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Population Dynamics I 

• Today, we shall look at the problem of modeling 
population dynamics, i.e., determining the sizes of 
populations of biological species as functions of 
time. 

• Such systems are modeled as pure mass flows, 
i.e., energy conservation laws are not being 
considered. 

• Consequently, bond graphs are not suitable for 
describing these types of models. 
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Limitations of Bond Graphs I 
• Bond graphs have been designed around the conservation principles 

of physics (energy conservation, mass conservation), and are therefore 
only suitable for the description of physical systems. 

• Chemistry was a border-line case.  Although it is possible to model 
chemical reaction dynamics down to the level of physics, this is not 
truly necessary, since the reaction rate equations are decoupled from 
the energy balance equations.  Hence this is rarely done.  We did it, 
because the bond-graphic interpretation of chemical reactions offered 
additional insight that we could not have gained easily by other means. 

• Yet, as the complexity of molecules grows, especially in organic 
chemistry, it becomes more and more difficult to know what the 
elementary step reactions are, and at that level, chemistry becomes an 
empirical science, the knowledge of which is essentially covered by 
interpretations of observations alone. 
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Limitations of Bond Graphs II 
• As we proceed to systems of ever increasing complexity, such as in 

biochemistry, the situation becomes truly hopeless. 
• Although we live in a physical universe, and although a majority of 

scientists would agree that the laws of nature are ultimately laws of 
physics, we lack the detailed understanding necessary to e.g. explain 
the processes of mitosis and meiosis (cell division) on the basis of the 
underlying physics, or worse, to explain how the genetic code directs 
the cells to reproduce a functioning living being from its blueprint. 

• With this lecture, we are taking a giant step, bypassing organic 
chemistry, biochemistry, molecular biology, cell biology, genetics, 
etc., jumping right to the level of population dynamics, i.e., taking a 
macroscopic look at how populations of species develop in size over 
time. 
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Exponential Growth I 

• The change in population per time unit can obviously be expressed as 
the difference between birth rate and death rate. 

 
• It is reasonable to assume that both the birth rate and the death rate are 

proportional to the population: 

 
• and therefore: 

P = BR - DR ·  

BR = kBR ·  P DR = kDR ·  P 

P = (kBR  − kDR ) ·  P ·  

⇒ P(t) = P0 ·  e (kBR −kDR ) ·  t 



Start Presentation 

Mathematical Modeling of Physical Systems

December 13, 2012 © Prof. Dr. François E. Cellier

Exponential Growth II 

• Populations of all species grow exponentially over time. 

• This is also true for human beings! 

P(t) = P0 ·  e (kBR −kDR ) ·  t 

Every species eventually outgrows its resources. ⇒ 

In the ultimate instance, populations are 
controlled by hunger, rather than brains. 

⇒ 

The primary purpose of studying population dynamics 
is to learn to deal with this depressing law of nature. 
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Limits to Growth 
• As food gets scarce, i.e., as soon as all available food is being 

consumed by the population, we can determine the food per capita as 
the total food divided by the population: 

 
• If not enough food is available, the birth rate will decrease, and the 

death rate will increase.  This is called the crowding effect. 

• The most commonly used assumption is that a one-species ecosystem 
can support a fixed number of animals of the given species: 

Fp.c. = Ftotal / P 

P = k · (1.0 -          ) · P P 
Pmax 

· 
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The Logistic Equation 

• The above equation is called the continuous-time logistic equation. 

Pmax = 1000 

Exponential growth 

Saturation 

P = k · (1.0 -          ) · P P 
Pmax 

· 
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Continuous-time vs. Discrete-time Model 
• Applying the forward-Euler integration algorithm: 

 
• to the differential equation describing the population 

change: 
 

• we get a difference equation: 

 
• It may be justified to use this much cruder model, either 

because the accuracy of our model is not all that great 
anyway, or because a population may reproduce only in 
spring (h = 1.0). 

P = k · P ·  

P(t+h) = P(t) + h · P(t) ·  

P(t+h) = P(t) + h · k · P(t) = (1.0 + h·k) · P(t)  
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The Chain Letter I 
• Population dynamics modeling techniques may also be 

applied to macroeconomic modeling.  Let us consider the 
model of a chain letter. 

• The following rules are set to govern this (artificial) model: 
 A chain letter is received with two addresses on it, the address of 

the sender, and the address of the sender’s sender. 
 After receiving the letter, a recipient sends $1 to the sender’s 

sender.  He or she then sends the letter on to 10 other people, 
again with two addresses, his (or her) own as the new sender, and 
the sender’s address as the new sender’s sender. 

 The letter is only mailed within the U.S. 
 Every recipient answers the letter exactly once.  When a recipient 

receives the same letter for a second or subsequent time, he (or 
she) simply throws it away. 
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The Chain Letter II 
• Special rules are needed to provide initial conditions. 

 
 
 
 
 

• Every sender has 100 receiver’s receivers, thus is expected 
to make $100. 

• Except for the first 11, who don’t pay anything, every 
sender pays exactly $1. 

• Hence this is a wonderful (and totally illegal!) way of 
making money out of thin air. 

 The originator sends the letter to 10 people without sending 
money to anyone. 

 If a recipient receives the letter with only one address (the 
sender’s address), he or she sends the letter on to 10 other people 
with two addresses (his or her own as the sender, and that of the 
originator as the sender’s sender).  No money is paid to anyone in 
this case. 
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The Chain Letter III 

• We can model the chain letter easily as a discrete system. 

I = 10 · (1.0 -          ) P 
Pmax 

I  is the average number of new infections 
per recipient. 

R = I · pre(R)  
R, the number of new recipients, can be 
computed as the number of new infections per 
recipient multiplied by the number of recipients 
one step earlier. 

P = pre(P) + R P, the number of already infected people, can 
be computed as the number of people infected 
previously plus the new recruits. 
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The Chain Letter IV 
• We can easily code this model in Modelica. 
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Simulation Results 
 Initially, every participant 

makes exactly $99 as expected. 
 However, already after seven 

generations, the entire U.S. 
population has been infected. 

 Thereafter, everyone who still 
participates, loses $1. 

The energy conservation laws 
are not violated!  No money is 
being made out of thin air!  
Those who participate early on, 
make money at the expense of 
the many who jump on the band 
wagon too late. 
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Simulation Results 

Exponential 
growth 

Prosperity 

Stagnation 

Recession 
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Interpretation 

• As long as exponential growth prevails, i.e., as long as the 
second derivative of the population growth is positive, the 
population is able to borrow money from the future.  They 
effectively eat the bread of their children. 

• Once the inflection point has been passed, the debts made 
by previous generations have to be paid back. 
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U.S. Census I 
• In the U.S., population statistics have been collected once 

every 10 years since 1850. 

• I used Matlab to fit a logistic model: 

 
• to the available census data. 

• I then used Modelica to plot the real census data together 
with the curve fit. 

P = a · P + b · P 2 · 
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U.S. Census II 
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U.S. Census III 

Pmax = 402.59 · 106 

Inflection point 
= 1971 

The inflection point is fairly sensitive.  Yet, however we compute it, 
we have already passed it. 

⇒ We can no longer rely on an increasing number of 
children to pay for our retirement benefits. 
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Curve Fitting I 

• Let us look how the curve fitting was done.  Since we only 
have measurement data for the population itself, not for its 
derivative, we first need to approximate the population 
gradient. 

• To this end, we lay a quadratic polynomial through three 
neighboring population data points: 

Pi-1  = c1 + c2 · t i-1  + c3 · t i-1
2 

Pi     = c1 + c2 · t i     + c3 · t i 
2 

Pi+1 = c1 + c2 · t i+1 + c3 · t i+1
2 
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Curve Fitting II 

• In a matrix-vector form: 

Pi-1         t i-1
0    t i-1

1    t i-1
2             c1 

Pi      =    t i 
0      t i 

1     t i 
2         ·   c2 

Pi+1             t i+1
0      t i+1

1    t i+1
2           c3 } 

V = Vandermonde matrix 

p = V · c ⇒ c = V -1 · p = V \ p 

Matlab notation 
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Curve Fitting III 

• Now, that we have the coefficient vector, we can 
approximate the population gradient: 

Pi   = c1 + c2 · t i  + c3 · t i 
2 

⇒ Pi ≅ c2 + 2c3 · t i 
· 

• We could equally well have used other interpolation 
polynomials, such as cubic splines, or inverse Hermite 
interpolation. 
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Curve Fitting IV 

• We are now ready to curve-fit the logistic model: 

 

 

 

 

 

• We have n equations in the two unknowns a and b. 

P1  ≅ a · P1 + b · P1
2 · 

P2  ≅ a · P2 + b · P2
2 · 

Pn  ≅ a · Pn + b · Pn
2 · 

· · · 

We can solve for a and b only in a least-square sense. ⇒ 
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Curve Fitting V 

• In a matrix-vector form: 

P1        P1    P1
2          a  · 

· · · 

P2        P2    P2
2          b  · 

Pn       Pn    Pn
2 · 

· · · 
≅ 

· 

} 
V = Vandermonde matrix 
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Curve Fitting VI 
• In general: 

y 

x 

V ≅ 

· 

⇒ y 

x 

V ≅ 

· VT VT · · 

y 

x VT·V ≅ · VT · 

⇒ 
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Curve Fitting VII 
• Therefore: 

y 

x VT·V ≅ · VT · 
VT · y ≅ (VT·V) · x  

⇒ x ≅ (VT·V) -1 · VT · y  } Penrose-Moore 
pseudo-inverse 

⇒ x ≅ V \ y 

Matlab notation 
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Predator-Prey Models I 

• When multiple species interact with each other, the simple 
logistics model no longer suffices. 

• A simple two-species model with one species feeding upon 
another was proposed by Lotka and Volterra. 

 

 
• The Lotka-Volterra model makes the assumption that the 

predator population without prey would die out by exponential 
decay, whereas the prey population would grow beyond all 
bounds due to an unlimited supply of its own food. 

Ppred = -a · Ppred + k · b · Ppred · Pprey 

Pprey = c · Pprey − b · Ppred · Pprey 

· 

· 
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Predator-Prey Models II 

• When predator meets prey (Ppred · Pprey ), a certain percentage of 
the “energy” stored in the prey population is transferred to the 
predator population. 

• The efficiency of the feeding is less than 100%.  Thus, some 
energy is lost in the process (k < 1.0). 

• Lotka-Volterra models lead to cyclic oscillations, as they are 
indeed frequently observed in nature. 

• Especially insect populations, such as locust, seem to show up 
in large numbers in fixed time intervals, whereas they are 
almost extinct in between. 
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The Larch Bud Moth I 

• The larch bud moth is an insect that lives in the upper 
Engiadina Valley of Southeastern Switzerland, at altitudes 
between 1600 – 2000 m. 

• Its larvae feed on the needles of the larch trees.  The 
population has a cycle time of exactly nine years, i.e., once 
every nine years, the insect population is larger by several 
orders of magnitude, and all the larch trees turn brown because 
of them. 

• Hence the larch bud moth population was curve-fitted to the 
predator population of a Lotka-Volterra model. 
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The Larch Bud Moth II 

• The curve fit is excellent indeed.  Does this mean that we now 
understand the population dynamics of the larch bud moth?  
Unfortunately, the answer to this question is a decided no. 
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The Larch Bud Moth III 

• The larch bud moth is also plagued by parasites.  Thus, if the 
insect population is large, the chances of spreading the 
parasites among them grows drastically. 

• Thus, it may make equally much sense to curve-fit the larch 
bud moth population to the prey population of a Lotka-
Volterra model. 

• This was attempted as well. 
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The Larch Bud Moth IV 

• The curve fit is equally excellent.  Thus, we cannot conclude 
from the quality of the curve fit alone that the underlying 
model represents correctly the cause-effect relationship of the 
biological system. 
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The Dangers of Curve Fitting 

• Curve fitting can only be used for the purpose of interpolation 
in space and extrapolation in time (as long as the predicted 
variables stay within their observed ranges). 

• Models obtained inductively by curve-fitting a mathematical 
model to a set of observed data should never be used to 
explain the internal variables of the model. 

• Such a model has no internal validity. 

• A better (internally valid) larch bud moth model shall be 
presented later. 
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Competition and Cooperation I 

• Two species can also interact with each other in other 
ways. 

• They can e.g. compete for the same food source: 

 

 

 

• or they can cooperate, e.g. in a symbiosis: 

x1 = a · x1 − b · x1 · x2 
· 
· x2 = c · x2 − d · x1 · x2 

x1 = -a · x1 + b · x1 · x2 
· 
· x2 = -c · x2 + d · x1 · x2 
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Competition and Cooperation II 

• Animals of a single species can also cooperate, e.g. by 
protecting each other in a herd (grouping). 

 

 

• or they can suffer from crowding: 

 

 

• Of course, several of these phenomena can take effect 
simultaneously. 

x = -a · x + b · x 2
 

· 

x = a · x − b · x 2
 

· 
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Conclusions 

• We have looked at single-species ecosystems first.  We 
found that these populations always exhibit exponential 
growth followed by saturation.  This behavior can be 
modeled using the continuous-time logistic model. 

• We have seen that two-species ecosystems often exhibit 
oscillatory behavior.  This behavior can be modeled using 
the Lotka-Volterra model. 

• In the next class, we shall look at behavioral patterns 
exhibited by multi-species ecosystems. 
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