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VI11.7. Minimization of "egquation_error" for discrete-time_systems

- - am En W em e e G G G W W W EE A VE e e w Em e e A W = S em = - o= -

A model reduction method based on the minimization of equa-
tion error has been proposed by Eitelberg (1978) for con-
tinuous-time linear systems. In the following, the version

for discrete-time systems will be developed.

Given the n-th order linear-discrete-time system described
by
x(k+1)

Ax{(k) + Bu(k)

"

y (k) cx(k)

We assume that the m-th order reduced model is described by

x(k+1) = Ari(k) + Bru(k)

The states of interest X could be "picked-out" from the
original state vector by means of a (mxn) “"masking matrix" R
with the elements 1 and zero such that

.. =R
X e X

It's now requiredto represent the m-dimensional state vector
x,. by the m-th order reduced model, i.e. for X = X s We
may write

x (k1) T A x (k) + B u(k)
We write the equation error as

e(k+1) = Xr(k+]) - Arxr(k)-Bru(k)



For x(o) = 0, Xr(o) = 0, u(k) step function =

0, k <
the equation error becomes
e(k+1) = Rx(k+1) - ArRx(k) - Bon
= (RA-ArR)x(k) + (RB—Br)UO (8.22)
K Ko -1
But x{(k) = A"x(o0) + | A Bu(k-1)
i=]
and since, by assumption, x{(o) = 0, u(k) = U0 for k > 0,
then
Ko 5
x(k) = [ A" '8y (8.23)
. )
i=1
substituting from (8.23) into (8.22), we obtain
Ko
e(k+1) = (RA*ArR)iE]A B U0+(RB-Br)U0 (8.24)

In (8.24), U, is Jjust a scaling factor and will be droped

defining
K 5
E(k) = (RA-A R) | A B + (RB-B )
r i=1 r
k-1 j
= (RA-ArR)JEo A”B + RB-B_

Assuming A is stable, then the above matrix-series will

converge and we may write

E(k) = (RA-ArR)(I-Ak)(I—A)-]B + RB-B_ (8.25)



The stationary value of x is obtained from (8.23) by
letting k tends to infinity, i.e.

iy . v ad IS . . _
Xet = x(=) = .2 A BU0 (1-A) BU0 which exists for
j=0
all stable A.
We wish to have
Xp st - Rxgy » 1-@-
R(I-A ) 'B U = R(I-A) 'BU (8.26)
r ro o :

From (8.26) yields Br that matches the steady-state response
of the original states and those of the reduced model.
B _ Ay}

Br = (1 Ar)R(I A) 'B (8.27)
Substituting from (8.27) into (8.25), and after few algebraic
manipulations, we obtain

' -1, .k

E(k) = [R-(I-Ar)R(I-A) JATB (8.28)

Now, we wish to determine Ar that minimizes the "error
measure"

(-]

Y llE(k)Hz, which can be rewritten as
k=0

fal
1

trace (E(K)E (K)) (8.29)
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T
But, E(k)ET(k) = [R-(I—Ar)R(I-A)-]]AkBBTAk [R-(I-Ar)
_]T
R(I-A) ']
then |
q = trace PSPT (8.30)
where
P = [R-(I-Ar)R(I-A)"]
o T
s = | Ags'aK
k=0
Differentiating q after Ar and letting, %%— =0, .
we obtain the optimal matrix A; r
A* = 1-RsD'(0sD' ]! (8.31)
where
R(1-A)"

o
n

S is the solution of the discrete-Lyapunov equation

ASAT—S = - BBT (8.32)

The reduced model is obtained by first solving equation
(8.32) for S then substituting in (8.31) to obtain A.. Sub-
stitution in (8.27) yields the input matrix B



