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Inductive Modeling 
• In this lecture, we shall study yet more general techniques 

for identifying complex non-linear models from 
observations of input/output behavior. 

• These techniques make an attempt at mimicking human 
capabilities of vicarious learning, i.e., of learning from 
observation. 

• These techniques should be perfectly general, i.e., the 
algorithms ought to be capable of capturing an arbitrary 
functional relationship for the purpose of reproducing it 
faithfully. 

• The techniques will also be totally unintelligent, i.e., their 
capabilities of generalizing patterns from observations are 
almost non-existent. 
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Knowledge-based vs. Observation-based 
Modeling 

• Until now, we have almost exclusively embraced modeling 
techniques that were based on a priori knowledge. 

• Only on a very few occasions have we created models 
from observations. 

• The one time that we really tried to do this, namely when 
we created a Lotka-Volterra model of the larch bud moth, 
we were not overly successful in our endeavor. 

• Yet, when we use a priori knowledge, such as when we 
model a resistor using the equation: u = R·i, we are not 
really making models – we are only using models that had 
been made for us by someone else. 
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Taxonomy of Modeling Methodologies 

Knowledge-Based 
Approaches 

Observation-Based 
Approaches 

Deep Models Shallow Models 

Neural Networks Inductive Reasoners 

FIR 

SD 
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Observation-based Modeling and 
Optimization 

• Any observation-based modeling methodology is closely linked to 
optimization. 

• Let us look once more at our Lotka-Volterra models: 
 
 
 

• When we used this structure to model the population dynamics of the 
larch bud moth, we mapped the observational knowledge available 
onto the parameters of the Lotka-Volterra equations, i.e., a, b, c, k, 
xprey0

, and xpred0
. 

• Modeling here meant to identify these parameter values, i.e., to 
minimize the error between the observed and simulated behavior by 
means of optimization. 

Ppred = -a · Ppred + k · b · Ppred · Pprey 

Pprey = c · Pprey − b · Ppred · Pprey 

· 

· 



Start Presentation 

Mathematical Modeling of Physical Systems

December 20, 2012 © Prof. Dr. François E. Cellier

Observation-based Modeling and 
Complexity 

• Observation-based modeling is very important, especially 
when dealing with unknown or only partially understood 
systems.  Whenever we deal with new topics, we really 
have no choice, but to model them inductively, i.e., by 
using available observations. 

• The less we know about a system, the more general a 
modeling technique we must embrace, in order to allow for 
all eventualities.  If we know nothing, we must be prepared 
for anything. 

• In order to model a totally unknown system, we must thus 
allow a model structure that can be arbitrarily complex. 
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Artificial Neural Networks (ANN) I 
• One very popular approach to model systems from 

observations is by use of artificial neural networks 
(ANNs). 

• ANNs are modeled after the neurons of the human brain. 

+ 
u1 

u2 

un 

… 

y 

x = w’ · u + b 
y = activation(x) 

w’ is the weight vector 

b is the bias 

activation() is a non-linear activation 
function, usually shaped after the 
logistic equation, e.g.: 

y = sigmoid(x) =  1.0 + exp(−x)  
1.0 
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Artificial Neural Networks (ANN) II 
• Many such neurons are grouped together in a matrix 

structure: 
 
 
 
 
 
 
 

• The weight matrices and bias vectors between neighboring 
network layers store the information about the function to 
be modeled. 
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Artificial Neural Networks (ANN) III 
• It can be shown that an ANN with a single hidden layer 

and enough neurons on it can learn any function with a 
compact domain of the input variables. 

 

 

 

 

 

• With at least two hidden layers, even arbitrary functions 
with holes in their input domains can be learnt. 

u1 

u2 

u3 

y1 

y2 

y3 

Input/output 
map 
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Parametric vs. Non-parametric Models I 
• ANNs are parametric models.  The observed knowledge 

about the system under study is mapped on the (potentially 
very large) set of parameters of the ANN. 

• Once the ANN has been trained, the original knowledge is 
no longer used.  Instead, the learnt behavior of the ANN is 
used to make predictions. 

• This can be dangerous.  If the testing data, i.e. the input 
patterns during the use of the already trained ANN differ 
significantly from the training data set,  the ANN is likely 
to predict garbage, but since the original knowledge is no 
longer in use, is unlikely to be aware of this problem. 
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Parametric vs. Non-parametric Models II 
• Non-parametric models, on the other hand, always refer 

back to the original training data, and therefore, can be 
made to reject testing data that are incompatible with the 
training data set. 

• The Fuzzy Inductive Reasoning (FIR) engine that we 
shall discuss in this lecture, is of the non-parametric type. 

• During the training phase, FIR organizes the observed 
patterns, and places them in a data base. 

• During the testing phase, FIR searches the data base for 
the five most similar training data patterns, the so-called 
five nearest neighbors, by comparing the new input 
pattern with those stored in the data base.  FIR then 
predicts the new output as a weighted average of the 
outputs of the five nearest neighbors. 
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Quantitative vs. Qualitative Models I 

• Training a model (be it parametric or non-parametric) 
means solving an optimization problem. 

• In the parametric case, we have to solve a parameter 
identification problem. 

• In the non-parametric case, we need to classify the 
training data, and store them in an optimal fashion in the 
data base. 

• Training such a model can be excruciatingly slow. 

• Hence it may make sense to devise techniques that will 
help to speed up the training process. 
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Quantitative vs. Qualitative Models II 

• How can the speed of the optimization be controlled?  
Somehow, the search space needs to be reduced. 

• One way to accomplish this is to convert continuous 
variables to equivalent discrete variables prior to 
optimization. 

• For example, if one of the variables to be looked at is the 
ambient temperature, we may consider to classify 
temperature values on a spectrum from very cold to 
extremely hot as one of the following discrete set: 

temperature = { freezing, cold, cool, moderate, warm, hot } 
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Qualitative Variables 

• A variable that only assumes one among a set of discrete 
values is called a discrete variable.  Sometimes, it is also 
called a qualitative variable. 

• Evidently, it must be cheaper to search through a discrete 
search space than through a continuous search space. 

• The problem with discretization schemes, such as the one 
proposed above, is that a lot of potentially valuable 
detailed information is being lost in the process. 

• To avoid this pitfall, L. Zadeh proposed a different 
approach, called fuzzification. 
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Fuzzy Variables I 
• Fuzzification proceeds as follows.  A continuous variable is fuzzified, 

by decomposing it into a discrete class value and a fuzzy membership 
value. 
 
 
 
 
 
 
 

• For the purpose of reasoning, only the class value is being considered.  
However, for the purpose of interpolation, the fuzzy membership 
value is also taken into account. 

• Fuzzy variables are not discrete, but they are also referred to as 
qualitative. 
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Fuzzy Variables II 

{ Class, membership } pairs of lower likelihood must be considered as well, 
because otherwise, the mapping would not be unique. 

Systolic blood pressure = 110 
⇒ { normal, 0.78 } ∩ { too low, 0.15 } 

Systolic blood pressure = 141 
⇒ { normal, 0.78 } ∩ { too high, 0.18 } 
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Fuzzy Variables in FIR 
FIR embraces a slightly different approach to solving the uniqueness problem.  
Rather than mapping into multiple fuzzy rules, FIR only maps into a single rule, 
that with the largest likelihood.   However, to avoid the aforementioned ambiguity 
problem, FIR stores one more piece of information, the “side value.”  It indicates, 
whether the data point is to the left or the right of the peak of the fuzzy 
membership value of the given class. 

 

Systolic blood pressure = 110 
⇒ { normal, 0.78, left } 

left 
right 

Systolic blood pressure = 141 
⇒ { normal, 0.78, right } 
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Neural Networks vs. Inductive Reasoners 

Quantitative Qualitative

Parametric Non-parametric

Adaptive Limited Adaptability

Slow Training Fast Setup

Smooth Interpolation Decent Interpolation

Wild Extrapolation No Extrapolation

No Error Estimate Error Estimate

Unsafe / Gullible Robust / Self-critical

Neural Networks Fuzzy Inductive R. 
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Fuzzy Inductive Reasoning (FIR) I 

• Discretization  of  quantitative  information  
(Fuzzy Recoding) 
 

• Reasoning  about  discrete  categories  
(Qualitative Modeling) 
 

• Inferring consequences about categories  
(Qualitative Simulation) 
 

• Interpolation between neighboring categories  
using  fuzzy  logic (Fuzzy Regeneration) 
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Fuzzy Inductive Reasoning (FIR) II 

FIR 
 

Fuzzy  
Recoding 

 
 

Fuzzy  
Modeling 

 

 
Regene- 
ration 

 
 

Fuzzy  
Simulation 

 

Crisp data Crisp data 
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Fuzzification in FIR 
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Qualitative Modeling in FIR I 

• Once the data have been recoded, we wish to determine, 
which among the possible set of input variables best 
represents the observed behavior. 

• Of all possible input combinations, we pick the one that 
gives us as deterministic an input/output relationship as 
possible, i.e., when the same input pattern is observed 
multiple times among the training data, we wish to obtain 
output patterns that are as consistent as possible. 

• Each input pattern should be observed at least five times. 
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Qualitative Modeling in FIR II 

y1(t) = f ( y3(t−2δt), u2(t−δt) , y1(t−δt) , u1(t) ) 

Fuzzy rule base 
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Qualitative Modeling in FIR III 

• The qualitative model is the optimal mask, i.e., the set of 
inputs that best predict a given output. 

• Usually, the optimal mask is dynamic, i.e., the current 
output depends both on current and past values of inputs 
and outputs. 

• The optimal mask can then be applied to the training data 
to obtain a set of fuzzy rules that can be alphanumerically 
sorted. 

• The fuzzy rule base is our training data base. 
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Qualitative Simulation in FIR 
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Time-series Prediction in FIR 

Water demand for the 
city of Barcelona, 
January 85 – July 86 
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Simulation Results I 

Prediction 
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Quantitative vs. Qualitative Modeling 

• Deductive Modeling Techniques 

      * have a large degree of validity in many different and even 
 previously unknown applications 

      * are often quite imprecise in their predictions due to inherent 
 model inaccuracies 

• Inductive Modeling Techniques 

      * have a limited degree of validity and can only be applied to 
 predicting behavior of systems that are essentially known 

      * are often amazingly precise in their predictions if applied 
 carefully 
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Mixed Quantitative & Qualitative Modeling 
• It is possible to combine qualitative and quantitative modeling 

techniques. 

Quantitative 
Subsystem 

Recode FIR 
Model 

Regenerate 

Quantitative 
Subsystem 

Recode 

FIR 
Model 

Regenerate 
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Application: Cardiovascular System I 
• Let us apply the technique to a fairly complex system: the 

cardiovascular system of the human body. 

• The cardiovascular system is comprised of two 
subsystems: the hemodynamic system and the central 
nervous control. 

• The hemodynamic system describes the flow of blood 
through the heart and the blood vessels. 

• The central nervous control synchronizes the control 
algorithms that control the functioning of both the heart 
and the blood vessels. 
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Application: Cardiovascular System II 

• The hemodynamic system is essentially a hydrodynamic 
system.  The heart and blood vessels can be described by 
pumps and valves and pipes.  Thus bond graphs are 
suitable for its description. 

• The central nervous control is still not totally understood.  
Qualitative modeling on the basis of observations may be 
the tool of choice. 
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The Hemodynamic System I 
The heart chambers and blood vessels 
are containers of blood.  Each 
container is a storage of mass, thus 
contains a C-element. 

The C-elements are partly non-linear, 
and in the case of the heart chambers 
even time-dependent. 

The mSe-element on the left side 
represents the time-varying pressure 
caused by the contracting heart. 

The mSe-element on the right side 
represents the thoracic pressure, 
which is influenced by the breathing. 
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The Hemodynamic System II 
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The Hemodynamic System III 
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The Hemodynamic System IV 

• All containers are drawn as boxes.  They end in 0-junctions. 

• All flows between containers are drawn as arrows.  They end 
in bonds. 

• As long as containers and flows toggle, they can be 
connected together without bonds in between. 

• Some of the flows contain inductors, others only resistances.  
Some of them also contain valves, which are represented by 
Sw-elements. 
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The Heart 
The heart contains the four 
chambers, as well as the four major 
heart valves, the pulmonary and 
aorta valves at the exits of the 
ventricula, and the mitral and 
triscuspid valves between the atria 
and the corresponding ventricula. 

The sinus rhythm block programs 
the contraction and relaxation of 
the heart muscle. 

The heart muscle flow symbolizes 
the coronary blood vessels that are 
responsible for supplying the heart 
muscle with oxygen. 
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The Thorax 
The thorax contains the 
heart and the major blood 
vessels. 

The table lookup function 
at the bottom computes the 
thoracic pressure as a 
function of the breathing. 

The arterial blood is 
drawn in red, whereas the 
venous blood is drawn in 
blue. 

Shown on the left are the 
central nervous control 
signals. 
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The Body Parts 

• In similar ways, also the other parts 
of the circulatory system can be 
drawn.  These include the head 
and arms (the brachiocephalic 
trunk and veins), the abdomen 
(the gastrointestinal arteries and 
veins), and the lower limbs. 

• Together they form the 
hemodynamic system. 

• What is lacking still are the central 
nervous control functions. 
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The Cardiovascular System I 

Heart Rate Controller 

Myocardiac Contractility 
Controller 

Peripheric Resistance 
Controller 

Venous Tone Controller 

Coronary Resistance 
Controller 

Central Nervous System Control 
(Qualitative Model) 

Regenerate 

Regenerate 

Regenerate 

Regenerate 

Regenerate 

Heart 

Circulatory 
Flow Dynamics 

Carotid Sinus Blood 
Pressure 

Recode 

Hemodynamical System 
(Quantitative Model) 

TH 

B2 

Q4 

D2 

Q6 

PAC Pressure of the 
arteries in the 
brain. 
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The Cardiovascular System II 
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Recode and Regenerate 
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The FIR Connector 
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Forecast 
… a bit ugly … 
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Simulation Results II 
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Discussion I 

• The top graph shows the peripheric resistance controller, 
Q4, during a Valsalva maneuver. 

• The true data are superposed with the simulated data.  The 
simulation results are generally very good.  However, in 
the center part of the graph, the errors are a little larger. 

• Below are two graphs showing the estimate of the 
probability of correctness of the prediction made.  It can 
be seen that FIR is aware that the simulation results in the 
center area are less likely to be of high quality. 
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Discussion II 

• This can be exploited.  Multiple predictions can be made in 
parallel together with estimates of the likelihood of 
correctness of these predictions. 

• The predictions can then be kept that are accompanied by 
the highest confidence value. 

• This is shown on the next graph.  Two different models 
(sub-optimal masks) are compared against each other.  The 
second mask performs better, and also the confidence 
values associated with these predictions are higher. 
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Simulation Results III 
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Simulation Results IV 
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Simulation Results V 
Valsalvæ maneuver 

inhale exhale 

hold breath 

• As the patient inhales, the lungs expand, leaving less 
“empty space” in the thorax, thereby increasing the 
thoracic pressure on blood vessels and organs. 
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Simulation Results VI 
Carotid sinus blood 
pressure (PAC) as 
simulated using the 
mixed quantitative and 
qualitative FIR model. 

Regenerated venous tone 
control signal (D2) as 
determined by one of the 
five qualitative FIR 
(SISO) controllers. 
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Conclusions I 
• Quantitative modeling, i.e. modeling from first principles, 

is the appropriate tool for applications that are well 
understood, and where the meta-laws are well established. 

• Physical modeling is most desirable, because it offers 
most insight and is most widely extensible beyond the 
range of previously made experiments. 

• Qualitative modeling is suitable in areas that are poorly 
understood, where essentially all the available knowledge 
is in the observations made and is still in its raw form, i.e., 
no meta-laws have been extracted yet from previous 
observations. 
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Conclusions II 
• Fuzzy modeling is a highly attractive inductive modeling 

approach, because it enables the modeler to obtain a 
measure of confidence in the predictions made. 

• Fuzzy inductive reasoning is one among several 
approaches to fuzzy modeling.  It has been applied widely 
and successfully to a fairly wide range of applications both 
in engineering and in the soft sciences. 

• Qualitative models cannot provide insight into the 
functioning of a system.  They can only be used to predict 
their future behavior, as long as the behavioral patterns 
stay within their observed norms. 
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Industrial Applications 
• Cardiovascular System Modeling for Classification of 

Anomalies. 
 

• Anaesthesiology Model for Control of Depth of 
Anaesthesia During Surgery. 
 

• Shrimp Growth Model for El Remolino Shrimp Farm in 
Northern Mexico. 
 

• Prediction of Water Demand in Barcelona and Rotterdam. 
 

• Design of Fuzzy Controller for Tanker Ship Steering. 
 

• Fault Diagnosis of Nuclear Power Plants. 
 

• Prediction of Technology Changes in Telecommunication 
Industry. 
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