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Chemical Thermodynamics II
• In this lecture, we shall continue to analyze ourIn this lecture, we shall continue to analyze our

chemical thermodynamics bond graphs, making
use of bond-graphic knowledge that we hadn’t
exploited so far.

• This shall lead us to a more general bond-graphic
description of chemical reaction systems that is

Start PresentationDecember 6, 2012 © Prof. Dr. François E. Cellier

p y
less dependent on the operating conditions.

• The RF-element and the CF-element are
explained in their full complexity.
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A Structural Analysis of the
Generic Chemical Reaction Bond Graphs

• Let us look once more at the generic chemical reaction
bond graph:
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Is the RF-element truly
reactive?
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Relations Between the Base Variables
• Let us recall a slide from an early class on bond graphs:

qp

 
CI

Resistor:

Capacity:

Inductivity:

e  =  R( f )

q  =  C( e )

p  =  I( f )
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e fR A reactive element must be describable
purely by a (possibly non-linear) static
relationship between efforts and flows.
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• Let us analyze the three equations that make up the RF-
element:

The RF-Element I

element:

1. Gibbs equation: p · qi = T · Si + · i
·

The Gibbs equation is certainly a static equation relating only efforts
and flows to each other. It generalizes the “S” of the RS-element.

2. Equation of state: p · Vi = ni · R · T p, T are e-variables
Vi ni are q-variables
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q f i i Vi, ni are q-variables.

The equation of state is a static equation relating efforts with
generalized positions. Thus, it clearly belongs to the CF-element!
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• By differentiating the equation of state:

The RF-Element II
By differentiating the equation of state:

• we were able to come up with a structurally appropriate
equation:

p · qi = i · R · T

p, T are e-variables
qi, i are f-variables.
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• Yet, the approach is dubious. The physics behind the
equation of state points to the CF-field, and this is where it
should be used.
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The RF-Element III
• This also makes physical sense.
• The equation of state describes a property of a substance.

The CF-field should contain a complete description of all
chemical properties of the substance stored in it.

• The RF-field, on the other hand, only describes the
transport of substances. A pipe really doesn’t care what
flows through it!
Th RF fi ld h ld b t i t d t d ibi ti it
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• The RF-field should be restricted to describing continuity
equations.

• The mass continuity is described by the reaction rate
equations. The energy continuity is described by the
Gibbs equation. What is missing is the volume continuity.

Mathematical Modeling of Physical Systems

The RF-Element IV
• We know that mass always carries its volume along. Thus:

• Using the volume continuity equation, we obtain exactly
the same results as using the differentiated equation of
state, since the equation of state teaches us that:

qi =  (V/M) · M  =  (V/n) · i
·

p · V = n · R · T  V/n = R · T / p
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• thus:

p · Vi = ni · R · T  V/n = R · T / p

qi = i · R · T
p

which is exactly the equation
that we had used before.
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The RF-Element V
• What have we gained, if anything?
• The differentiated equation of state had been derived under the

assumption of isobaric and isothermal operating conditions.
• The volume continuity equation does not make any such assumption.

It is valid not only for all operating conditions, but also for all
substances, i.e., it does not make the assumption of an ideal gas
reaction.

k * th t f titi it
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reac =  k .*  n ;

qreac /V =  reac /n ;

p * qreac  =  T * Sreac + reac   .* reac ;
·

 are the set of equations
describing the generic RF-
field, where V is the total
reaction volume, and n is
the total reaction mass.

mass continuity
volume 
continuity

energy continuity
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The RF-Element VI
3 Reaction rate equations:  = k * n3. Reaction rate equations: reac   k .   n

The reaction rate equations relate flows (f-variables) to generalized
positions (q-variables). However, the generalized positions are
themselves statically related to efforts (e-variables) in the CF-element.
Hence these equations are indeed reactive as they were expected to be.

Thus, we now have convinced ourselves that we can write all equations

Start PresentationDecember 6, 2012 © Prof. Dr. François E. Cellier

of the RF-element as: f = g(e). In the case of the hydrogen-bromine
reaction, there will be 15 equations in 15 unknowns, 3 equations for the
three flows of each one of five separate reactions.
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The Linear Resistive Field
• We still need to ask ourselves, whether these 15 equations

i ibl i i i ibl i iare irreversible, i.e., resistive, or reversible, i.e., gyrative.
• We already know that the C-matrix describing a linear

capacitive field is always symmetric.
• Since that matrix describes the network topology, the same

obviously holds true for the R-matrix (or G-matrix)
describing a linear resistive field (or linear conductive
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field). These matrices always have to be symmetric.
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The Multi-port Gyrator I
• Let us now look at a multi-port gyrator. In accordance

with the regular gyrator, its equations are defined as:

e

f
1

1
MGY

R

e2

f2

e1 = R · f2  e1’ = f2’ · R’
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1 f2

e1’· f1 = e2’· f2 = f2’· e2 

 1 f2

 e1’ · f1 = f2’ · R’ · f1= f2’· e2 

 e2 = R’ · f1
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The Multi-port Gyrator II
• In order to compare this element with the resistive field, it

is useful to have all bonds point at the element, thus:

• with the equations:

e

f
1

1
MGY

R e2

f2
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e1 = R · f2

e2 = R’ · f1
or:

f1 = G’ · e2

f2 = G · e1
where: G = R-1
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The Multi-port Gyrator III
• In a matrix-vector form:

f1 =      0    G’    e1

f2 =    G 0      e2
·

skew-symmetric matrix

• Any matrix can be decomposed into a symmetric part and

f1 = G’ · e2

f2 = G · e1

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Any matrix can be decomposed into a symmetric part and
a skew-symmetric part:

M = Ms + Mas where:
Ms = (M + M’) /2

Mas = (M  M’) /2
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Symmetric and Skew-symmetric Matrices
• Example:

1 2 1 31 2
3 4M =  1 3

2 4M’ =

 1   2.5
2.5 4Ms = (M + M’) /2 =

0 -0.5
0.5 0Mas = (M  M’) /2 =

is symmetric:  (Ms = Ms’) is skew-symmetric:  (Mas = Mas’)
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1 2
3 4M =                =                  +                  =  Ms + Mas

1   2.5
2.5 4

0 -0.5
0.5 0
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The RF-Element VII
• Hence given the equations of the RF-element:

• these equations can be written as:

f =  g(e)

f =  G(e) · e
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• Thus: f = Gs (e) · e + Gas (e) · e

Conductive part

Gyrative part
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The RF-Element VIII
• Example:

f 2 + 2 f 2f1 = e1
2 + 2e2

f2 = e1 + e2
2 

f1 e1 2     e1

f2 1  e2       e2
= ·

e1 2
1   e2

G(e) = 
e1 1
2     e2

G’(e) =
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G(e) =                =                 +                  = Gs(e) + Gas(e)
e1 2
1   e2

e1 0.5
0.5   e2

0   1.5
1.5  0

Gyration matrixConduction matrix
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The CF-Element I
• We should also look at the CF-elements. Of course, these,

elements are substance-specific, yet they can be
constructed using general principles.

• We need to come up with equations for the three potentials
(efforts): T, p, and g. These are functions of the states
(generalized positions): S, V, and M.

• We also need to come up with initial conditions for the
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We also need to come up with initial conditions for the
three state variables: S0, V0, and M0.
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The CF-Element II
• The reaction mass is usually given, i.e., we know up front,y g , , p ,

how much reactants of each kind are available. This
determines M0 for each of the species, and therefore n0. It
also provides the total reaction mass M, and therefore n.

• In a batch reaction, the reaction mass remains constant,
whereas in a continuous reaction, new reaction mass is
constantly added, and an equal amount of product mass is
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y q p
constantly removed.

• Modeling continuous reactions with bond graphs is easy,
since the chemical reaction bond graph can be naturally
interfaced with a convective flow bond graph.
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Isochoric vs. Isobaric Operating Conditions
• Chemical reactions usually take place either inside a closed

container, in which case the total reaction volume is constant,
or in an open container, in which case the reaction pressure is
constant, namely the pressure of the environment.

• Hence either volume or pressure can be provided from the
outside. We call the case where the volume is kept constant
the isochoric operating condition, whereas the case where the
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pressure is kept constant, is called the isobaric operating
condition.
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The Equation of State
• The equation of state can be used to compute the other of

th t l l t d i bl i th tithe two volume-related variables, given the reaction mass
and the temperature:

Isobaric conditions (p=constant):

I h i diti (V t t)

p · V0 = n0 · R · T0
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Isochoric conditions (V=constant):

p(t) · V = n(t) · R · T(t)
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Adiabatic vs. Isothermal Operating Conditions
• We can perform a chemical reaction under conditions of

thermal insulation, i.e., no heat is either added or subtracted.
This operating condition is called the adiabatic operating
condition.

• Alternatively, we may use a controller to add or subtract just
the right amount of heat to keep the reaction temperature
constant. This operating condition is called the isothermal
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operating condition.
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• We need an equation that relates temperature and entropy to each
h I l T f(S V) T hi d k f h

The Caloric Equation of State I

other. In general: T = f(S,V). To this end, we make use of the so-
called caloric equation of state:

• where:

ds = (cp/T) · dT – (dv/dT)p · dp

ds = change in specific entropy
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ds  change in specific entropy
cp = specific heat capacity at constant pressure
dT = change in temperature
(dv/dT)p = gradient of specific volume with respect to temperature at constant pressure
dp = change in pressure
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• Under isobaric conditions (dp = 0), the caloric equation

The Caloric Equation of State II

of state simplifies to:

• or:

ds = (cp/T) · dT

ds/dT = cp/T  s = cp · ln(T/T0 )
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• which corresponds exactly to the heat capacitor used in the
past.

 S =  · ln(T/T0 )
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• In the general case, the caloric equation of state can also

The Caloric Equation of State III

be written as:

• In the case of an ideal gas reaction:

s = (cp/T) · T – (dv/dT)p · p· · ·

(dv/dT)p = R/p
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• Thus: s = cp · (T/T) – R · (p/p)· ··

 s  s0 = cp · ln(T/T0 ) – R · ln(p/p0 )
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• The initial temperature, T0 , is usually given. The initial
entropy S can be computed as S = M · s(T p ) using

The Caloric Equation of State IV

entropy, S0 , can be computed as S0 = M0 · s(T0 ,p0 ) using
a table lookup function.

• In the case of adiabatic operating conditions, the change
in entropy flow can be used to determine the new
temperature value. To this end, it may be convenient to
modify the caloric equation of state such that the change
in pressure is expressed as an equivalent change in volume.
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• In the case of isothermal conditions, the approach is
essentially the same. The resulting temperature change,
T, is computed, from which it is then possible to obtain
the external heat flow, Q = T · S, needed to prevent a
change in temperature.

· ·

Mathematical Modeling of Physical Systems

The Enthalpy of Formation
• Finally, we need to compute the Gibbs potential, g. It

represents the energy stored in the substance, i.e., the
energy needed in the process of making the substance.

• In the chemical engineering literature, the enthalpy of
formation, h, is usually tabulated, in place of the Gibbs
free energy, g.

• Once h has been obtained, g can be computed easily:
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g = h(T,p) – T · s
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Tabulation of Chemical Data I
• We can find the chemical data of most substances on the web,

e.g. at: http://webbook.nist.gov/chemistry/form-ser.html.
• Searching e.g. for the substance HBr, we find at the address:

http://webbook.nist.gov/cgi/cbook.cgi?ID=C10035106&Units=SI&Mask=1
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Tabulation of Chemical Data II
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The Heat Capacity of Air I
We are now able to
understand the CFAir
model:
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Equation of state
Caloric equation of state

Gibbs energy of formation
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The Heat Capacity of Air II
p = T·R·M/V  p·V = T·R·M

T = T0·exp((s–s0  R·(ln(v)ln(v0 )))/cv)

T/T0 = exp((s–s0  R·(ln(v/v0 )))/cv)
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ln(T/T0 ) = (s–s0  R·ln(v/v0 ))/cv
cv·ln(T/T0 ) = s–s0  R·ln(v/v0 )
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The Heat Capacity of Air III

g = T·(c s)g = T·(cp – s)

h = cp·T g = h  T·s

for ideal gases
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