he Teshin ische Hochschwie Zünich Institute of Technology Zunich	Mathematical Modeling of Physical Systems
In	ductive Modeling
for identifying	ve shall study yet more general techniques complex non-linear models from nput/output behavior.
-	es make an attempt at mimicking human bicarious learning, i.e., of learning from
algorithms ough	es should be perfectly <i>general</i> , i.e., the t to be capable of capturing an arbitrary onship for the purpose of reproducing it
The techniques	will also be totally <i>unintelligent</i> , i.e., their

• The techniques will also be totally *unintelligent*, i.e., their capabilities of generalizing patterns from observations are almost non-existent.

December 20, 2012

© Prof. Dr. François E. Cellier Start Presentation

 $\langle \downarrow \downarrow \rangle$

1

(Quantitative vs. Qualitative Models I
	<i>Training a model</i> (be it parametric or non-parametric means <i>solving an optimization problem</i> .
	In the <i>parametric</i> case, we have to solve a <i>parameter</i> <i>identification</i> problem.
4	In the <i>non-parametric</i> case, we need to <i>classify the training data</i> , and store them in an optimal fashion in the data base.
•	Training such a model can be excruciatingly slow.
	Hence it may make sense to devise techniques that wil help to speed up the training process.

Start Presentation

© Prof. Dr. François E. Cellier

 \Rightarrow { normal, 0.78, right }

Start Presentation

 $\langle \downarrow \downarrow \rangle$

 \Rightarrow { normal, 0.78, left }

December 20, 2012

	Qualitative Modeling in FIR III
•	The <i>qualitative model</i> is the <i>optimal mask</i> , i.e., the set of inputs that best predict a given output.
•	Usually, the <i>optimal mask</i> is <i>dynamic</i> , i.e., the current output depends both on current and past values of inputs and outputs.
•	The optimal mask can then be applied to the training data to obtain a set of <i>fuzzy rules</i> that can be alphanumerically sorted.
	The <i>fuzzy rule base</i> is our <i>training data base</i> .

The hemodynamic system is essentially a hydrodynamic system. The heart and blood vessels can be described by pumps and valves and pipes. Thus bond graphs are suitable for its description. • The central nervous control is still not totally understood. Qualitative modeling on the basis of observations may be the tool of choice.

	References II
•	Nebot, A., F.E. Cellier, and M. Vallverdú (1998),
	"Mixed Quantitative/Qualitative Modeling and
	Simulation of the Cardiovascular System," Computer
	Methods and Programs in Biomedicine, 55(2), pp.127-
	155.
•	Cellier, F.E. and V. Sanz (2009), "Mixed Quantitative
	and Qualitative Simulation in Modelica," Proc. 7th Intl.
	Modelica Conference, Como, Italy, pp. 86-95.
•	Cellier, F.E. (2009), <i>The Dymola Cardiovascular System</i>
	<i>Model</i> , Version 2.1.

