International Federation of Automatic Control

PREPRINTS

PERGAMON PRESS

NUMERICAL PROPERTIES OF TRAJECTORY REPRESENTATIONS
OF POLYNOMIAL MATRICES

Frangois E. Cellier and SungDo Chi

Department of Electrical and Computer Engineering
The University of Arizona

Tucson, Arizona 85721

U.S.A. :

Abstract. In the early 1970s, several researchers reported results relating to the design of mul-
tivariable linear systems represented by polynomial matrices. In particular, the book by Wolovich
(1974) found widespread resonance. In the sequel, however, the success of these techniques was
rather limited since a manual application of the proposed algorithms is atrocious for all but the most
trivial systems, whereas appropriate CACSD tools that would make use of these techniques were
not available. The main reasons for this deficiency were twofold: (i) polynomial matrix operations
require symbolic processing, a computational technique that was siill in its infancy in the 1970s,
and (ii) the numerical properties of frequency domain operations were considered dubious. In this
paper, the numerical properties of frequency domain operations are analyzed. The two classical data
representations (coefficients and roots) are reviewed, and two new data representations, trajectories
and coeflicient spectra, are proposed.

Keywords. Canonical forms; computer-aided system design; control system design; data structures;

minimum-data representation; numerical methods; polynomial matrices.

THE CURSE OF DIMENSIONALITY

The design of controllers for high dimensional systems is
a numerically difficult problem. The problem will be illus-
trated by means of an example. An optimal controller for
a linear system with quadratic performance index is to be
designed. This problem leads naturally to the solution of a
Matrix-Riccati equation.

The following experiment was performed. In an arbi-
trary SISO system of the type:

x=A-x+b.u 1)

the elements of A and b were picked at rendom using ran-
dom numbers uniformly distributed between 0.0 and 1.0.

fi)bviously, this system is unstable. In the performance in-
ex:

PI=/ T.Qextroo® dt @

Q was chosen as a positive definite symmetric random ma-
tax of dimensions n x n and r as a random scalar. The
dimension of the system, n, was kept variable. The system
"as coded in CTRI-C (SCT, 1989).

Two different Riccati algorithms were chosen to com-
pute the feedback vector:

u=-kT.x (3

: hl:lc: de_‘el’mines the optimal control. On the one hand,
e ui;mhm provided as a system function in CTRL-C
a !Orit}m:nd on the other hand, the eigenvalue/eigenvector
oTRL. R described by MacFarlane (1963) was chosen. The

version of the latter algorithm is presented here:

// [k,p] =LQR2(a, b, ¢,r)
//

|/ Compute the solution to the
// algebraic Matriz—Riccati equation

/!
[n,m] =SIZE(b);
h=[av _(b/')‘b’; =4¢> "a’];
{v,{] =EIG(h);
k= 0;
fori=1:2xm, ...
if REAL(I(i,5)) < 0 then...
kE=Ek+1; ...
u(s, k) = v(y1); ...
end, ...
end
vl =v(l:n,1:n);
v2=vy(n+1l:2xn,1:n);
P = v2/ul;
k= (A\(¥)* s
k =REAL(k);
return

The resulting kT vectors were computed using these two
algorithms for various orders n. The infinity norm of the
difference between the two resulting k7 vectors was then
determined as a function of the system order, and an ex-
ponential regression metamodel for the error was also com-
puted. The CTRL-~C code used to pumerically compare
the two LQR algorithms is presented here:

//lerr,erl ra, b} =RTESTLQR(n)
/

/
]/ This function tests LQR2 versus LQR
// up to any order n

1

deff Igr2 ¢
TERM =’ 4100;
HARD ='tekf';
/!
// Loop over all orders
/!
ord = (1:n);
for ¢ = ord',...
a =RAND(s); ...
4 =RAND(i,1); ...
auz =RAND({); ...
g = auz' »auz; ...
r =RAND(1); ...
k1 =LQR(a,b,g,7); ...
k2 =LQR2(a,d,q,7); ...
err(i) =NORM(k1 — k2,'inf); ...
if err(i) =0, err(i) = eps; end; ...

end

erl = err/eps;

/l

/[Perform a regression analysis
//

rz = [ord , ONES(ord) };
ry =LOG(err);

coef = rz\ry;

ra = coef(1);

rd = coef(2);

erb =EXP(rb);

reg = erb « (EXP(ord) » sra);

/

/] Plot the results

1

erase

window(’221’)

plot(ord, [err, reg),"logy,grid’)
title(‘Comparison : LQR2 and LQR')
xlabel('SystemOrder')
ylabel(’Error’)

pause

redhard > rtestigr.tek f
replot

redhard —close

erase

/!

return

The results of this experiment are shown in Fig. 1 using
logarithmic format for the dependent axis.

Coxlnpnrilon: LQR2 and LQR
10 v T M

s. 10, 18,
Systemn Order

Figure 1. Numerical comparison of two LQR algorithms.

20.

The solid line represents the actual difference between the
two algorithms, whereas the dashed line represents the ex-
ponential metamodel. The code used to generate Fig. 1 is
listed in the paper since, in this way, the presented results
are fully reproducible and since the code is sufficiently short
to warrant its being listed.

CTRL-C (SCT, 1983) uses double—precision arith-
metics for all computations. Consequently, the smallest
number that can be additively distinguished from 1.0 on a
VAX is ¢ = 1.3878 - 10~17, For low orders n, the numerical

M

error between the two feedback vectors is of the same order
of magnitude. However, already for a 20t2-order system,
the error is roughly 0.1, and thus, basically represents nu-
merical noise. Approximately one decimal per order is lost
in this algorithm.

While the results shown in Fig. 1 certainly depend on
the algorithm that is used, they nevertheless reflect a gen-
eral truth. The same methodology was applied to a num-
ber of different control problems and in most cases, similar
patterns were found. A loss of one decimal per order seems
to be the “going rate.” This is why all respectable CACSD
programs are coded in double~precision arithmetics. In sin-
gle precision, numerical noise dominates the results in con-
troller designs for all systems of higher than approximately
sixth order. In double precision, operations can be safely
performed on systems up to approximately 14'2 order.

High-dimensional systems are numerically problem-
atic. Most control engineers apply model reduction tech-
niques to find a lower order model for any high—dimensional
system and apply the conmtroller design to the low—order
model instead of the original high-order system. It is essen-
tial that the control engineer know about these problems,
since in any event the design of high-dimensional systems
is & numerically difficult task.

The question is: Is it possible to find a data represen-
tation in which the curse of dimensionality does not exist?
This paper provides a partial answer to that question.

MINIMUM-DATA REPRESENTATIONS
AND REDUNDANCY

It is well known that a linear system can be represented
in many different ways in a state—space form. That is, the
state~space representation of a linear system contains re-
dundancy that can be exploited to improve the numeri-
cal bebavior of operations performed on the model. The
trick is to minimize the largest parameter sensitivity in the
model, which is equivalent to saying that the system behav-
ior should be made about equally sensitive to variations in
all model parameters.

Minimum-—data representations are representations that
have exactly as many parameters as the system has degrees
of freedom (Cellier and Rimvall, 1988). Since the transfer
function of a SISO system is unique, it is evident that an
n*B-order system has exactly 2 - n degrees of freedom and
therefore, any state—space representation that contains ex-
actly 2-n variable parameters is a minimum-data represen-
tation. Typical examples of minimum—data representations
are the controller—canonical form (a lower companion form)
in which only the last row of the systemn matrix (n param-
eters) and the output vector (n parameters) are variable,
and the Jordan—canonical form in which only the diago-
nal elements of the system matrix (n parameters) and the
output vector (n parameters) are variable.

Minimum-~data representations are appealing since they
minimize the number of parameters to be identified in the
model. Unfortunately, none of the minimum-data repre-
sentations is numerically attractive. The controller— (or
observer-) canonical forms are closely related to the trans-
fer function represented in a defactorized form. Given the
system:

o botba b Bt by A
G(‘)_ﬂo+ax"+ai",+'"+¢-—l"‘-t+.‘ (

its controller~canonical representation can immediately be
written down:

0 1 0 0 0
0 0 1 0 0
x=| o i x| [uw)
0 0 0 1 0
—ag —G1 —a3 ~Qn_1 1
v=(b b by bon) x (58)

The variable parameters of the controller- (and observer-)
canonical forms are the coefficients of the transfer function.
This unravels immediately the numerical problems associ-
ated with controller— (and observer-) canonical forms. If
the 20th—order polynomial:

Q(s)=ao+ar-s+ay-5* + ago-81° + 87 (6)
is to be evaluated for s = 10 (or any complex vector with
an absolute value of 10), the higher powers are obviously
dominant since 1030 is a very large number. Consequently,
the value of @ is very sensitive to variations in a,_);, while
it is not sensitive at all to variations in ap. On the other
hand, if the same polynomial is evaluated for s = 0.1 (or
any complex vector with an absolute value of 0.1), it can
be concluded that just the opposite is true since 0.1%° is
negligibly small. Consequently, the value of @ is now much
more sensitive to ap than to a,_3. It has thus become
evident that polynomial coefficients are extremely poorly
balanced with respect to their sensitivities and that is the
numerical crux of this data representation.

The parameters of the Jordan—canonical form are the
eigenvalues and residua of the system. This data represen-
tation is related to the factorized form of the transfer func-
tion, or more precisely, to the partial fraction expansion
of the transfer function. The data representation is well
balanced with respect to parameter sensitivities. More-
over, since the Jordan—canonical form decouples a high—
dimensional system into its individual modes, the curse
of dimensionality vanishes in this representation. Unfortu-
nately, it has been shown by Golub and Wilkinson (1976)
that the transformation into and out of this data repre-
sentation is extremely ill-conditioned. Thus, if a system
happens to be naturally specified in this form, that may be
the best thing that can occur, but if the system is initially
specified in any other form, it may not be advisable to con-
vert it to Jordan form and, in fact, this may not be feasible
at all without committing numerical suicide on the way.

Consequently, minimum-data representations may not
be as attractive a proposition as the initial glance does sug-
gest. Since polynomials (and transfer functions) were tra-
ditionally represented either in defactorized (coefficient) or
factorized (root) form, which are two minimum-—data rep-
resentations, numerical operations on such polynomials (or
polynomial matrices in the multivariable case) are some-
what dubious. However, it is important to realize at this
point that what makes the operations dubious is the cho-
ten data representation and not the fact that the model is
analyzed in the frequency domain. It is therefore a legit-
imate question to ask whether it is possible to find other

&_‘5_ representations in the frequency domain that are not
Jimmum-data representations and that defuse the time
t’;:nb inherent in all minimum~—data representations, i.e.,

curse of dimensionality. This is the subject matter of

this Paper.
TRAJECTORY REPRESENTATION
An pth
1 n™-order polynomial can be completely characterized

nn':ly n + 1 supporting values. For example, the polyno-

P(c)=3.(,+1).(.+2)=3-a’+9-:+6 (0

<

can be completely characterized by Table 1:

£ tati
s P(s)
-1.0 0.0
0.0 6.0
+1.0 18.0

Thus, the three data structures:

Pty = (60 9.0 3.0) (82)

Prw=(30 -10 -20) (8b)
_(-10 00 +10

Pn-j_.(0.0 6.0 18.0) (8<)

can all be used to characterize the polynomial P(s) if inter-
preted correctly. P,y stores the coefficients of P(s) in the
order of ascending powers of s, P,os¢ stores the gain value
of P(s) followed by its roots in an arbitrary sequence, and
Pyyoj stores an arbitrary number of supporting s values in
the first row and the corresponding P(s) values in the sec-
ond.

For illustration, the three representations are repeated
here for another polynomial:

Q(s)=2-(s+3)=2-5+6 9
which can be represented as:
Qeoey = (6.0 2.0) (10a)
Qrooe = (2.0 —3.0) (1006)
-1.0 0.0 1.0
Qures = (40 6.0 s.o) (10¢)

It can be noticed that Qiya; is no longer a minimum-data
representation, since two points would have been enough to
characterize this first—order polynomial. In the coefficient
representation, addition of P(s) and Q(s):

A(s) = P(s) + Q(s) (11)

is easily accomplished. Qcoes is simply expanded from the
right with a zero and coeflicients of the same power are
added:

Aoy = (120 110 3.0) (12)
The multiplication of P(s) with Q(s):
M(s) = P(s)- Q(2) (13)

is a little more tricky. The coefficient vectors must be con-
volved:

M.oey = CONV(Poogs,Qeoes) = (36.0 66.0 36.0 6.0) (14)

In the second data representation, addition is an impossibly
difficult task. In order to add two polynomials represented
by their roots, both polynomials must first be defactorized,
then they must be added using the previously advocated
algorithm, and finally they must be refactorized ...and the
numerical disaster is already programmed.

Arooe = (3.0 —0.4583 +0.19981 —0.4583 —0.1998i) (15)

However, multiplication is trivial. The gain factors are sim-
ply multiplied and the roots are concatenated to each other:

Mo =60 -1.0 -20 -3.0) (16)

In the third data representation, both operations are easy to.

perform if the two polynomials are sampled over the same
domain (as this is the case in the preceding example). To
add two polynomials P(s) and Q(s), the individual values
of P(s) and Q(s) at the sampling points are simply added:

-1, X .
Am,-=(0 0.0 +1o)

4.0 12.0 26.0
To multiply two polynomials P(s) and Q(s), the individual
values of P(s) and Q(s) at the sampling points are simply
multiplied:

an

-1.0 0.0 +1.0

M‘"":< 0.0 36.0 144.0)

(18)
The trajectory representation has four striking algebraic
properties: i

(1) 1t is not a minimum-data representation. Already in
the preceding example, Q(s) was represented by more
data points than necessary. As many points can be
added as are deemed suitable and this redundancy may
be exploited to improve the numerical behavior.

The primitive operations addition and multiplication
can both be performed within the data representation
and are extremely simple. Since most operations useful
for linear algebra can be reduced to series of additions
and multiplications, this is an important asset.

()

(3) Addition and multiplication can easily be implemented
on a parallel processor using an SIMD architecture.
This makes the redundancy less painful from a com-

putational perspective.
(4) The curse of dimensionality has vanished.

The last property deserves to be explained in a little more
depth. If all polynomials are sampled over the same do-
main, additions and multiplications affect only one sup-
porting value at a time. Errors can accumulate only within
that supporting value. For example, if a numerical error
is made while two polynomials are added at the support-
ing value —1.0, this error will never infect the polynomial
at the supporting values 0.0 or +1.0. Thousands of addi-
tions and multiplications can be performed in a row. Errors
made in the addition or multiplication of two numbers re-
lating to one supporting value will never spread across the
insurmountable barrier between supporting values. Conse-
quently, the errors made in thousand additions and multi-
plications of polynomials of order 1 and the errors made in
the same thousand additions and multiplications of polyno-
mials of order 50 are exactly the same. As long as all com-
putations are performed within the trajectory data repre-
gentation scheme, the order of the polynomials has become
immaterial, and therefore, the curse of dimensionality has
been successfully banned.

Although it would be feasible to operate directly on
transfer functions, i.e., on rational functions or rational
function matrices, this is not recommended due to the nu-
merically detrimental effects of singularities. It is better to
operate on polynomial matrices using the ideas and algo-
rithms advocated by Wolovich (1974).

THE DARTBOARD DOMAIN

The numerical properties of algorithms converting polyno-
mials into and out of their trajectory representation must
still be analyzed. If polynomials are initially represented
in a different form, e.g. in coefficient form, or if the final
results are wanted in another form, it is important that the
errors be analyzed that are picked up on the tramsitions
from and to the trajectory representation.

The first problem is: How are the supporting values
chosen? If s = 10 is used as a supporting value, and if 8

T

polynomial of high order is evaluated, and if P(s = 10) is
nevertheless decently small, it is obvious that P(s) must be
the result of a cancellation of relatively large terms with
opposite signs. Thus, a lot of accuracy is lost right there.
Consequently, it makes sense to select the domain values
(supporting values) equidistantly spaced along the unit cir-
cle of the complex plane. With this choice, |s| = 1 for all
values of s and therefore, the sensitivity of P(s) will be
balanced with respect to all coefficients.

The inverse transformation can be written as a regres-
sion problem. If the polynomial:

W(s)=ao+6,-8+a1-8"+...4+au_1 6"+ (19)

is known for k values of s:
Wi=ap48:8+6;-8]+...+8,;-87"" +4s7 (19a)
W,=ao+a1-.|,+a,-a;+...+u,.-1-a',"x+8',‘ (lgb)

Wi=ao+61-0+a-8l+...+auy 807 +47 (19%)

where k£ > n+1, Eqs. (19a—k) can be rewritten in a matrix
form as:

0

w, 8 s s s ao
W, s s 43 83 6

=y . (20)
Wi g s s ... 8 1

and therefore, the coeflicient vector can be found by solving
a linear regression problem involving a Vandermonde ma-
trix spanned over the domain vector. In MATLAB (Math-
Works, 1987) or CTRL-C (SCT, 1989) this linear regression
problem can be solved using the “\” operator:

Coef = VDM(s \W (21)

where s denotes the known vector of supporting values and
W denotes the known vector of polynomial values at the
given supporting values. Coef is the resulting coeflicient
vector after solving the linear regression problem in a least
square’s sense.

Furthermore, if the domain vector is always chosen
equidistantly spaced along the unit circle and if the same
number of supporting values (e.g., 64) is maintained all the
time, a (pseudo)inverse of the Vandermonde matrix can
be computed once and for all, and the coefficients can be
regenerated from the polynomial values by means of a sim-
ple multiplication. In reality, the algorithm is a little more
tricky than that, since it is necessary to somehow keep track
of the polynomial order.

Unfortunately, there are more problems. For illustra-
tion, the following polynomial will be considered:

R(s) =5.0-(s+99.0)- (2 +100.0)- (s + 101.0) (22)
Once the polynomial R(s) has been evaluated at 64 values
of s equidistantly spaced along the unit circle, the three
roots can never again be regained from this trajectory rep-
resentation with any degree of accuracy, since the regression
algorithm performs well in the case of interpolation but not
extrapolation. Roots can be found directly (without evalu-
ating the coefficients first), e.g., by use of barycentric inter-
polation, but the basic problem remains the same. Thus, &
unit circle domain may not be the best choice for all types
of problems.

For this reason, the dartboard domain is proposed. A
dartboard domain is a domain consisting of several con-
centric circles around the origin. The domain values are
equidistantly spaced along each of these circles. For ex-

ample, 32 points can be used along each one of five circles
with the radii 0.01, 0.1, 1.0, 10.0, and 100.0. In the forward
translation from either coeflicients or roots to trajectories,
large errors may be introduced for some of these points, and
small errors for others. However, these errors will always
remain constrained to the point where they were first gener-
ated. They can never spread across to other points ... until
the time of the backtransformation from the trajectory rep-
resentation to either coefficient or root representations. At
that time, it is possible to select a subset of the available
points only, and several different subsets can be investi-
gated separately to check how much variation is obtained
in the resulting parameters. Thus, the redundancy of the
trajectory representation can be exploited to select those
domain values for the backtransformation that produce the
smallest errors. It may be a little tricky to fully automate
this procedure, but this can be done.

COEFFICIENT SPECTRA

However, yet another new data representation for polyno-
mial matrix operations will be proposed. In the coefficient
representation, addition is performed by adding the coeffi-
cient vectors, whereas multiplication is performed by con-
volving the coefficient vectors. This leads naturally to the
following idea. In Fig. 2, the coeflicient values of the poly-
nomial

V(s)=1+2-87+2-8%+s* - s* +4° (23)

are plotted as a function of their respective orders:

Polynomial Coefficients as a Time Series
L) H M M H H .

Coefficient Values

Figure 2. Coeflicients represented as a time series.

Figure 2 can be thought of as a “time series” of which the
FFT can be computed. Zero padding from the right will be
!m:d to at least double the number of memory cells and fill
1t up to the next power of 2. Thus, if the largest considered
polynomial order is 32, a choice of 64 as the length of the
cocflicient vectors is adequate.

After this transformation, polynomials can still be
added by adding their spectral lines, but now, polynomials
can also be multiplied by multiplying their spectral lines,
since in the FFT the convolution is mapped into a multi-
plication,

Consequently, the algebraic structure of the coefficient
ipectra representation is exactly the same as that of the
‘“:"’Ctm'y representation. The coefficient spectra represen-
;::“:E 8hl-l'?s the four algebraic properties mentioned earlier
of dm: trajectory representation. In particular, the curse

ensionality is also banned from this new data repre-
tentation scheme,
jec'.':“urthetlnom, a:lao the numerical properties of the tra-
\ Mio;y representation and the coefficient spectra represen-
tpe. cznue mk&l3ly similar. Nevertheless, the coefficient
fince: Tepresentation has been found to be slightly better

il

(1) it is not necessary to select a domain,

(2) the FFT and IFFT operations are numerically more
benign than the evaluation of a polynomial and the so-
lution of the linear regression problem, and finally

(3) the FFT and IFFT operations lend themselves to an
efficient parallel implementation on an SIMD processor
architecture.

POLPAC

POLPAC is an experimental toolkit for polynomial matrix

. operations making use of the newly proposed data represen-

tation schemes. POLPAC is currently available as a CTRL-
C function Lbrary. A corresponding MATLAB toolbox is
under development. It is planned to implement POLPAC
as a MATLAB toolbox on a machine with a DSP chip.
Most of the POLPAC operations can be elegantly imple-
mented on the DSP chip. It hasn’t been decided yet what
physical processor configuration will be selected. The ma-
jor problem is the overhead created by shipping long data
vectors back and forth between the CPU and the DSP chip.
The NEXT machine might provide for an attractive archi-
tecture, but MATLAB has not yet been made available for
the NEXT.

CONCLUSION

In this paper, two new data representation schemes for
polynomial matrix operations were proposed. It has been
shown that these data representation schemes do not suffer
from the well known curse of dimensionality. Experimental
software that incorporates the proposed data structures has
also been implemented. Unfortunately, the current imple-
mentation is executing too slowly for practical applications.
Only the principles have thus been proven.

Much research is still needed. One student is currently
working on implementing several of the algorithms from
Wolovich (1974) in POLPAC so that a better feel for the
numerical behavior of complex control algorithms using the
proposed data structures can be obtained. However, due to

the interpretive nature of the current implementation, only
small problems can be tackled at this point.

REFERENCES

Cellier, F.E., and C.M. Rimvall (1988). “Computer-Aided Con-
trol Systems — Techniques and Tools,” In: Systems Mod-
eling and Computer Simulation (N.A. Kheir, Ed.), Marcel
Dekker, New York, pp. 631-679.

Golub, G.H., and J.H. Wilkinson (1976). “Il-Conditioned
Eigensystems and the Computation of the Jordan Canon-
ical Form,” SIAM Review, 18(4), pp. 578-619.

MacFarlane, A.G.J. (1963). “An Eigenvector Solution of the Op-
timal Linear Regulator,” J. Electron. Control, 14, pp. 643~
654.

MathWorks (1987). Pro-MATLAB with System Identification
Toolboz and Control System Toolboz — User Manual, The
MathWorks, Inc., 21 Eliot St., South Natick MA 01760.

SCT (1989). CTRL-C User’s Guide, Version 4.3, Systems Con-
trol Technology, Inc., 2300 Geng Rd., Palo Alto CA 94303.

Wolovich, W.A. (1974). Linear Multivariable Systems, Springer—
Verlag, New York.

