Chemical Thermodynamics II

- In this lecture, we shall continue to analyze our chemical thermodynamics bond graphs, making use of bond-graphic knowledge that we hadn't exploited so far.
- This shall lead us to a more general bond-graphic description of chemical reaction systems that is less dependent on the operating conditions.
- The *RF-element* and the *CF-element* are explained in their full complexity.

Table of Contents

- Structural analysis of chemical reaction bond graph
- <u>The chemical resistive field</u>
- <u>Multi-port gyrators</u>
- The chemical capacitive field
- Isochoric vs. isobaric operating conditions
- Equation of state
- Adiabatic vs. isothermal operating conditions
- Caloric equation of state
- Enthalpy of formation
- Tabulation of chemical data
- <u>Heat capacity of air</u>

A Structural Analysis of the Generic Chemical Reaction Bond Graphs

• Let us look once more at the generic chemical reaction bond graph:

$$CF \xrightarrow{\mu_{mix}} MTF_{N} \xrightarrow{\mu_{reac}} RF_{Y_{reac}}$$

$$Is the RF-element truly reactive?$$

December 6, 2012

Relations Between the Base Variables

• Let us recall a slide from an early class on bond graphs:

Resistor:
$$e = R(f)$$
Capacity: $q = C(e)$ Inductivity: $p = I(f)$

A reactive element must be describable purely by a (possibly non-linear) static relationship between efforts and flows.

The RF-Element I

• Let us analyze the three equations that make up the *RF*-*element*:

$$p \cdot q_i = T \cdot \dot{\mathbf{S}}_i + \mu \cdot v_i$$

The *Gibbs equation* is certainly a static equation relating only efforts and flows to each other. It generalizes the "S" of the *RS-element*.

$$p \cdot V_i = n_i \cdot R \cdot T$$

The equation of state is a static equation relating efforts with generalized positions. *Thus, it clearly belongs to the CF-element!*

The RF-Element II

• By differentiating the equation of state:

$$p \cdot q_i = v_i \cdot R \cdot T$$

we were able to come up with a structurally appropriate equation:

p, **T** are *e*-variables q_i , v_i are *f*-variables.

Yet, the approach is dubious. The *physics* behind the equation of state points to the *CF-field*, and this is where it should be used.

The RF-Element III

- This also makes physical sense.
- The *equation of state* describes a *property of a substance*. The *CF-field* should contain a complete description of all chemical properties of the substance stored in it.
- The *RF-field*, on the other hand, only describes the transport of substances. A pipe really doesn't care what flows through it!
- The *RF-field* should be restricted to describing *continuity equations*.
- The *mass continuity* is described by the *reaction rate equations*. The *energy continuity* is described by the *Gibbs equation*. What is missing is the *volume continuity*.

The RF-Element IV

• We know that mass always carries its volume along. Thus:

$$q_i = (V/M) \cdot \dot{M} = (V/n) \cdot v_i$$

• Using the *volume continuity equation*, we obtain exactly the same results as using the *differentiated equation of state*, since the equation of state teaches us that:

$$p \cdot V_i = n_i \cdot R \cdot T \implies V/n =$$

thus:

$$q_i = v_i \cdot \frac{R \cdot T}{p}$$

which is exactly the equation that we had used before.

 $R \cdot T / p$

The RF-Element V

- What have we gained, if anything?
- The *differentiated equation of state* had been derived under the assumption of *isobaric* and *isothermal* operating conditions.
- The *volume continuity equation* does not make any such assumption. It is valid not only for all operating conditions, but also for all substances, i.e., it does not make the assumption of an *ideal gas reaction*.

$$\Rightarrow \underbrace{\underline{v}_{reac}}_{reac} = \underline{k} \cdot \underline{*} \underline{n}; \longleftarrow \underline{mass \ continuity}}_{\underline{q}_{reac}} / V = \underline{v}_{reac} / n; \longleftarrow \underline{volume}_{\underline{continuity}}$$
$$p \cdot \underline{q}_{reac} = T \cdot \underline{S}_{reac} + \underline{\mu}_{reac} \cdot \underline{*} \underline{v}_{reac};$$
$$\underline{energy \ continuity}$$

are the set of equations describing the *generic RFfield*, where V is the total reaction volume, and n is the total reaction mass.

The RF-Element VI

3. <u>Reaction rate equations</u>:

$$\underline{v}_{reac} = \underline{k} \cdot \underline{k}$$

The reaction rate equations relate *flows (f-variables)* to *generalized positions (q-variables)*. However, the generalized positions are themselves statically related to *efforts (e-variables)* in the *CF-element*. Hence these equations are indeed reactive as they were expected to be.

Thus, we now have convinced ourselves that we can write all equations of the *RF-element* as: $\underline{f} = \underline{g}(\underline{e})$. In the case of the *hydrogen-bromine reaction*, there will be 15 equations in 15 unknowns, 3 equations for the three flows of each one of five separate reactions.

December 6, 2012

The Linear Resistive Field

- We still need to ask ourselves, whether these 15 equations are *irreversible*, i.e., *resistive*, or *reversible*, i.e., *gyrative*.
- We already know that the *C-matrix* describing a *linear capacitive field* is always *symmetric*.
- Since that matrix describes the *network topology*, the same obviously holds true for the *R-matrix* (or *G-matrix*) describing a *linear resistive field* (or *linear conductive field*). These matrices always have to be *symmetric*.

The Multi-port Gyrator I

• Let us now look at a multi-port gyrator. In accordance with the regular gyrator, its equations are defined as:

The Multi-port Gyrator II

• In order to compare this element with the resistive field, it is useful to have all bonds point at the element, thus:

with the equations:

$$\underbrace{\underline{e}_{1} = -R \cdot \underline{f}_{2}}{\underline{e}_{2} = R' \cdot \underline{f}_{1}}$$
 or:
$$\underbrace{f_{1} = G' \cdot \underline{e}_{2}}{\underline{f}_{2} = -G \cdot \underline{e}_{1}}$$
 where:
$$\underbrace{G = R^{-1}}{G = R^{-1}}$$

The Multi-port Gyrator III

• In a matrix-vector form:

$$\begin{array}{c} f_{1} = G' \cdot \underline{e}_{2} \\ f_{2} = -G \cdot \underline{e}_{1} \end{array} \implies \begin{bmatrix} f_{1} \\ f_{2} \end{bmatrix} = \begin{bmatrix} 0 & G' \\ -G & 0 \end{bmatrix} \cdot \begin{bmatrix} \underline{e}_{1} \\ \underline{e}_{2} \end{bmatrix} \\ \underline{skew-symmetric \ matrix} \quad _ \end{array}$$

• Any matrix can be decomposed into a *symmetric part* and a *skew-symmetric part*:

$$M = M_s + M_{as}$$
 where:

$$M_s = (M + M') / 2$$

 $M_{as} = (M - M') / 2$

Symmetric and Skew-symmetric Matrices

• Example:

$$\mathbf{M} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \implies \mathbf{M}' = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$$

$$\Rightarrow \qquad \mathbf{M}_{\rm s} = (\mathbf{M} + \mathbf{M}') / 2 = \begin{bmatrix} 1 & 2.5 \\ 2.5 & 4 \end{bmatrix}$$

$$M_{as} = (M - M') / 2 = \begin{bmatrix} 0 & -0.5 \\ 0.5 & 0 \end{bmatrix}$$

is symmetric: $(M_s = M_s')$ is skew-symmetric: $(M_{as} = -M_{as}')$

$$M = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 2.5 \\ 2.5 & 4 \end{bmatrix} + \begin{bmatrix} 0 & -0.5 \\ 0.5 & 0 \end{bmatrix} = M_s + M_{as}$$

December 6, 2012

© Prof. Dr. François E. Cellier

Start Presentation

The RF-Element VII

• Hence given the equations of the *RF-element*:

$$\underline{f} = \underline{g}(\underline{e})$$

these equations can be written as:

$$\underline{f} = G(\underline{e}) \cdot \underline{e}$$

• Thus:

$$f = G_s(\underline{e}) \cdot \underline{e} + G_{as}(\underline{e}) \cdot \underline{e}$$

$$Gyrative part$$

December 6, 2012

Mathematical Modeling of Physical Systems

The RF-Element VIII

• Example:

$$\begin{array}{c} f_1 = e_1^2 + 2e_2 \\ f_2 = -e_1 + e_2^2 \end{array} \qquad \Longrightarrow \qquad \begin{bmatrix} f_1 \\ f_2 \end{bmatrix} = \begin{bmatrix} e_1 & 2 \\ -1 & e_2 \end{bmatrix} \cdot \begin{bmatrix} e_1 \\ e_2 \end{bmatrix}$$

$$G(\underline{e}) = \begin{bmatrix} e_1 & 2 \\ -I & e_2 \end{bmatrix} \implies G'(\underline{e}) = \begin{bmatrix} e_1 & -I \\ 2 & e_2 \end{bmatrix}$$

$$G(\underline{e}) = \begin{bmatrix} e_1 & 2 \\ -1 & e_2 \end{bmatrix} = \begin{bmatrix} e_1 & 0.5 \\ 0.5 & e_2 \end{bmatrix} + \begin{bmatrix} 0 & 1.5 \\ -1.5 & 0 \end{bmatrix} = G_s(\underline{e}) + G_{as}(\underline{e})$$
Conduction matrix f

December 6, 2012

© Prof. Dr. François E. Cellier

Start Presentation

The CF-Element I

- We should also look at the *CF-elements*. Of course, these elements are *substance-specific*, yet they can be constructed using general principles.
- We need to come up with *equations* for the three potentials (efforts): *T*, *p*, and *g*. These are functions of the states (generalized positions): *S*, *V*, and *M*.
- We also need to come up with *initial conditions* for the three state variables: S_0 , V_0 , and M_0 .

The CF-Element II

- The reaction mass is usually given, i.e., we know up front, how much reactants of each kind are available. This determines M_0 for each of the species, and therefore n_0 . It also provides the total reaction mass M, and therefore n.
- In a *batch reaction*, the reaction mass remains constant, whereas in a *continuous reaction*, new reaction mass is constantly added, and an equal amount of product mass is constantly removed.
- Modeling *continuous reactions* with bond graphs is easy, since the *chemical reaction bond graph* can be naturally interfaced with a *convective flow bond graph*.

Isochoric vs. **Isobaric Operating Conditions**

- Chemical reactions usually take place either inside a closed container, in which case the *total reaction volume* is constant, or in an open container, in which case the *reaction pressure* is constant, namely the pressure of the environment.
- Hence either volume or pressure can be provided from the outside. We call the case where the *volume* is kept *constant* the *isochoric operating condition*, whereas the case where the *pressure* is kept *constant*, is called the *isobaric operating condition*.

The Equation of State

• The equation of state can be used to compute the other of the two volume-related variables, given the reaction mass and the temperature:

Isobaric conditions (*p=constant*):

$$p \cdot \boldsymbol{V_0} = \boldsymbol{n_0} \cdot \boldsymbol{R} \cdot \boldsymbol{T_0}$$

<u>Isochoric conditions</u> (V=constant):

$$\boldsymbol{p(t)} \cdot \boldsymbol{V} = \boldsymbol{n(t)} \cdot \boldsymbol{R} \cdot \boldsymbol{T(t)}$$

December 6, 2012

Adiabatic vs. Isothermal Operating Conditions

- We can perform a chemical reaction under conditions of thermal insulation, i.e., no heat is either added or subtracted. This operating condition is called the *adiabatic operating condition*.
- Alternatively, we may use a *controller* to add or subtract just the right amount of heat to keep the reaction temperature constant. This operating condition is called the *isothermal operating condition*.

The Caloric Equation of State I

• We need an equation that relates *temperature* and *entropy* to each other. In general: T = f(S, V). To this end, we make use of the so-called *caloric equation of state*:

$$ds = (c_p/T) \cdot dT - (dv/dT)_p \cdot dp$$

where:

ds = change in specific entropy $c_p = \text{specific heat capacity at constant pressure}$ dT = change in temperature $(dv/dT)_p = \text{gradient of specific volume with respect to temperature at constant pressure}$ dp = change in pressure

The Caloric Equation of State II

• Under *isobaric conditions* (*dp* = 0), the *caloric equation of state* simplifies to:

$$ds = (c_p/T) \cdot dT$$

or:

$$ds/dT = c_p/T \implies \Delta s = c_p \cdot \ln(T/T_0)$$

$$\Rightarrow \quad \Delta S = \gamma \cdot \ln(T/T_0)$$

which corresponds exactly to the heat capacitor used in the past.

December 6, 2012

© Prof. Dr. François E. Cellier

Start Presentation

The Caloric Equation of State III

• In the general case, the *caloric equation of state* can also be written as:

$$\vec{s} = (c_p/T) \cdot \vec{T} - (dv/dT)_p \cdot \vec{p}$$

• In the case of an *ideal gas reaction*:

$$(dv/dT)_p = R/p$$

• Thus:

$$\vec{s} = c_p \cdot (\vec{T}/T) - R \cdot (\vec{p}/p)$$

$$\Rightarrow s - s_0 = c_p \cdot \ln(T/T_0) - R \cdot \ln(p/p_0)$$

December 6, 2012

© Prof. Dr. François E. Cellier

Start Presentation

The Caloric Equation of State IV

- The *initial temperature*, T_0 , is usually given. The *initial entropy*, S_0 , can be computed as $S_0 = M_0 \cdot s(T_0, p_0)$ using a table lookup function.
- In the case of *adiabatic operating conditions*, the change in entropy flow can be used to determine the new temperature value. To this end, it may be convenient to modify the *caloric equation of state* such that the change in pressure is expressed as an equivalent change in volume.
- In the case of *isothermal conditions*, the approach is essentially the same. The resulting temperature change, ΔT , is computed, from which it is then possible to obtain the *external heat flow*, $\dot{Q} = \Delta T \cdot \dot{S}$, needed to prevent a change in temperature.

The Enthalpy of Formation

- Finally, we need to compute the *Gibbs potential*, *g*. It represents the energy stored in the substance, i.e., the energy needed in the process of making the substance.
- In the chemical engineering literature, the *enthalpy of formation*, *h*, is usually tabulated, in place of the *Gibbs free energy*, *g*.
- Once *h* has been obtained, *g* can be computed easily:

$$g = h(T,p) - T \cdot s$$

December 6, 2012

Tabulation of Chemical Data I

- We can find the chemical data of most substances on the web, e.g. at: <u>http://webbook.nist.gov/chemistry/form-ser.html</u>.
- Searching e.g. for the substance **HBr**, we find at the address: <u>http://webbook.nist.gov/cgi/cbook.cgi?ID=C10035106&Units=SI&Mask=1</u>

Quantity	Value	Units	Method	Reference	Comment
4ृH° _{gu}	-36.29 ± 0.16	kJ/mol	Review	Cox, Wagman, et al., 1984	CODATA Review value
4 [,] H°gs	-36.44	kJ/mol	Review	Chase, 1998	Data last reviewed in September, 1965
Quantity	Value	Units	Method	Reference	Comment
	100000000000000000000000000000000000000	and the second se			
S° gas,1bar	198.700 ± 0.004	J/mol*K	Review	Cox, Wagman, et al., 1984	CODATA Review value

Tabulation of Chemical Data II

Gas Phase Heat Capacity (Shomate Equation)

$$\begin{split} C_{p}^{o} &= A + B^{*}t + C^{*}t^{2} + D^{*}t^{3} + E/t^{2} \\ H^{o} - H^{o}_{298.15} &= A^{*}t + B^{*}t^{2}/2 + C^{*}t^{3}/3 + D^{*}t^{4}/4 \\ S^{o} &= A^{*}ln(t) + B^{*}t + C^{*}t^{2}/2 + D^{*}t^{3}/3 - E/(2^{*}t^{2}) \\ C_{p} &= heat \ capacity \ (J/mol^{*}K) \\ H^{o} &= standard \ enthalpy \ (kJ/mol) \\ \Delta_{f}H^{o}_{298.15} &= enthalpy \ of \ formation \ at \ 298.15 \ H \\ S^{o} &= standard \ entropy \ (J/mol^{*}K) \\ t &= temperature \ (K) \ / \ 1000. \end{split}$$

Temperature (K)	298 1100.	1100 6000.
А	31.71409	32.88913
В	-13.69992	2.822116
С	23.35567	-0.478035
D	-9.008529	0.032464
Ε	-0.028758	-3.174958
F	-45.57464	-52.46318
G	240.0428	230.8597
ΔH° _{f,298} (kJ/mol)	-36.44306	-36.44306
Reference	Chase, 1998	Chase, 1998
Comment	Data last reviewed in September, 1965	Data last reviewed in September, 1965

Mathematical Modeling of Physical Systems

<u>- U X</u>

Start Presentation

The Heat Capacity of Air I

🖴 Air - ThermoBondLib.Substances.Air 🛛 Modelica Text

We are now able to understand the **CFAir** model:

Packages

VF

EVE

Utilies

Sensors

Sources

Tables

Substances - BoilCondWate

Ar

PressureCooker Pressure Cooker

WaterVaco

R. 🔛 🔶 🔶 K

hemoBondub Substances Ar PassiveDnePort - Themo.

The Heat Capacity of Air II

🗧 Air - ThermoBondLib.Substances.Air - [Modelica Text]	
🗧 File Edit Simulation Plot Animation Commands Window Help	$- TDM/U \rightarrow U TDM$
] 🖆 🖬 🔍 🎒 🙌 📕 ♦ 🐓 A 🔳 🚣 * 🗮 🙀 🔯 *] 1월 * 🔶 🕈 🖨 🚼 🛃 🚺 💽 🖉 100% 💌	$p = T \cdot R \cdot M/V$ \Rightarrow $p \cdot V = T \cdot R \cdot M$
model Air "Capacitive field representing air"	1
Packages extends Interfaces.PassiveOnePort;	
parameter Modelica. SIunits. Entropy S0=6.81010184 "Entropy if no air"; parameter Modelica. SIunits. Volume V0=0.83112221e-3 "Volume if no air";	
parameter Modelica. SIunits. SpecificHeatCapacity cp=1004.0	
• Switches "Heat capacity of air at constant pressure";	$T = T_{\text{source}}(a = B_{\text{source}}(n + b))/a$
Thermal parameter Modelica.SIunits.SpecificHeatCapacity R=287.2 "Gas constant"; parameter Modelica.SIunits.Mass epsM=0.5e-6	$T = T_0 \cdot \exp((s - s_0 - R \cdot (\ln(v) - \ln(v_0)))/c_v)$
Electrical "Smallest mass distinguishable from zero";	
Hydraulic parameter Boolean fict=false "True is fictitious values are used";	
parameter Modelica.SIunits.Temperature T_fict=298.53 "Fictitious temperature is no air";	
SystemDynamics parameter Modelica. SIunits. Pressure p_fict=le5	\mathbf{V}
"Fictitious pressure if no air";	Ť
Modelica.SIunits.Entropy S_int "Entropy of air"; Modelica.SIunits.Volume V_int "Volume of air";	
Hodelica. Slunits. Mass M_int "Mass of air";	$T/T_0 = \exp((s - s_0 - R \cdot (\ln(v/v_0)))/c_v)$
Modelica.SIunits.SpecificHeatCapacity cv	
"Heat capacity of air at constant volume"; Bonds Modelica.SIunits.SpecificVolume v "Specific volume";	
Modelice STunits SpecificEntrony s "Specific entrony":	
Bounctions Real ln_v "Natural logarithm of specific volume";	
	V
Sensors der (M int) = Mdot;	
Sources der (S_int) = Sdot;	$\ln(T/T_0) = (s - s_0 - R \cdot \ln(v/v_0))/c_v$
\oplus Tables $der(V_int) = q;$	$m(r, r_0) = (s-s_0) m m(r, r_0)/(c_v)$
Exist = M_int > epsM; Substances cv = cp - R;	
BollCondWater v = if Exist then V_int/M_int else 0;	
s = if Exist then S_int/M_int else 0;	
In_v = Modelica.Math.log(V_int/M_int); Air_isochonic p = if Exist or not fict then T*R*M int/V int else p fict;	×
T = if Exist or not fict then 293.15*exp((s - 6813.7 - R*(ln_v + 0.17245))	
/cv) else T_fict; Water_isochoric g = T*(cp - s);	$a_{\rm r} \ln (T/T) = a_{\rm r} a_{\rm r} D \ln (u/u)$
WaterLadorbine G = 1 (cp - s); WaterVapor N = if Exist then M_int else MO;	$c_v \cdot \ln(T/T_0) = s - s_0 - R \cdot \ln(v/v_0)$
V = if Exist then V_int else V0;	
Examples S = if Exist then S_int else 30;	
Line: 1 🚍 Modeling 📝 Simulation	

December 6, 2012

Mathematical Modeling of Physical Systems

The Heat Capacity of Air III

🖶 Air - ThermoBondLib.Substances.Air - [Modelica Text]						
📘 Eile Edit Simulation Blot Animation Commands Window Help						
😂 🖬 🔍 🎒 📢 // I	■ ♦ ♥ A ■ 🗹 × ڲ × ∰ № 🛛 🖾 ▼ 🐘 ♥ ♦ 🕈 🖨 🖪 🖪 📶 🔽 🔽					
X	model Air "Capacitive field representing air"					
Packages 🔺	extends Interfaces.PassiveOnePort;					
E Sources	parameter Modelica.SIunits.Entropy S0=6.81010184 "Entropy if no air";					
	<pre>parameter Modelica.SIunits.Volume V0=0.83112221e-3 "Volume if no air"; parameter Modelica.SIunits.Mass M0=1e-3 "Mass if no air";</pre>					
🗄 🛨 🧰 Spice	parameter Modelica.SIunits.SpecificHeatCapacity cp=1004.0					
🗄 🧰 Switches	"Heat capacity of air at constant pressure";					
🗄 🧰 Thermal	<pre>parameter Modelica.SIunits.SpecificHeatCapacity R=287.2 "Gas constant";</pre>					
	parameter Modelica.SIunits.Mass epsM=0.5e-6					
	"Smallest mass distinguishable from zero"; parameter Boolean fict=false "True is fictitious values are used";					
🕀 🗍 Hydraulic	parameter Boolean fict=false "True is fictitious values are used"; parameter Modelica.SIunits.Temperature T fict=298.53					
🗄 🗍 Mechanical	"Fictitious temperature is no air";					
🗄 🦳 SystemDynamics	parameter Modelica.SIunits.Pressure p_fict=le5					
	"Fictitious pressure if no air";					
	Modelica. SIunits. Entropy S_int "Entropy of air";					
🗄 🦳 ThermoBondLib	<pre>Modelica.SIunits.Volume V_int "Volume of air"; Modelica.SIunits.Mass M int "Mass of air";</pre>					
🗄 🕕 User's Guide	Modelica.SIunits.SpecificHeatCapacity cv					
🗄 🗍 Interfaces	"Heat capacity of air at constant volume";					
🗄 🥅 Bonds	Modelica.SIunits.SpecificVolume v "Specific volume";					
+ Junctions	Modelica.SIunits.SpecificEntropy s "Specific entropy";					
	Real ln_v "Natural logarithm of specific volume";					
E Sensors	equation der(M int) = Mdot;					
🕂 🗍 Sources	<pre>der(n_inc) = inde;; der(S_int) = Sdot;</pre>					
	$der(V_{int}) = q;$					
Substances	<pre>Exist = M_int > epsM;</pre>					
	cv = cp - R;					
••••BoilCondWater	<pre>v = if Exist then V_int/M_int else 0; s = if Exist then S int/M int else 0;</pre>					
- Air	<pre>ln v = Modelica.Math.log(V int/M int);</pre>					
Air_isochoric	<pre>p = if Exist or not fict then T*R*M_int/V_int else p_fict;</pre>					
Water	T = if Exist or not fict then 293.15*exp((s - 6813.7 - R*(ln_v + 0.17245))					
	/cv) else T_fict;					
··· Water_isochoric	g = T*(cp - s); M = if Exist then M_int else MO;					
¹ WaterVapor	<pre>W = if Exist then V int else V0;</pre>					
Examples	S = if Exist then S_int else SO;					
穏 🔛 🔶 🗮	end Air;					
	Line: 1 Hodeling Modeling					

$$g = T \cdot (c_p - s)$$

$$h = c_p \cdot T \implies g = h - T \cdot s$$

for ideal gases

December 6, 2012

© Prof. Dr. François E. Cellier

Start Presentation

References

- Cellier, F.E. (1991), <u>Continuous System Modeling</u>, Springer-Verlag, New York, <u>Chapter 9</u>.
- Greifeneder, J. (2001), <u>Modellierung thermodynamischer</u> <u>Phänomene mittels Bondgraphen</u>, Diplomarbeit, University of Stuttgart, Germany.
- Cellier, F.E. and J. Greifeneder (2009), "<u>Modeling Chemical Reactions in Modelica By Use of Chemo-bonds</u>," *Proc.* 7th International Modelica Conference, Como, Italy, pp. 142-150.

