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Mathematical Modeling of Physical Systems

Efficient Solution of Equation Systems
• This lecture deals with the efficient mixeds ectu e dea s w t t e e c e t ed

symbolic/numeric solution of algebraically coupled
equation systems.

• Equation systems that describe physical phenomena are
almost invariably (exception: very small equation systems
of dimension 22 or 33) sparsely populated.

• This fact can be exploited
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This fact can be exploited.
• Two symbolic solution techniques: the tearing of equation

systems and the relaxation of equation systems, shall be
presented. The aim of both techniques is to “squeeze the
zeros out of the structure incidence matrix.”
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• Tearing algorithm
• Relaxation algorithm
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The  Tearing of Equation Systems I
• The tearing method had been demonstrated variousThe tearing method had been demonstrated various

times before. The method is explained here once
more in a somewhat more formal fashion, in order
to compare it to the alternate approach of the
relaxation method.

• As mentioned earlier, the systematic determination
of the minimal number of tearing variables is a
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of the minimal number of tearing variables is a
problem of exponential complexity. Therefore, a
set of heuristics have been designed that are
capable of determining good sub-optimal solutions.
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Tearing of Equations: An Example I
1: u = f(t)
2 02:  u – u1 – u2 = 0
3:  u1 – L1 · di1 /dt = 0
4:  u2 – L2 · di2 /dt = 0
5:  i – i1 = 0
6:  i1 – i2 = 0 Constraint equation

1: u = f(t)
2:  u – u1 – u2 = 0

1: u = f(t)
2:  u – u1 – u2 = 0
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3:  u1 – L1 · di1 /dt = 0
4:  u2 – L2 · di2 /dt = 0
5:  i – i1 = 0
6:  i1 – i2 = 0
7:  di1 /dt - di2 /dt = 0

1 2

3:  u1 – L1 · di1 = 0
4:  u2 – L2 · di2 /dt = 0
5:  i – i1 = 0
6:  i1 – i2 = 0
7:  di1 - di2 /dt = 0



Integrator to be 
eliminated di1 /dt
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Tearing of Equations: An Example II
1: u = f(t)
2 0

1: u = f(t)
2 02:  u – u1 – u2 = 0

3:  u1 – L1 · di1 = 0
4:  u2 – L2 · di2 /dt = 0
5:  i – i1 = 0
6:  i1 – i2 = 0
7:  di1 - di2 /dt = 0



2:  u – u1 – u2 = 0
3:  u1 – L1 · di1 = 0
4:  u2 – L2 · di2 /dt = 0
5: i – i1 = 0
6:  i1 – i2 = 0
7:  di1 - di2 /dt = 0

Algebraically coupled
equation system in four
unknowns

Choice
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1:  u – u1 – u2 = 0
2:  u1 – L1 · di1 = 0
3:  u2 – L2 · di2 /dt = 0
4:  di1 – di2 /dt = 0

Choice

u1


1:  u – u1 – u2 = 0
2:  u1 – L1 · di1 = 0
3:  u2 – L2 · di2 /dt = 0
4:  di1 – di2 /dt = 0


1: u1 = u – u2

2: di1 = u1 / L1

3:  u2 = L2 · di2 /dt
4: di2 /dt = di1
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Tearing of Equations: An Example III
1: u1 = u – u2 u = u u


1 2

2: di1 = u1 / L1

3:  u2 = L2 · di2 /dt
4: di2 /dt = di1

u1 = u – u2
= u – L2 · di2 /dt
= u – L2 · di1 
= u – (L2 / L1 ) · u1


[ 1 + (L2 / L1 ) ] · u1 = u

1: u = f(t)

2:  u1 =
L1

L1 + L2
· u
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[ 1 + (L2 / L1 ) ] u1 u



u1 =
L1

L1 + L2
· u 

3:  u1 – L1 · di1 = 0
4:  u2 – L2 · di2 /dt = 0
5: i – i1 = 0
6:  i1 – i2 = 0
7:  di1 - di2 /dt = 0
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Tearing of Equations: An Example IV

1: u = f(t)

3:  u1 – L1 · di1 = 0
4:  u2 – L2 · di2 /dt = 0
5: i – i1 = 0
6:  i1 – i2 = 0
7: di di /dt = 0

2:  u1 =
L1

L1 + L2
· u



1: u = f(t)

3:  u1 – L1 · di1 = 0
4:  u2 – L2 · di2 /dt = 0
5: i – i1 = 0
6:  i1 – i2 = 0
7: di di /dt = 0

2:  u1 =
L1

L1 + L2
· u



1: u = f(t)

3: di1 = u1 / L1

4: di2 /dt = di1

5: u2 = L2 · di2 /dt
6: i1 = i2

7: i = i

2: u1 =
L1

L1 + L2
· u
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7:  di1 - di2 /dt = 0 7: di1 - di2 /dt = 0

Question: How complex can the symbolic expressions for 
the tearing variables become?

7:  i = i1
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The  Tearing of Equation Systems II
• In the process of tearing an equation systemIn the process of tearing an equation system,

algebraic expressions for the tearing variables are
being determined. This corresponds to the
symbolic application of Cramer’s Rule.

A·x = b  x = A-1·b
A†
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A-1 = A†

|A|
(A† )ij = (-1)(i+j) · |A j,i|;
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Tearing of Equations: An Example V
1 0 0 1 u u1
1
0
0

0
- L1

1
0

0
0
-1

- L2

1
0
0
1

.

u1

u2

=

u
0
0
0

di1 

di2 /dt

u1 =

0
-1

- L2

0
0
1

- L1

1
0

· u =
L1

L + L · u
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 1 1
1
0
0

0
- L1

1
0

0
0
-1

- L2

1
0
0
1

 u L1 + L2
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The  Tearing of Equation Systems III

• Cramer’s Rule is of polynomial complexity However theCramer s Rule is of polynomial complexity. However, the
computational load grows with the fourth power of the size
of the equation system.

• For this reason, the symbolic determination of an
expression for the tearing variables is only meaningful for
relatively small systems.

• In the case of bigger equation systems the tearing method
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• In the case of bigger equation systems, the tearing method
is still attractive, but the tearing variables must then be
numerically determined.
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The  Relaxation of Equation Systems I
• The relaxation method is a symbolic version of a Gauss

elimination without pivoting.p g
• The method is only applicable in the case of linear equation

systems.
• All diagonal elements of the system matrix must be  0.
• The number of non-vanishing matrix elements above the

diagonal should be minimized.
• Unfortunately, the problem of minimizing the number of
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non-vanishing elements above the diagonal is again a
problem of exponential complexity.

• Therefore, a set of heuristics must be found that allow to
keep the number of non-vanishing matrix elements above
the diagonal small, though not necessarily minimal.
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Relaxing Equations: An Example I
1:  u – u1 – u2 = 0 u1 + u2 = u Th i hi t i2:  u1 – L1 · di1 = 0
3:  u2 – L2 · di2 /dt = 0
4:  di1 – di2 /dt = 0


1 2 

u1 - L1 · di1 = 0
di2 /dt - di1 = 0
u2 - L2 · di2 /dt = 0



1 0 0 1

The non-vanishing matrix
elements above the
diagonal correspond
conceptually to the tearing
variables of the tearing
method.
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1
1
0
0

0
- L1

1
0

0
0
-1

- L2

1
0
0
1

.

u1

u2

=

u
0
0
0

di1 

di2 /dt
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Relaxing Equations: An Example II
Gauss elimination technique:

1
1
0

0
- L1

1

0
0
-1

1
0
0

.

u1

=

u
0
0

di1

di2 /dt 
- L1

1
0

0
-1
L

c1

0
1

.
di1

di2 /dt =
c2

0
0

Start Presentation© Prof. Dr. François E. CellierOctober 4, 2012

0 0 - L2 1 u2 0 0 - L2 1 0u2

c1 = -1
c2 = -u
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Relaxing Equations: An Example III

1 c di /dt c- L1

1
0

0
-1

- L2

c1

0
1

.
di1

di2 /dt =
c2

0
0u2


-1

- L2

c3

1
. di2 /dt 

u2
=

c4

0

c3 = c1 / L1
c4 = c2 / L1
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-1
- L2

c3

1
. di2 /dt 

u2
=

c4

0
 c5 . u2 = c6

c5 = 1 - L2 · c3
c6 = - L2 · c4
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Relaxing Equations: An Example IV
Gauss elimination technique :

c5 . u2 = c6  u2 = c6 / c5

-1
- L2

c3

1
. di2 /dt 

u2
=

c4

0
 di2 /dt = (c4 – c3·u2 ) / (-1)
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- L1

1
0

0
-1

- L2

c1

0
1

.
di1

di2 /dt =
c2

0
0u2

 di1 = (c2 – c1·u2 ) / (-L1)
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Relaxing Equations: An Example V
1 0 0 1 u u1
1
0
0

0
- L1

1
0

0
0
-1

- L2

1
0
0
1

.

u1

u2

=

u
0
0
0

di1

di2 /dt  u1 = u – u2

 By now, all required equations have been found.  
They only need to be assembled
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They only need to be assembled.
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Relaxing Equations: An Example VI
1:  u – u1 – u2 = 0 c1 = -1 u = f(t)
2:  u1 – L1 · di1 = 0
3:  u2 – L2 · di2 /dt = 0
4:  di1 – di2 /dt = 0


1

c2 = -u
c3 = c1 / L1
c4 = c2 / L1
c5 = 1 - L2 · c3
c6 = - L2 · c4
u2 = c6 / c5
di2 /dt = (c4 – c3·u2 ) / (-1)
di1 = (c2 – c1·u2 ) / (-L1)



u  f(t)
c1 = -1
c2 = -u
c3 = c1 / L1
c4 = c2 / L1
c5 = 1 - L2 · c3
c6 = - L2 · c4
u2 = c6 / c5
di2 /dt = (c4 – c3·u2 ) / (-1)
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di1  (c2 c1 u2 ) / ( L1)
u1 = u – u2

di2 /dt  (c4 c3 u2 ) / ( 1)
di1 = (c2 – c1·u2 ) / (-L1)
u1 = u – u2
i1 = i2
i = i1
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The  Relaxation of Equation Systems II
• The relaxation method can be applied symbolically toThe relaxation method can be applied symbolically to

systems of slightly larger size than the tearing method,
because the computational load grows more slowly.

• For some classes of applications, the relaxation method
generates very elegant solutions.

• However, the relaxation method can only be applied to
linear systems and in connection with the numerical
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linear systems, and in connection with the numerical
Newton iteration, the tearing algorithm is usually
preferred.
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