

Start Presentation

 $\langle \downarrow \downarrow \rangle$

1

Wathematical Modeling of Physical Systems swis federal institute at berhoology Lunch			
The RF-Element I			
• Let us analyze the three equations that make up the <i>RF</i> - <i>element</i> :			
1. <u>Gibbs equation</u> : $p \cdot q_i = T \cdot \dot{S}_i + \mu \cdot \nu_i$			
The <i>Gibbs equation</i> is certainly a static equation relating only efforts and flows to each other. It generalizes the "S" of the <i>RS-element</i> .			
2. Equation of state: $\mathbf{p} \cdot \mathbf{V}_i = \mathbf{n}_i \cdot \mathbf{R} \cdot \mathbf{T}$ p, T are e-variables V_i, n_i are q-variables.			
The equation of state is a static equation relating efforts with generalized positions. <i>Thus, it clearly belongs to the CF-element!</i>			
December 6, 2012 © Prof. Dr. François E. Cellier Start Presentation			

Colgressische Technische Hochschule Zünich Swiss. Ficheral institute de Nechnology Zunich	Mathematical Modeling of Physical Systems
The Eq	uation of State
	can be used to compute the other of d variables, given the reaction mass
<u>P</u> Isochoric conditions (V=c	
p(t)	$\cdot V = n(t) \cdot R \cdot T(t)$
December 6, 2012 © Prof.	Dr. François E. Cellier Start Presentation

Exigen Diskish Technische Hochschule Zählen Smiss Stafered Fristhalse af Nederalinge Ruslein	Mathematical Modelin	g of Physical Systems
	alpy of Forma compute the <i>Gibbs p</i>	
 energy needed in the In the chemical eng formation, h, is usu free energy, g. 	ally tabulated, in plac	substance. the <i>enthalpy of</i> the <i>Gibbs</i>
• Once <i>h</i> has been obta	ined, g can be compute = $h(T,p) - T \cdot s$	ed easily:
December 6, 2012 © Prof	Dr. François E. Cellier	Start Presentation

ETH Mathematical Modeling of Physical Systems Sidgenössische Technische Hochschule Zürich Swiss Federal Institute af Technology Zurich The Caloric Equation of State IV • The *initial temperature*, T_0 , is usually given. The *initial entropy*, S_0 , can be computed as $S_0 = M_0 \cdot s(T_0, p_0)$ using a table lookup function. • In the case of *adiabatic operating conditions*, the change in entropy flow can be used to determine the new temperature value. To this end, it may be convenient to modify the *caloric equation of state* such that the change in pressure is expressed as an equivalent change in volume. • In the case of *isothermal conditions*, the approach is essentially the same. The resulting temperature change, ΔT , is computed, from which it is then possible to obtain the *external heat flow*, $\dot{Q} = \Delta T \cdot \dot{S}$, needed to prevent a change in temperature. December 6, 2012 Start Presentation $\langle \downarrow \downarrow \rangle$ © Prof. Dr. François E. Cellier

	Tabu	ilatio	on (of Chemic	al Data I
e.; • Se	g. at: <u>http:/</u> earching e.	/ <mark>webbo</mark> g. for t	ook.n the s	<u>ist.gov/chemistr</u> ubstance HBr,	substances on the wo <u>y/form-ser.html</u> . we find at the addre 35106&Units=SI&Mask
<u>htt</u>	<u>.p.// webbook</u>	iniotigo ii			
<u>htt</u> Quantity	Value		lethod	Reference	Comment
Quantity		Units M	lethod		Comment
	Value	Units M kJ/mol R	lethod Review	Reference	Comment
Quantity AH° _{es}	Value -36.29 ± 0.16	Units M kJ/mol R kJ/mol R	lethod Review	Reference Cox, Wagman, et al., 1984	Comment CODATA Review value
Quantity 4ृम° _{इड} 4ृम° _{इड}	Value -36.29 ± 0.16 -36.44	UnitsMkJ/molRkJ/molRUnitsM	Lethod Review Review	<mark>Reference</mark> Cox, Wagman, et al., 1984 Chase, 1998	Comment CODATA Review value Data last reviewed in September, 19 Comment

Tabulation	of Ch	emical Da	ta II
Gas Phase Heat Capacity (Shomate E	quation)		
$\begin{split} & C_p^{\ o} = A + B^*t + C^*t^2 + D^*t^3 + E/t^2 \\ & H^o - H^o_{200,15} = A^*t + B^*t^2/2 + C^*t^3/3 + D^*t^4/4 \end{split}$	Temperature (K)	298 1100.	1100 6000.
$S^{\circ} = A^{*in(t)} + B^{*t} + C^{*t^2/2} + D^{*t^3/3} - E/(2^{*t^2})$ $C_p = heat capacity (J/mol^*K)$	A	31.71409	32.88913
	В	-13.69992	2.822116
H° = standard enthalpy (kJ/mol) AH° ₂₀₈₁₅ = enthalpy of formation at 298.15 H	С	23.35567	-0.478035
$S^{\circ} = \text{standard entropy (J/mol*K)}$ t = temperature (K) / 1000.	D	-9.008529	0.032464
	E	-0.028758	-3.174958
	F	-45.57464	-52.46318
	G	240.0428	230.8597
	ΔH ^o _{f,298} (kJ/mol)	-36.44306	-36.44306
	Reference	Chase, 1998	Chase, 1998
	Comment	Data last reviewed in September, 1965	Data last reviewed in September, 1965

Eifigenählische Technische Mochschule Zühlch Swiss. Redensi Inschule all Rechnology Zuhlch	Mathematical Modeling of Physical Systems
	References
Springer-Verlag, N • Greifeneder, J. (20	291), <u>Continuous System Modeling</u> , www.York, <u>Chapter 9</u> . 2001), <u>Modellierung thermodynamischer</u> 2015, <u>Bondgraphen</u> , Diplomarbeit, 2017, Germany.
Chemical Reaction	J. Greifeneder (2009), " <u>Modeling</u> ns in Modelica By Use of Chemo- International Modelica Conference, -2-150.
December 6, 2012	rof. Dr. François E. Cellier Start Presentation