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Inductive Modeling

In this lecture, we shall study yet more general techniques
for identifying complex non-linear models from
observations of input/output behavior.

e These technigues make an attempt at mimicking human
capabilities of vicarious learning, 1.e., of learning from
observation.

e These techniques should be perfectly general, i.e., the
algorithms ought to be capable of capturing an arbitrary
functional relationship for the purpose of reproducing it
faithfully.

« The techniques will also be totally unintelligent, i.e., their
capabilities of generalizing patterns from observations are
almost non-existent.
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Knowledge-based vs. Observation-based
Modeling

« Until now, we have almost exclusively embraced modeling
techniques that were based on a priori knowledge.

« Only on a very few occasions have we created models
from observations.

e The one time that we really tried to do this, namely when
we created a Lotka-Volterra model of the larch bud moth,
we were not overly successful in our endeavor.

* Yet, when we use a priori knowledge, such as when we
model a resistor using the equation: u = R:I, we are not
really making models — we are only using models that had
been made for us by someone else.
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Taxonomy of Modeling Methodologies

Knowledge-Based
Approaches

Observation-Based
Approaches

Deep Models

| sD

Shallow Models

Inductive Reasoners

Neural Networks
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Observation-based Modeling and
Optimization

* Any observation-based modeling methodology is closely linked to
optimization.

 Letus look once more at our Lotka-Volterra models:

I:l)pred =-a- I:)pred +k-b- I:)pred P

I:)prey c- prey b I:)pred P

prey
prey

* When we used this structure to model the population dynamics of the
larch bud moth, we mapped the observational knowledge available
onto the parameters of the Lotka-Volterra equations, I.e., a, b, c, Kk,

prey and Xpredo'
. Modellng here meant to identify these parameter values, i.e., to

minimize the error between the observed and simulated behavior by
means of optimization.
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Observation-based Modeling and
Complexity

Observation-based modeling iIs very important, especially
when dealing with unknown or only partially understood
systems. Whenever we deal with new topics, we really
have no choice, but to model them inductively, i.e., by
using available observations.

The less we know about a system, the more general a
modeling technique we must embrace, in order to allow for
all eventualities. If we know nothing, we must be prepared
for anything.

In order to model a totally unknown system, we must thus
allow a model structure that can be arbitrarily complex.
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Artificial Neural Networks (ANN) |

e One very popular approach to model systems from
observations is by use of artificial neural networks

(ANNS).
 ANNSs are modeled after the neurons of the human brain.

U, w’ Is the weight vector

Uz : + y b 1s the bias

activation() Is a non-linear activation
Un function, usually shaped after the
X=W - U+Db logistic equation, e.g.:

= activation(x : : 1.0
y ) y = sigmoid(x) = 1.0+ exp(—x)
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Artificial Neural Networks (ANN) I

« Many such neurons are grouped together in a matrix
structure:

* The weight matrices and bias vectors between neighboring
network layers store the information about the function to
be modeled.
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Artificial Neural Networks (ANN) 111

e |t can be shown that an ANN with a single hidden layer
and enough neurons on it can learn any function with a
compact domain of the input variables.

Input/output
map

o With at least two hidden layers, even arbitrary functions
with holes in their input domains can be learnt.
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Parametric vs. Non-parametric Models |

 ANNSs are parametric models. The observed knowledge
about the system under study is mapped on the (potentially
very large) set of parameters of the ANN.

e Once the ANN has been trained, the original knowledge is

no longer used. Instead, the learnt behavior of the ANN is
used to make predictions.

« This can be dangerous. If the testing data, 1.e. the input
patterns during the use of the already trained ANN differ
significantly from the training data set, the ANN is likely
to predict garbage, but since the original knowledge is no
longer in use, is unlikely to be aware of this problem.
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Parametric vs. Non-parametric Models I

e Non-parametric models, on the other hand, always refer

back to the original training data, and therefore, can be
made to reject testing data that are incompatible with the
training data set.

The Fuzzy Inductive Reasoning (FIR) engine that we
shall discuss in this lecture, Is of the non-parametric type.

During the training phase, FIR organizes the observed
patterns, and places them in a data base.

During the testing phase, FIR searches the data base for
the five most similar training data patterns, the so-called
five nearest neighbors, by comparing the new input
pattern with those stored In the data base. FIR then
predicts the new output as a weighted average of the
outputs of the five nearest neighbors.
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Quantitative vs. Qualitative Models |

e Training a model (be It parametric or non-parametric)
means solving an optimization problem.

e In the parametric case, we have to solve a parameter
Identification problem.

 In the non-parametric case, we need to classify the
training data, and store them in an optimal fashion in the
data base.

» Training such a model can be excruciatingly slow.

 Hence it may make sense to devise techniques that will
help to speed up the training process.
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Quantitative vs. Qualitative Models 11

e How can the speed of the optimization be controlled?

Somehow, the search space needs to be reduced.

« One way to accomplish this Is to convert continuous
variables to equivalent discrete variables prior

optimization.

* For example, if one of the variables to be looked at is the
we may consider to classify
temperature values on a spectrum from very cold to

ambient temperature,

extremely hot as one of the following discrete set:

temperature = { freezing, cold, cool, moderate, warm, hot }

to
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Qualitative Variables

e A variable that only assumes one among a set of discrete
values is called a discrete variable. Sometimes, it is also
called a qualitative variable.

« Evidently, it must be cheaper to search through a discrete
search space than through a continuous search space.

* The problem with discretization schemes, such as the one
proposed above, Is that a lot of potentially valuable
detailed information is being lost in the process.

« To avoid this pitfall, L. Zadeh proposed a different
approach, called fuzzification.
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Fuzzy Variables |

* Fuzzification proceeds as follows. A continuous variable is fuzzified,
by decomposing it into a discrete class value and a fuzzy membership

value.

. Membership Functions
=
E much too low too low normal too high much too high
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» For the purpose of reasoning, only the class value is being considered.
However, for the purpose of interpolation, the fuzzy membership
value Is also taken into account.

* Fuzzy variables are not discrete, but they are also referred to as
qualitative.
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Fuzzy Variables I

. Membership Functions
g : rmuch too low too high much teoo high
2 = | /
g 0.5 '“..l
= TN .
% 2 "‘\\‘

0. 1 E S T 1 i T, _a—'}‘ b R g L
0.0 =20 40, 84a. ad. 100. 120. 14a0. 180. 180. 200. 220. 240.
Svstolic Blood Pressure
Systolic blood pressure = 110 Systolic blood pressure = 141

={normal, 0.78 } n{too low, 0.15}|| ={normal, 0.78 } n{too high, 0.18 }

{ Class, membership } pairs of lower likelihood must be considered as well,
because otherwise, the mapping would not be unique.
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Fuzzy Variables in FIR

FIR embraces a slightly different approach to solving the uniqueness problem.
Rather than mapping into multiple fuzzy rules, FIR only maps into a single rule,
that with the largest likelihood. However, to avoid the aforementioned ambiguity
problem, FIR stores one more piece of information, the “side value.” It indicates,
whether the data point iIs to the left or the right of the peak of the fuzzy
membership value of the given class.

Mermbership Functions
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Systolic blood pressure = 110 Systolic blood pressure = 141
= {normal, 0.78, left } = {normal, 0.78, right }
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Neural Networks vs. Inductive Reasoners

Neural Networks Fuzzy Inductive R.
Quantitative Qualitative
Parametric Non-parametric
Adaptive Limited Adaptability
Slow Training Fast Setup

Smooth Interpolation Decent Interpolation
Wild Extrapolation No Extrapolation

No Error Estimate Error Estimate
Unsafe / Gullible Robust / Self-critical
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Fuzzy Inductive Reasoning (FIR) |

« Discretization of quantitative information
(Fuzzy Recoding)

* Reasoning about discrete categories
(Qualitative Modeling)

 Inferring consequences about categories
(Qualitative Simulation)

 Interpolation between neighboring categories
using fuzzy logic (Fuzzy Regeneration)
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Fuzzy Inductive Reasoning (FIR) I

Crisp data Crisp data

y )
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Fuzzification in FIR
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Qualitative Modeling Iin FIR |

* Once the data have been recoded, we wish to determine,
which among the possible set of input variables best
represents the observed behavior.

o Of all possible input combinations, we pick the one that
gives us as deterministic an Input/output relationship as
possible, 1.e., when the same Input pattern iIs observed
multiple times among the training data, we wish to obtain
output patterns that are as consistent as possible.

« Each input pattern should be observed at least five times.
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Qualitative Modeling in FIR 11

Fuzzy rule base
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Qualitative Modeling Iin FIR 111

« The qualitative model is the optimal mask, I.e., the set of
Inputs that best predict a given output.

o Usually, the optimal mask iIs dynamic, i.e., the current
output depends both on current and past values of inputs
and outputs.

« The optimal mask can then be applied to the training data
to obtain a set of fuzzy rules that can be alphanumerically
sorted.

* The fuzzy rule base is our training data base.
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Qualitative Simulation in FIR
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Time-series Prediction in FIR
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Simulation Results |
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Quantitative vs. Qualitative Modeling

* Deductive Modeling Techniques

* have a large degree of validity in many different and even

previously unknown applications
*

are often quite imprecise in their predictions due to inherent
model inaccuracies

Inductive Modeling Techniques

* have a limited degree of validity and can only be applied to

predicting behavior of systems that are essentially known
*

are often amazingly precise in their predictions If applied
carefully
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Mixed Quantitative & Qualitative Modeling

o It is possible to combine qualitative and quantitative modeling

techniques.
FIR
Regenerate |«
| Model
Quantitative | Recode | FIR
Subsystem Model
Recode
Regenerate
| Quantitative
Subsystem
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Application: Cardiovascular System |

o Let us apply the technique to a fairly complex system: the

cardiovascular system of the human body.

The cardiovascular system IS comprised of two
subsystems. the hemodynamic system and the central
nervous control.

The hemodynamic system describes the flow of blood
through the heart and the blood vessels.

The central nervous control synchronizes the control
algorithms that control the functioning of both the heart
and the blood vessels.
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Application: Cardiovascular System I

e The hemodynamic system Is essentially a hydrodynamic
system. The heart and blood vessels can be described by
pumps and valves and pipes. Thus bond graphs are
suitable for its description.

* The central nervous control is still not totally understood.
Qualitative modeling on the basis of observations may be
the tool of choice.
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The Hemodynamic System |

== The heart chambers and blood vessels
ls@aeVl/cocals b HP Bk ¢>=SAEEM are containers of blood. Each
¢ container Is a storage of mass, thus
e o8 contains a C-element.
JE]Linear /E
?? N The C-elements are partly non-linear,
{@ T able_Lookup B3 o
s AL i and in the case of the heart chambers
o LN L even time-dependent.
o 0+>0 %0
EElels K] The mSe-element on the left side
e represents the time-varying pressure
~[Cardiovascul lar Generic. Hear. . [ S P -
-J ’L . 1 J‘\“ caused by the contracting heart.
- ;i " The mSe-element on the right side
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8==[v=sa] | Which IS Influenced by the breathing.
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The Hemodynamic System |1
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The Hemodynamic System |11
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The Hemodynamic System 1V

« All containers are drawn as boxes. They end In O-junctions.

« All flows between containers are drawn as arrows. They end
In bonds.

« As long as containers and flows toggle, they can be
connected together without bonds In between.

« Some of the flows contain inductors, others only resistances.
Some of them also contain valves, which are represented by
Sw-elements.
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The Heart

-2x The heart contains the four

tion Elob Animation Commands  Window  Help -|ﬁ'|5|

File Edit i

l=aa8 ¥ivoovams o2 - ¢raEBEElw | chambers, as well as the four major
oo B heart valves, the pulmonary and
= - | aorta valves at the exits of the
g | R T e ventricula, and the mitral and
ke e e triscuspid valves between the atria
_ e JL T JL and the corresponding ventricula.

) (P eree

iR | 1 |

The sinus rhythm block programs

e || lemmem == | the contraction and relaxation of
e 1~ I 7 the heart muscle.
=l | T j
é-ﬁ\feins . Coronar y Ny .
JCJ0on b Lessse e Lo of The heart muscle flow symbolizes
= A l ] the coronary blood vessels that are

responsible for supplying the heart
&wam [ ] | MuUSCle With oxygen.
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The Thorax

B Fil= Edit Simulation
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The table lookup function
at the bottom computes the
thoracic pressure as a
function of the breathing.

The arterial blood is
drawn In red, whereas the
venous blood is drawn In
blue.

1
Bronch Thoracic
. Aorta
T

&

pTh

startTime=0

Shown on the left are the
central nervous control
|M0deling | simulation Ig Signals.
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The Body Parts

 In similar ways, also the other parts
of the circulatory system can be
drawn. These Include the head
and arms (the brachiocephalic
trunk and veins), the abdomen
(the gastrointestinal arteries and
veins), and the lower limbs.

» Together they form the
hemodynamic system.

« What is lacking still are the central
nervous control functions.

TH
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Q4

D2

Q6

Head
and
Arms

A

i
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The Cardiovascular System |
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Central Nervous System Control
(Qualitative Model)

Hemodynamical System
(Quantitative Model)
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The Cardiovascular System Il
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The FIR Connector
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Simulation Results 11
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Discussion |

« The top graph shows the peripheric resistance controller,
Q4, during a Valsalva maneuver.

* The true data are superposed with the simulated data. The
simulation results are generally very good. However, in
the center part of the graph, the errors are a little larger.

« Below are two graphs showing the estimate of the
probability of correctness of the prediction made. It can
be seen that FIR is aware that the simulation results in the
center area are less likely to be of high quality.
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Discussion |1

« This can be exploited. Multiple predictions can be made in
parallel together with estimates of the likelihood of
correctness of these predictions.

» The predictions can then be kept that are accompanied by
the highest confidence value.

e This is shown on the next graph. Two different models
(sub-optimal masks) are compared against each other. The
second mask performs better, and also the confidence
values associated with these predictions are higher.
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Simulation Results 111
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Simulation Results 1V

= Messages - Dymola Messages - Dymola

Syntax Error | Translation | Dialog Error | Simulation | | Syntax Error | i | Dialog Error | Simulation ‘

Translation of Cardiovascular.syst 1 Log-file of program ./dymosim
DAE having 4364 scalar unknowns fand 4364 scalar equations. (generated: Wed Rug 05 09:21:46 2008)

STATISTICS

dymosim started
Original Model c.. "dein.cxt" loading (dymosim input file)

Number of components: 540 "systemExternal .mat™ creating (=imulation result file)

Variables: 4213
Constants: 1(1 scalars) Integration started at T = 0 using integration method DASSL
Parameters: 289 (399 scalars) (DARE multi-step solwver (dassl/dasslrt of Petzold modified by Dynasim))
Unknowns: 3923 (4364 scalars) Pattern not encountered

Differentiated variables: 22 scalars Pattern not encountered

Equations: 2947 Pattern not encountered

Montrivial : 1725 Pattern not encountered

Integration terminated successful = ==

Translated Maodel CPU—t:i.rﬂe for integratir{nn
Constants: 1058 scalars CPU-time for ome GRID interval® S I seconds
Free parameters: 288 scalars Humber of result points : 7380
Parameter depending: 114 scalars Number of GRID  points ¢ 301
Inputs: 0 Humber of (successful) steps @ 60128
Outputs: 0 Humber of F-evaluations i BT73362
Continuous time statfs: 22 scalars HNumber of H-evaluations T 83310
Time-varying variab\gs: 437 scalars Humber of Jacobian-evaluations: 25775
Aliasvariables:ﬁgﬂﬁ_ . Humber of (model) time events : 417
Assumed defa?ultmltla!.condltlons: .159 . . Mumber of (U) time events i 0
LogDefaultinitialConditions=true; gives more information
Mumber of mixed realfdiscrete systems of equations: 2
Sizes of linear systems of equations: {5, 3, 5. 5}

Sizes after manipulation of the linear systems: {0, 0, 2, 0}
Sizes of nonlinear systems of equations: {10. 5}

Sizes after manipulation ofthe nonlinear systems: {3, 2} Maximum integration order P2
Number of numerical Jacobians: 0 Calling terminal section
"dsfinal.txt" creating (final states)

Humber of state events 1 3071
HNumber of step events HE ]
Minimom integration stepsize : 8.46e-009
Maximum integration stcepsize 1 0.00B77
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Simulation Results V

Valsalvae maneuver

17 Plot ==Es
hemodynamics.thorax.pTh1.y
100
80+
60- hold breath
’d
404
21— inhale 2 = axhale
’ 0 | 1IU I 2|U | 3|U I 4IU I SIU

 As the patient inhales, the lungs expand, leaving less
“empty space” In the thorax, thereby increasing the
thoracic pressure on blood vessels and organs.
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Simulation Results VI

T ===l | carotid sinus blood

o) pressure  (PAC) as

o simulated using the

5 1 mixed quantitative and
o qualitative FIR model.
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(SISO) controllers. T T e e e S

. . P '
December 20, 2012 © Prof. Dr. Frangms E. Celller Start Presentation <][>




E_= ,l_ﬁ!w_'m IMathematical PMobdeling of LPHhy3ical ©ystems

Conclusions |

* Quantitative modeling, 1.e. modeling from first principles,
IS the appropriate tool for applications that are well
understood, and where the meta-laws are well established.

e Physical modeling 1S most desirable, because it offers
most insight and Is most widely extensible beyond the
range of previously made experiments.

« Qualitative modeling Is suitable in areas that are poorly
understood, where essentially all the available knowledge
IS In the observations made and is still in its raw form, I.e.,
no meta-laws have been extracted yet from previous
observations.
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Conclusions 11

* Fuzzy modeling is a highly attractive inductive modeling
approach, because it enables the modeler to obtain a
measure of confidence in the predictions made.

 Fuzzy inductive reasoning IS one among several
approaches to fuzzy modeling. It has been applied widely
and successfully to a fairly wide range of applications both
In engineering and In the soft sciences.

e Qualitative models cannot provide Insight into the
functioning of a system. They can only be used to predict
their future behavior, as long as the behavioral patterns
stay within their observed norms.
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Industrial Applications

o Cardiovascular System Modeling for Classification of
Anomalies.

* Anaesthesiology Model for Control of Depth of
Anaesthesia During Surgery.

e Shrimp Growth Model for EI Remolino Shrimp Farm in
Northern Mexico.

 Prediction of Water Demand in Barcelona and Rotterdam.

* Design of Fuzzy Controller for Tanker Ship Steering.

e Fault Diagnosis of Nuclear Power Plants.

 Prediction of Technology Changes in Telecommunication
Industry.
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