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Mathematical Modeling of Physical Systems

The Loop-breaking Algorithm by Tarjan

• In this lecture a procedure shall be introduced that• In this lecture, a procedure shall be introduced that
is able to break all algebraic loops systematically
and algorithmically.

• The Tarjan algorithm consists of a graphical
technique to simultaneously sort systems of
equations both horizontally and vertically. The
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equations both horizontally and vertically. The
algorithm can furthermore be used to detect
algebraically coupled systems of equations.
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The Structure Incidence Matrix I
• The structure incidence matrix contains one row for eachThe structure incidence matrix contains one row for each

equation of the DAE system, as well as one column for
every unknown of the equation system.

• Since a complete equation system contains always exactly
as many equations as unknowns, the structure incidence
matrix is quadratic.

• The element <i j> of the structure incidence matrix
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• The element <i,j> of the structure incidence matrix
concerns the equation #i and the unknown #j. The element
assumes a value of 1, if the indicated variable is contained
in the considered equation, otherwise the corresponding
matrix element assumes a value of 0.
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The Structure Incidence Matrix: 
An Example

1:   U0 = f(t)
2:   i0 = iL + iR1
3:   uL = U0
4: diL/dt = uL / L1
5:   v1 = U0
6:   uR1 = v1 – v2
7:   iR1 = uR1 / R1
8: v = u

diL
dt

duC
dt
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8:   v2 = uC
9:   iC = iR1 – iR2
10: duC/dt = iC / C1
11: uR2 = uC
12: iR2 = uR2 / R2
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The Structure Digraph

• The structure digraph contains the same• The structure digraph contains the same
information as the structure incidence matrix. The
information is only represented differently.

• The structure digraph enumerates the equations to
the left and the unknowns to the right. A
connecting line between an equation and an
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connecting line between an equation and an
unknown indicates that the unknown appears in
the equation.
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The Structure Digraph: An Example

1: U = f(t) 01
Equations

U0

Unknowns

1:   U0 = f(t)
2:   i0 = iL + iR1
3:   uL = U0
4: diL/dt = uL / L1
5:   v1 = U0
6:   uR1 = v1 – v2
7:   iR1 = uR1 / R1
8:   v2 = uC


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v
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9:   iC = iR1 – iR2
10: duC/dt = iC / C1
11: uR2 = uC
12: iR2 = uR2 / R2

08
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v2

iC

duC/dt
uR2

iR2
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The Algorithm by Tarjan
• The algorithm by Tarjan is based on the structure digraph.

It i t i d b hi h th di h i b i• It consists in a procedure by which the digraph is being
colored.

 equations with only one black line attached to them, that line is
colored in red, and all black lines emanating from the indicated
variable are colored in blue. Equations associated with lines that are
freshly colored in red are renumbered in increasing order starting with
1.

Start presentation© Prof. Dr. François E. CellierSeptember 27, 2012

 unknowns with only one black line attached to them, that line is
colored in red, and all black lines emanating from the indicated
equation are colored in blue. Equations associated with lines that are
freshly colored in red are renumbered in decreasing order starting
with n, the number of equations.
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The Tarjan Algorithm: An Example I

1: U = f(t) 01
Equations

U0

Unknowns
01

U1:   U0 = f(t)
2:   i0 = iL + iR1
3:   uL = U0
4: diL/dt = uL / L1
5:   v1 = U0
6:   uR1 = v1 – v2
7:   iR1 = uR1 / R1
8:   v2 = uC


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9:   iC = iR1 – iR2
10: duC/dt = iC / C1
11: uR2 = uC
12: iR2 = uR2 / R2
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The Tarjan Algorithm: An Example II

1: U = f(t) 01
Equations

U0

Unknowns
01

1:   U0 = f(t)
2:  i0 = iL + iR1
3:   uL = U0
4: diL/dt = uL / L1
5:   v1 = U0
6:   uR1 = v1 – v2
7:   iR1 = uR1 / R1
8:   v2 = uC


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9:   iC = iR1 – iR2
10: duC/dt = iC / C1
11: uR2 = uC
12: iR2 = uR2 / R2
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The Tarjan Algorithm: An Example III

1: U = f(t) 01
Equations

U0

Unknowns
01

1:   U0 = f(t)
2:  i0 = iL + iR1
3:   uL = U0
4: diL/dt = uL / L1
5:   v1 = U0
6:   uR1 = v1 – v2
7:   iR1 = uR1 / R1
8:   v2 = uC
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9:   iC = iR1 – iR2
10: duC/dt = iC / C1
11: uR2 = uC
12: iR2 = uR2 / R2
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The Tarjan Algorithm: An Example IV
01
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U0

Unknowns

01
1 U = f(t)

02
03
04
05
06
07

i0

uL

diL/dt
v1

uR1

iR1

v02

11

10

04

05

07
08


1: U0 = f(t)
2: v2 = uC
3: uR2 = uC
4: uL = U0
5: v1 = U0
6: iR2 = uR2 / R2
7: uR1 = v1 – v2
8: iR1 = uR1 / R1
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9: iC = iR1 – iR2
10: i0 = iL + iR1
11: diL/dt = uL / L1
12: duC/dt = iC / C1
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The Structure Incidence Matrix II

1 U = f(t)1: U0 = f(t)
2: v2 = uC
3: uR2 = uC
4: uL = U0
5: v1 = U0
6: iR2 = uR2 / R2
7: uR1 = v1 – v2
8: iR1 = uR1 / R1
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 The structure incidence matrix of the
completely sorted equation system is a
matrix in lower triangular (LT) form.

9: iC = iR1 – iR2
10: i0 = iL + iR1
11: diL/dt = uL / L1
12: duC/dt = iC / C1

12 0 0 0 0 0 0 0 0 1 0 0 1
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Algebraic Loops: An Example I

1 U f(t)
Equations

U
Unknowns

1:   U0 = f(t)
2:   u1 = R1· i1

3:   u2 = R2· i2

4:   u3 = R3· i3

5:   uL = L· diL/dt
6:   i0 = i1 + iL

7:   i1 = i2 + i3


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8:   U0 = u1 + u3

9:   u3 = u2

10: uL = u1 + u2
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Algebraic Loops: An Example II

1 U f(t)
Equations

U
Unknowns

1:   U0 = f(t)
2:   u1 = R1· i1

3:   u2 = R2· i2

4:   u3 = R3· i3

5:   uL = L· diL/dt
6:   i0 = i1 + iL

7:   i1 = i2 + i3


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8:   U0 = u1 + u3

9:   u3 = u2

10: uL = u1 + u2
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Algebraic Loops: An Example III

1 U f(t)
01

Equations
U0

Unknowns

01
1:   U0 = f(t)
2:   u1 = R1· i1

3:   u2 = R2· i2

4:   u3 = R3· i3

5:   uL = L· diL/dt
6:   i0 = i1 + iL

7:   i1 = i2 + i3


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8:   U0 = u1 + u3

9:   u3 = u2

10: uL = u1 + u2

08
09
10

i2

u3

i3

 The algorithm stalls, because there are no
more single black lines attached to either
equations or variables.
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The Tearing of Algebraic Loops I
• The following heuristics may be used to determine suitable

tearing variables:tearing variables:
In the digraph, determine the equations with the largest number of
black lines attached to them.

For every one of these equations, follow its black lines and
determine those variables with the largest number of black lines
attached to them.

For every one of these variables determine how many additional
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For every one of these variables, determine how many additional
equations can be made causal if that variable is assumed to be
known.

Choose one of those variables as the next tearing variable that
allows the largest number of additional equations to be made causal.
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The Tearing of Algebraic Loops II

• In the example at hand, equation #7 has 3 black lines
attached. All other not yet renumbered equations only
have two black lines attached.

• Equation #7 points at variables i1, i2 , and i3 .
• Each of these variables has one additional black line

attached to it.
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• Variable i1 permits to make causal all additional equations.
• Consequently, i1 shall be used as tearing variable.
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Algebraic Loops: An Example IV
Equations

U
Unknowns

1 U f(t)


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1:   U0 = f(t)
2:   u1 = R1· i1

3:   u2 = R2· i2

4:   u3 = R3· i3

5:   uL = L· diL/dt
6:   i0 = i1 + iL

7:   i1 = i2 + i3
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8:   U0 = u1 + u3

9:   u3 = u2

10: uL = u1 + u2

Choice
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Algebraic Loops: An Example V
Equations
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4:   u3 = R3· i3

5:   uL = L· diL/dt
6:   i0 = i1 + iL

7:   i1 = i2 + i3
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8:   U0 = u1 + u3

9:   u3 = u2

10: uL = u1 + u2

Choice
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Algebraic Loops: An Example VI

1 U f(t)
Equations

U
Unknowns



1:   U0 = f(t)
2:   u1 = R1· i1

3:   u2 = R2· i2

4:   u3 = R3· i3

5:   uL = L· diL/dt
6:   i0 = i1 + iL

7:   i1 = i2 + i3
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8:   U0 = u1 + u3

9:   u3 = u2

10: uL = u1 + u2
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Algebraic Loops: An Example VII

1 U f(t)
Equations

U
Unknowns

1: U0 = f(t)
2: i1 = i2 + i3

3: u1 = R1· i1

4: u3 = U0 - u1

5: u2 = u3

6: i2 = u2 / R2

7: i3 = u3 / R3


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7: i3  u3 / R3

8: uL = u1 + u2

9: i0 = i1 + iL

10: diL/dt = uL / L

Choice
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The Structure Incidence Matrix III

1 U f(t)


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U0 i0i2u3 i3u1i1 i3 uL
1: U0 = f(t)
2: i1 = i2 + i3

3: u1 = R1· i1

4: u3 = U0 - u1

5: u2 = u3

6: i2 = u2 / R2

7: i3 = u3 / R3

u2
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 The structure incidence matrix assumes
the form of a block lower triangular
(BLT) matrix.

7: i3  u3 / R3

8: uL = u1 + u2

9: i0 = i1 + iL

10: diL/dt = uL / L

Choice
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The Solving of Algebraic Loops I
• The Tarjan algorithm thus identifies and isolates algebraic

loops.loops.
• It transforms the structure incidence matrix to BLT form,

whereby the diagonal blocks are made as small as possible.
• The selection of the tearing variables is not done in a truly

optimal fashion. This is not meaningful, because the
optimal selection of tearing variables has been shown to be
an np-complete problem. Instead, a set of heuristics is
b i d hi h ll i h ll b
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being used, which usually comes up with a small number
of tearing variables, although the number may not be truly
minimal.

• The Tarjan algorithm does not concern itself with how the
resulting algebraic loops are being solved.
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The Solving of Algebraic Loops II
• The algebraic loops can be solved either analytically or

numerically.numerically.
• If the loop equations are non-linear, a Newton iteration on

the tearing variables may be optimal.
• If the loop equations are linear and if the set is fairly large,

Newton iteration may still be the method of choice.
• If the loop equations are linear and if the set is of modest

size, the equations can either be solved by matrix
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q y
techniques or by means of explicit formulae
manipulation.

• The Modelica modeling environment uses a set of
appropriate heuristics to select the best technique
automatically in each case.
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