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System Dynamics

* In this class, we shall introduce a new Dymola
library designed to help us with modeling
population dynamics and similar problems that
are described as pure mass flows.

* The system dynamics methodology had been
introduced in the late sixties by J.W.Forrester as a
tool for organizing partial knowledge about
models of systems from soft-sciences, such as
biology, bio-medicine, and macro-economy.
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From Bond Graphs to System Dynamics |

» Remember how we have been modeling convective flows
(mass flows) using bond graphs.

From Bond Graphs to System Dynamics |1

< If we weren’t interested, where the energy came from, we
could leave the pumps out, and replace them by flow
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From Bond Graphs to System Dynamics 111

 If we furthermore aren’t interested in the efforts at all, the
effort equations can be left out, and all the bonds become
activated, i.e., turn into signal flows.

DT
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From Bond Graphs to System Dynamics IV

e Forrester introduced a graphical representation tailored to
exactly this situation.
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Exponential Growth Model

* Let us start by implementing the simple exponential growth
model that had been introduced two classes ago:

P=BR-DR pe

opulation
BR = kBR 0[P Birth_Rete Destn_Rate
DR = kpg - P 050

Source and sink elements
are provided for optical
purposes only, because
the systems dynamics
modelers are used to
them. However, these
models do not contain P
any equations.
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Levels
 Levels represent the state variables of the system dynamics
modeling methodology. e — R
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Rates |

* Rates represent the state derivatives of the system
dynamics modeling methodology.
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Rates 11

» For convenience, rates with multiple additive inputs are
also provided.

=" e Notice that this is an
OutPort that was drawn in
reverse for optical reasons.
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- Whereas mass can be
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i — O [ controlled by the rate valve,
) ! the flow of information,
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Rates I11
» Also available are rate gauges with built-in limiters, e.qg.
valves that let flow pass in one direction only.
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 Also available are levels with overflow protection and with
protection against pumping from an already empty storage.
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A Boolean variable that is Another Boolean variable
set false when the tank is that is set false when the
full. tank is empty.
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The Gilpin Model |

» We now have everything that we need to create a system
dynamics version of the Gilpin model.
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The Gilpin Model |1
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The Gilpin Model |11
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The Gilpin Model IV

What have we gained by representing the Gilpin model in the
system dynamics formalism?

Absolutely nothing!

Systems dynamics has been invented as a tool for graphically
capturing partial knowledge about a poorly understood system,

generating a model that can be successively augmented, as new
knowledge becomes available.

= | System dynamics is not particularly useful for implementing
an already fully developed model, such as the Gilpin model.
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The Laundry List

» System dynamics, just like

. Levels Rates
any other decent modeling Inflows Outflows
methodology, always starts
out with the set of variables | Population Birth Rate Death Rate
5 Mone Income Expenses
to be used in the model, E,ust,Ztion stress Afecton
i ove ection rustration
espemally the levels and the Tumor Cells Infection Treatment
rates. Inventory on Stock Shipments Sales
Knowledge Learning Forgetting
i ohlaion iy For each of the rates, a
. lglatgrgl slt_andardolevmg list of th Cinfl t' |
. . « Food Quali ISt of the most Influential
Birth Rate: <« « Food Quant?lty . ; i
« Education _ variables is created. This
g Conuacepiives is called a laundry list.

 Religious Beliefs
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System Dynamics Modeling Recipe

» We always start out by choosing the levels to be included in
the model. These must be quantities that can be accumulated.

» For each level, we define one or several additive inflows and
one or several additive outflows. These are the rates.

 For each rate, we define a laundry list comprised of the set of
most influential factors.

» For each of these factors, equations are generated that relate
these factors back to the levels, the rates, and other factors.
These equations are created by using as much physical insight
as possible. Algebraic loops are to be avoided.
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The Larch Bud Moth Model |

* We shall now attempt to come up with a better model for
describing the population dynamics of the larch bud moth
making use of the systems dynamics modeling methodology.

* We stipulate that the insect/tree interaction is the dominant
influencing factor regulating the population dynamics of the
larch bud moth. We assume that the influence of the parasites
is of second order small, and can be neglected.

e We shall try to come up with a model based primarily on
physical insight.

» Curve fitting shall be used, but limited to local measurable
properties only.
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The Larch Bud Moth Model 11

» The insects breed only once per year. They lay their eggs onto
the branches of the larch trees in August. The eggs then
remain in a state of extended embryonic diapause until the
following spring.

» Hence it makes sense to use a discrete-time model, i.e.,
describe the population dynamics of the larch bud moth by a
set of difference equations.

 To this end, a discrete level model is being offered as part of
Dymola’s SystemDynamics library.
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Discrete Levels

» Discrete levels are another form of state variables for the
system dynamics modeling methodology.

b ] The when-clause is executed for the first time at
time=h, then once every h time units.
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The Larch Bud Moth Model 111

e There are two discrete state variables: the number of eggs,
and the raw fiber, which the insect larvae use as their food.

Since both the eggs and

88— —»rx}»—é—{} the needle mass are being
L8

replaced every year, the
old eggs and old fibers
simply all go away. Thus,
the outflows are equal to

é—fj} the levels.
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The Larch Bud Moth Model 1V

» During the fall, the eggs are preyed upon by several
species of Acarina and Dermaptera.

 During the winter, the eggs are parasitized by a species of
Trichogramma.

» The surviving eggs are ready for hatching in June.

» The overall effects of winter mortality can be summarized
as a simple constant.

| Small_larvae = (1.0 — winter_mortality) - Eggs |

|Winter_mortality =57.28% |
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Gain Factors
» Gain factors are modeled as follows:
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The Larch Bud Moth Model V

* Whether or not the small larvae survive, depends heavily
on luck or mishap. For example, if the branch on which
the eggs have been laid dies during the winter, the young
larvae have no food.

» This is called the incoincidence factor.

| Large_larvae = (1.0 — incoincidence) - Small_larvae |

» However, the incoincidence factor is not constant. It
depends heavily on the raw fiber contents of the biomass
of the tree.

ﬁmmwmmm ‘ Mathematical Mobdeling of Physical Sysdtems
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Linear Regression

e A linear regression model was used to determine the
incoincidence factor from measurements:

| incoincidence = 0.05112 - rawfiber — 0.17932 |

e SlLinear - SystemDynamic P[] 4
e File Edt Simulation Plok Animation Commands  window Help _1&] x|

QS W/ me¢ AN L & Hh, =
[fa- « » = S ABE S0 -
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The Larch Bud Moth Model VI

» Hence we can model the population of large larvae using
two “linear regression” models in series, followed by a
two-input product model:

incoincidence = 0.05112 - rawfiber — 0.17932
coincidence = (-1.0) - incoincidence + 1.0
Large_larvae = coincidence - Small_larvae

g = [oromk tine=
g e parsmecer Real m "Gradient’ s
—== [ |- Bain -
‘ 5 s
u : |
name — fine: 1 [ 8 roceing o
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The Larch Bud Moth Model VI

 Insimilar ways, we can model the entire egg life cycle:

Small_larvae = (1.0 — winter_mortality) - Eggs

Large_larvae = (1.0 — incoincidence) - Small_larvae

Insects = (1.0 — starvation) - (1.0 — weakening) - Large_larvae
Females = sex_ratio - Insects

New_eggs = fecundity - Females

e The animal population is further decimated, either because
the large larvae don’t have enough food (starvation), or
because they were sick already before (physiological
weakening).
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The Larch Bud Moth Model VIII

» Notice that we essentially created a physical model of the
entire egg life cycle.

e Curve fitting is only used locally to identify linear
regression models of measurable physical quantities.

incoincidence = 0.05112 - rawfiber — 0.17932

weakening = 0.124017 - rawfiber — 1.435284

fecundity = -18.475457 - rawfiber + 356.72636

» The sex ratio is constant, whereas starvation depends on
food demand and tree foliage (food supply):

sex_ratio = 0.44

starvation = f, (foliage, food_demand)
food_demand = 0.005472 - Large_larvae

The Larch Bud Moth Model IX

« Insimilar ways, we can model the life cycle of the trees:

| New_rawfiber = recruitment - rawfiber |

where:

recruitment = f, (defoliation, rawfiber)

defoliation = f, (foliage, food_demand, starvation)
foliage = specific_foliage - nbr_trees
specific_foliage = -2.25933 - rawfiber + 67.38939
nbr_trees = 511147

X X P
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The Larch Bud Moth Model X

The Larch Bud Moth Model XI

» We started out by deciding on the formalism itself, i.e., we decided
that we were going to use discrete rather than continuous levels.

* We then identified the number of levels, i.e., the number of quantities
that can be independently accumulated. In our case, we decided on
using the eggs and the raw fiber as the two state variables.

» We then identified life cycles for the two levels.

* We limited curve fitting to identifying locally verifiable relationships
between variables, which in our case turned out to be linear regression
models.

¢ This provided us with an almost complete model. There are only three
laundry lists: f;, f,, and f; that require further analysis.
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Functional Relationships

« The SystemDynamics library offers three partial blocks for capturing
functional relationships, one for functions with a single input, one for
functions with two inputs, and one for functions with three inputs.

e ElNonlin_2 - SystemDynamii - =100 x|
B Gle Edt Smulstion Plot Animation: Commands Window  Help =18 x|
ledaa ¥/ meyAN.L & HR|=-
|%-¢»mSABZ[" J

2| partial block Honlin

Packages : —

end Nonlin 2;

y= f(u1,u2)'

u2

——— Line: 1 | ) Modeling Simulation
W [ ] ‘ = aE

4
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The Larch Bud Moth Model XI1

« This block was used to create a model for the starvation:

(=) Starvation - LarchBudMoth. ic ] 5|
B Fle Edit Smulstion Blot Amimation Commands window  Help =18 x|
FEaaR/ meysANL & HMH, =

[%- ¢ » = S A[E EM0= o

Al p1ock starvation
oz Eoe extends Systembynamics.Interfaces.Nonlin 2;
y —4 u ,U output Real foliage;
output Real food_demand;
B Liner X
’ 2 output Real starvatiom;
u S} DiscreteLevel =
= ﬁLarchEudMnlh equation
foliage = ul;
D> Starvation food demand = uZ;
=] > Defoliation J starvation = exp(-foliage/food_demand);
| Déea ¥ = starvation;
“““l * | ’ | ‘ | end Srtarvation;

Linet 1 | &) Modsling
X Z

December 13, 2012

© Prof. Dr. Francois E. Cellier | Strt Presentation 0>

ETH

Tidgendnisihic Teoha che Hochwchue Zinkh

[ —————

‘ Mathematical Mobdeling of Physical Sydtems ‘

The Larch Bud Moth Model XIII
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The Larch Bud Moth Model X1V

e The equation window of the main model looks as follows:

LBM - LarchBudMoth.LBM - [Modeh
B Ele Edif Simulstion Elot  animstion  Comm:

=T
= windows Help — 1= x|

T~ € » = lﬂf"m
e =

A=} Discretelevel

= (] LarchBudhath
> Starvation
> Defaliation Real LogDensitylMeas “Measursd logarithmic larvas density’:
O Greor Fmel vears Simalacion time in years®s

> Logarithm

*| > x|
=
[components  [=]
SlLarchBudotn LBM | —
B Sourcel
= NewEggs 1]

LarchBudMath, LEM |L.ne 15 | B Madeling

i»1
]

Zl

« Notice that no global curve fitting was ever applied to this model.
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The Larch Bud Moth Model XV

» We are now ready to compile and simulate the model.
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The Larch Bud Moth Model XVI

O —— ~lnix

= s = o 190 ]

* The model reproduces the observed limit cycle behavior of the larch
bud moth population beautifully, both in terms of amplitude and
frequency.

Since no global curve fitting was applied to the model, this is an
indication that the important relationships were modeled correctly.
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The Influenza Model |

« Let us create yet one more model today, describing the spreading of an
influenza epidemic in a community of 10,000 souls.

¢ Since influenza can be contracted at any time, we shall use continuous
levels for this model.

« People, once infected with this particular variant of the disease, take
four weeks before they come down with any symptoms. This is called
the incubation period. Yet, they are already contagious during that
period.

¢ Once they are sick, they remain sick for two weeks.

« Once they have recovered from the disease, they are immune to this
particular stem for 26 weeks. Thereafter, they may contract the disease
anew.

e — ‘ Mathematical Mobdeling of Physical Sysdtems
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The Influenza Model 11

» Let us now choose our level variables.

e We can identify four types of people:

» Non-infected people.

» Infected healthy people.
» Sick people.

» Immune people.

* We shall use these four variables as our levels.

« Clearly, there are only three state variables, since the sum
of the four is always 10,000, i.e., we can always compute
the fourth from the other three, but as long as we don’t
insist that we must choose our initial conditions
independently, this doesn’t cause any problem.
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The Influenza Model 111

» The four level variables are placed in a loop.

» They are fed by four rate variables:
» Contraction rate.
» Incubation rate.
> Recovery rate.
> Re-activation rate.

» We shall use these four variables as our rates.
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The Influenza Model 1V

» The contraction rate can be computed as the product of
the percentage of contagious population multiplied with
the number of contacts per week multiplied with the
probability of contracting the disease on a single contact.

« The incubation rate can be computed as the quotient of the
infected population and the time to breakdown.

e The recovery rate can be computed as the quotient of the
sick population and the duration of the symptoms.

< The re-activation rate can be computed as the quotient of
the immune population and the immune period.
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The Influenza Model VI

* We want to take into account that the numbers in each
level are supposed to be integers.

T Pk
CE =l =
FEHOS W FOcCTARL-B2-Th, B H-esmBERE S0 o
=l
_<. A i:
Dd & ey [pmmiee ] ftation <:][>

L 2 =iRate_equation - I =]
':‘ '_.' e — E Fil= Edit Simulation Plot Animation  Commands  Window  Help =& x
: ledas [ W mey AN L- & HF,|=]
s |-« » = S AEE:
| | [o1ock Race squacion
y e f(U1 qu)_ M =Exbends SystemDynamics. Interfaces Monlin 25
> u2 | B =il 1B = novant (incager ul/ w2 s |
—— ‘Lm ] 1| B Modeling | 2 simulation A
By default, the integer function will schedule events in Dymola. As
this is not useful here, we use the noEvent clause to prevent these
unnecessary event iterations from happening.
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The Influenza Model VII

« One additional problem concerning the contraction rate needs to be
taken care of.

=

=TS
— L] x|

nds window Help

P — ]
Packages :
O Grecr
> Logaithm

y = f(u1,u2)

» Uz

—r | Mudehng [ 2@ Simulation | 2l

« It could theoretically happen that the model tries to infect more people
than the total uninfected population. This must be prevented.
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The Influenza Model VIII

¢ The equation window of the main model looks as follows:
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e At time = 8 weeks, we introduce one single influenza patient into the
general population of our community.
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» The model can now be compiled.
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* Simulation results:
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< Within only 6 weeks, almost the entire population of the
community has been infected with the disease. The
epidemiology of the disease is just as bad as that of the
chain letter!
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Conclusions

We have now improved our skills for developing soft-
science models in an organized fashion that stays as close
to the underlying physics as can be done.

System dynamics was introduced as a methodology that
allows us to formulate and capture partial knowledge about
any soft-science application, knowledge that can be refined
as more information becomes available.

Systems dynamics is the most widely used modeling
methodology in all of soft sciences. Tens of thousands of
scientists have embraced and used this methodology in
their modeling endeavors.
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