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Efficient Solution of Equation Systems

e This lecture deals with the efficient mixed
symbolic/numeric solution of algebraically coupled
equation systems.

e Equation systems that describe physical phenomena are
almost invariably (exception: very small equation systems
of dimension 2x2 or 3x3) sparsely populated.

« This fact can be exploited.

« Two symbolic solution techniques: the tearing of equation
systems and the relaxation of equation systems, shall be
presented. The aim of both techniques is to “squeeze the
zeros out of the structure incidence matrix.”
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e The tearing method had been demonstrated various
times before. The method Is explained here once
more In a somewhat more formal fashion, in order
to compare it to the alternate approach of the
relaxation method.

* As mentioned earlier, the systematic determination
of the minimal number of tearing variables iIs a
problem of exponential complexity. Therefore, a
set of heuristics have been designed that are

capable of determining good sub-optimal solutions.
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Integrator to be
eliminated ——

1: u="(t)

2-U-Uu;—u,=0

3 u—-L,-diy/dt=0

47 u,—L,-di,/dt=0

5:1-1;=0

6: ij—i,=0 < Constraint equation
1o u=1(t) 1o u=1(t)
2-U-u;-u,=0 22 uU-u;-u,=0
35 u—-L,-diy/dt=0 3:u—-L;-di;=0
A- Up=L,-di/dt=0 | = |4 u,—L, di,/dt=0
5. 1-1;=0 5.1-1;=0
6: 1,—-1,=0 6: 1,—-1,=0
77 |diy /dt|- di, /dt =0 7 dig-di,/dt=0
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1o u=1(t) 1o u=1(t)
2-U-u;-u,=0 2. Uu-u;-u,=0 ““TH
3o u-Ly-dip =0 S:U=L;-diy=0 | Algebraically coupled
45 U= Ly dip/dt=0 | = |4 u;—L,-di,/dt=0 |+ equation system in four
5. 0-i;=0 5:i—-i;=0 unknowns
7o dip-di,/dt=0 7o dig-di,/dt=0 <
Choice
=I
1: u=fuf-u,=0 I:u-u-u,=0 Lru=u-u,
2 ul—tl.g?lzo_ — 2 U1—|—1'd?1=0_ — ZfdiliullL.1
S U,—L,-di,/dt=0 3: u,—L,-di,/dt=0 3 u,=L,-di,/dt
4 diy —di,/dt =0 4: di, —di,/dt =0 4:diy/dt =diy
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lruy=u-u,
2:dip=u, /L,

3 u,=L,-di,/dt
4: di, /dt = di,

u,=u-u,

=u—-(L,/Ly) y

J

[1+(L,/Ly)] u=u

J

Ll
L, +L,

u, = - u

—

~N o o~ w NP

© u=f()
Ll

U, = U
L+ L,

u,—L, - di,/dt=0
i—i,=0

i, —i,=0

di, - di,/dt =0
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10 u=1(t) 1o u=1(t) 1 u=1(t)
- — Ll = — Ll - — Ll
2: ul_L1+L2'u 2: ul_L1+L2'u 2: ul_L1+L2'u‘
3 u;—-Ly-dip=0 3:u;—-L;-diy=0 3:dip=u, /L
. 1 1 -1 _ : | 1 1 -l _ : . -1 i -1
7 dig -di,/dt=0 7 dig -di,/dt=0 7=
—> Question: How complex can the symbolic expressions for

the tearing variables become?
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* In the process of tearing an equation system,
algebraic expressions for the tearing variables are
being determined.  This corresponds to the
symbolic application of Cramer’s Rule.

Al=

Ax=b = x=Alb

A
= W ) (AT)ij = (-1)"D |A¢j,i|
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1 0 0 1
1 -L, 0 O
0 1 -1 0
0 0 -L, 1

U
di,

di, /dt

U,

o O O C

1 -1 0
U1: U = u
1 0 0 1 L.+ L,
0O 1 -1 0
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e Cramer’s Rule is of polynomial complexity. However, the
computational load grows with the fourth power of the size
of the equation system.

« For this reason, the symbolic determination of an
expression for the tearing variables is only meaningful for
relatively small systems.

 In the case of bigger equation systems, the tearing method
Is still attractive, but the tearing variables must then be
numerically determined.
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« The relaxation method Is a symbolic version of a Gauss
elimination without pivoting.

« The method is only applicable in the case of linear equation
systems.
« All diagonal elements of the system matrix must be 0.

 The number of non-vanishing matrix elements above the
diagonal should be minimized.

o Unfortunately, the problem of minimizing the number of
non-vanishing elements above the diagonal Is again a
problem of exponential complexity.

« Therefore, a set of heuristics must be found that allow to
keep the number of non-vanishing matrix elements above
the diagonal small, though not necessarily minimal.
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u-u;—-u,=0
u—-L,-di;=0
u,-L,-di,/dt=0
di; —di,/dt=0

31*"_12 :dlij . The non-vanishing matrix

= [ YT elements  above  the

di,/dt-di, =0 diagonal correspond
u,-L,-di,/dt=0 '

2”24l conceptually to the tearing

variables of the tearing

U / method.

— o — -— — -—
1 0 0 1 U, u
1 -L, 0 of [ di, | o
0 1 -1 of [diydt|  |o

0 0 -L, 1| | uw | [0
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Gauss elimination technigue:

(k+1) _  4(k) (k)
Arf _Aéf — Ay A

()~ (k)
kk Afg'

1 (k+1) _ 7.(k) (k) ()11 (k)
bz‘ _b.f "—'A;‘k Ak.ﬁ: bk

1 0 0 1] [ u | U - — : —
1 -L, 0 O di, | |0 — -Ly 0 ¢ | di C,
0 1 -1 of |dip,/idt] |0 1 -1 0f-fdip/dt| = [0
0 0 -L, 1| | u, 0 0 -k, 1) W | o
C1:'1
C2=-U
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Lo o[ ] [o]| - [-1 c3]_ dizldt] _ [c4]
1 -1 0f-|dipy/dt| = |0 e 0
0 -L, 1 u, 0

- " - " - " C3:01/L1

c,=C,/L,

-1 c| [di/dt| | e [c5].[u2] :[c6]

L, 1 u, | |0
cs=1-L, ¢,
cg=-L,-C,
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Gauss elimination technigue :

H
_ A (k) _ (k)
Xy _Akk (bk E A!,g. )Cj)

Jj=k+1

o] [u] =[]] = [h=c/c

1 c3].[di2/dt] _ [u] => |di,/dt=(c,—cyu,)/ (-1)

= L2 1 UZ O
|- L, O Cl_ | di, | | Cz_
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1 0 0 1]
1 -L, 0 O

0 1 -1 of
0 0 -L, 1

U
di,

di, /dt

U,

o O O C

—> By now, all required equations have been found.
They only need to be assembled.
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u-u;—-u,=0
u—L,-di;=0
u,-L,-di,/dt=0
di; —di,/dt=0

—

c,=-1

c,=-Uu

c;=¢C, /L,

=c,/ L

C5:1-L2'C3 p—
cs=-L,-C,

U, =Cg / Cs
di,/dt=(c,—c5u,) /(-1)
di; = (c; - Cpuy) [ (-Ly)
u,=u-u,

u = f(t)
c,=-1
c,=-u
C;=¢C, /L,
c,=¢C,/L,
cc=1-L,-c,4
Cc=-L, ¢,
U,=Cq/Cc

di, /dt= (C, — C5U,) / (-1)

di;=(C;—Cyup) / (-Ly)
u,=u-u,

i, =i,

=i
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 The relaxation method can be applied symbolically to
systems of slightly larger size than the tearing method,
because the computational load grows more slowly.

 For some classes of applications, the relaxation method
generates very elegant solutions.

 However, the relaxation method can only be applied to
linear systems, and iIn connection with the numerical
Newton Iteration, the tearing algorithm 1Is usually
preferred.
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