

ilinik.tu Histo	Mathematical Modeling of Physical Systems	Eingen Golischer Techn licher Hochschule Zühl Stiegen Golischer Techn licher Hochschule Zühl Swiss Rederel Institute ef Rechnelege Zuhlich
Tal	ble of Contents I	
onversion l oichiometr eriodic tabl quation of othermal a ibbs equati	le of elements state nd isobaric reactions	• <u>Ma</u> • <u>Ene</u> • <u>Vol</u> • <u>Ent</u> • <u>Imp</u> • <u>Mu</u> • <u>Che</u> • <u>Che</u>
© F	Prof. Dr. François E. Cellier	November 29, 2012

ETH

Eidge nössische Technische Hochschule Zün Smiss. Sederell Institute of Technology Turko

• <u>Ca</u>

Co

Sto

• Per

Eq

Isc

Gil

• Ch

November 29, 2012

Mathematical Mobeling of Physical Systems Table of Contents II Mass balance Mass balance Energy balance Volume flow Entropy flow Improved chemical reactor model Multi-bus-bonds Chemical multi-port transformers Chemical resistive fields

© Prof. Dr. Francois E. Cellier

Mathematical Modeling of Physical Systems

Start Presentation

Start Presentation

 $\langle \downarrow \downarrow \rangle$

1

公众

Chemical Thermodynamics II

- Yet, some reactions change the overall volume (or pressure) of the reactants, such as in explosive materials, others occur either exothermically or endothermically. It is obviously necessary to keep track of these changes.
- Furthermore, we chose to represent substances in a mixture by separate *CF-elements*. If we wish to continue with this approach, volume and heat flows indeed do occur between these capacitive fields.

© Prof. Dr. François E. Cellier

Ma	ss Balance
stoichiometric co removed from one another. Hence th change. This is true for eac	nce is embedded in the efficients. Whatever gets reactant, gets added back to be total reaction mass will not n step reaction separately, since must satisfy the stoichiometric

- i.e., on the *mass flow equations*. I treated the volume and heat flows as global properties, disassociating them from the individual flows.
- In this new presentation, I recognized that mass flows cannot occur without simultaneous volume and heat flows, which led to an improved and thermodynamically more appealing treatment.

November 29, 2012

© Prof. Dr. François E. Cellier

Start Presentation

公众

	References
 Springer-Verlag. Cellier, F.E. a <u>Chemical React</u> 	(1991), <u>Continuous System Modeling</u> , , New York, <u>Chapter 9</u> . and J. Greifeneder (2009), " <u>Modeling</u> tions in Modelica By Use of Chemo- 7 th International Modelica Conference, 142-150.