through the pump with the volume.
Since the mass is getting condensed, it occupies less space.
Thus, there is “surplus” volume that gets used to “finance”
the mass transport in the Gibbs equation.

e In the pipe segments, the pressure is gradually reduced
again, thus each pipe segment has a higher pressure at the
inflow than at the outflow. The mass thus expands, and
the volume consumed in the pump is gradually given back,
so that the overall volume in the water serpentine is being
preserved.

- - P
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Comparison With Biosphere 2

 In the Biosphere 2 model, only the (sensible and latent)
heat were modeled. The mass flows were not considered.

» Consequently, you never know in the Biosphere 2 model,
how much water is available where. It is always assumed
that the pond never dries out, and that the plants always
have enough water to be able to evaporate in accordance
with their temperature and saturation pressure.

 In the case of the pressure cooker model, both the mass
flows and the heat flows were modeled and simulated.
Consequently, the case is caught, where all the water has
evaporated, while the air/steam mixture is still not fully
saturated.
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