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Remark 10.2 A simple interpretation of the result (c) is given by considering the
signals in the feedback systems,

z w

Y :]u
K

assuming this structure is well-posed. And we have

1= ofz] v

=2z = F(PK)w = Gu;

] =] e

=>u = F,(PYQ)y, or K=ZF,(P Q).

hence

10.2 Examples of LFTs

LFT is a very convenient tool to formulate many mathematical objects. In this section .
and the sections to follow, some commonly encountered control or mathematical objects
are given new perspectives, i.e., they will be examined from the LFT point of view.

Polynomials

A very commonly encountered object in control and mathematics is a polynomial func-
tion. For example,
p(6)=ap+a1d+---+a,d"

with indeterminate 8. It is easy to verify that p(6) can be written in the following LFT
form: -
p(d) = Fo(M,61,)

with ) , 3
ag ' aq Apn_1 Qn
B 1 R R VA
M= 01i1 0 0
0 : ;
| 010 1 0
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Hence every polynomial is a linear fraction of its indeterminates. More generally, any
multidimensional (matrix) polynomials are also LFTs in their indeterminates; for ex-
ample,

p(él, 52) = a15]2_ + agég + a38182 + a46; + a5d2 + ag.

Then
p(61,62) = Fy(N,A)
with -
@il 0 1 0]
as ' 0 a1 0 ajg
N=|1:0 0 0 0 |, A=[5112“].
as'0 0 0 a 272
| 1:0 0 0 0 |

It should be noted that these representations or realizations of polynomials are neither
unique nor necessarily minimal. Here a minimal realization refers to a realization with
the smallest possible dimension of A. As commonly known, in multidimensional systems
and filter theory, it is usually very hard, if not impossible, to find a minimal realization
for even a two variable polynomial. In fact, the minimal dimension of A depends also on
the field (real, complex, etc.) of the realization. More detailed discussion of this issue
is beyond the scope of this book, the interested readers should consult the references in
2-d or n-d systems or filter theory.

Rational Functions

As another example of LFT representation, we consider a rational matrix function (not
necessarily proper), F(81,8:,--,60m), with a finite value at the origin: F'(0,0,---,0) is
finite. Then F(8,,62, -+, 6,) can be written as an LFT in (61,82, -, 6m) (some §; may
be repeated). To see that, write

: N(61762)"'76m) —~1
F - - S By
(61,62, ;5m) d(61,62,---,6m) N((51,52, 76m) (d((51 (52 §m)I)
where N (61,62, -+,80m) is a multidimensional matrix polynomial and d(61,82,: -+, 6m)

is a scalar multidimensional polynomial with d(0,0,---,0) # 0. Both N and dI can
be represented as LFTs, and, furthermore, since d(0,0,---,0) # 0, the inverse of dI is
also an LFT as shown in Lemma 10.3. Now the conclusion follows by the fact that the
product of LFTs is also an LFT. (Of course, the above LFT representation problem is
exactly the problem of state space realization for a multidimensional transfer matrix.)
However, this is usually not a nice way to get an LFT representation for a rational matrix
since this approach usually results in a much higher dimensioned A than required. For
example,

a+ B6
1+~6

f(6) = = Fo(M, 6)
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with .
A= { aif-ay ]
1 LY

By using the above approach, we would end up with
f(8) = Fe(N,813)

and

Although the latter can be reduced to the former, it is not easy to see how to carry out
such reduction for a complicated problem, even if it is possible. :

State Space Realizations

. We can use the LFT formulae to establish the relationship between transfer matrices
and their state space realizations. A system with a state space realization as

T = Az + Bu
y=Cz+ Du

has a transfer matrix of

D).

QQ:D+QM—M”B:ﬂqé gy%

Now take A = —ls-I, the transfer matrix can be written as

m@:nqg gyay

More generally, consider a discrete time 2-D (or MD) system realized by the first-order
state space equation

(ki +1,k) = Anzi(ki, k2) + Aieza(ke, k2) + Bru(ks, kz)
To(ki, k2 +1) = Apzi(ky,ka) + Asozo(ky, ka) + Bau(k, k2)
y(ki,k2) = Cizi(ki,k2) + Coza(k,, ko) + Du(ky, k2).
In the same way, take
A = ZI—II 0 . 61[ 0
o 0 22_1_[ o 0 6.1

where z; denotes the forward shift operator, and let

A A B
2[4 ] e2[5] e2ta @
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then its transfer matrix is

Zl_[ 0

G(Zl,Z2) - D+C(l: 0 22.[

] —~ A 'B=D+CA(I-AA)"'B

=: fu([ g g ],A).

Both formulations can correspond to the following diagram:

Q-
(whley

The following notation for a transfer matrix has already been adopted in the previous

chapters:
48] (2 8] o

It is easy to see that this notation can be adopted for general dynamical systems,
e.g., multidimensional systems, as far as the structure A is specified. This notation

means that the transfer matrix can be expressed as an LFT of A with the coefficient
B

. A . . i :
matrix c D :l . In this special case, we say the parameter matrix A is the frequency
structure of the system state space realization. This notation is deliberately somewhat
ambiguous and can be viewed as both a transfer matrix and one of its realizations. The

ambiguity is benign and convenient and can always be resolved from the context.

Frequency Transformation
The bilinear transformation between the z-domain and s-domain

z+1

z—1

transforms the unit disk to the left-half plane and is the simplest example of an LFT.
We may rewrite it in our standard form as

1

_I=1- V2I 27 (I + 277 V21 = Fu(N,z711)
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where s
I 21
we] Iy ]

Now consider a continuous system

Al|B 1
G(S)_I:C Djl—}-u(M7§I)
where
A B
=& 3]

then the corresponding discrete time system realization is given by

- -1 -

G(z) = Fu(M, =5 1) = FulM, Fu(N,z7'1)) = Fu(M,27'1)

with

i = [ —(I-A)"'IT+4) —vV2(I-A)"'B ]
- V2C(I - A~ CUI-A"'B+D |’

The transformation from the z-domain to the s-domain can be obtained similarly.

Simple Block Diagrams
A feedback system with the following block diagram

M
d
Y Ik O 4 p J Wy Y

” >

can be rearranged as an LFT:
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with
(%) ()
w = 2 =
n ’U,f
and .
WoP 0 E Wy P
G = _"_Q"_ 0o W1
~FP —F,-FP

Constrained Structure Synthesis

Using the properties of LE'Ts, we can show that constrained structure control synthesis
problems can be converted to constrained structure constant output feedback problems.
Consider the synthesis structure in the last example and assume

A | B, B,
A B
G == Cl D11 D12 K—_—‘ l Ci Di ]
Co | D21 Do
Then it is easy to show that
Fo(G,K) = Fo(M(s), F)
where ) _ i
A 0} B; EO B
0 0 0 1 0
M(s)=|C_ 0 D0 Diy
0 I] 0 : 0 0
| C2 0| D2 10 D2
and
Ak BK}
F
lCK Dk

Note that F' is a constant matriz, not a system matrix. Hence if the controller structure
is fixed (or constrained), then the corresponding control problem becomes a constant
(constrained) output feedback problem.

Parametric Uncertainty: A Mass/Spring/Damper System

One natural type of uncertainty is unknown coefficients in a state space model. To moti-
vate this type of uncertainty description, we will begin with a familiar
mass/spring/damper system, shown below in Figure 10.1.

The dynamical equation of the system motion can be described by

k F

. c .
T+ —T+ —r=—.
m m m
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F

k? tgjc

Figure 10.1: Mass/Spring/Damper System

Suppose that the 3 physical parameters m,c, and k are not known exactly, but are
believed to lie in known intervals. In particular, the actual mass m is within 10% of
a nominal mass, m, the actual damping value ¢ is within 20% of a nominal value of
¢, and the spring stiffness is within 30% of its nominal value of k. Now introducing
perturbations 4,,, 6., and i, which are assumed to be unknown but lie in the interval
[~1,1], the block diagram for the dynamical system can be shown in Figure 10.2.

o |-

4

1
~ m(14+0.16,,) [

>0

y

(1 +0.26.)

Y
)
NS

k(14 0.35;)

4

Figure 10.2: Block Diagram of Mass/Spring/Damper Equation

It is easy to check that —71; can be represented as an LFT in §,,:

1 1

1 0.1 o
T A6~ dm (1 016m) 7 = F (My,6,)
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1

1 01
™

—-0.1
selected as z; = z,xy = &, F, and the output signals are selected as #; and z3. To
represent the system model as an LF'T of the natural uncertainty parameters 6,,, 6. and
i, we shall first isolate the uncertainty parameters and denote the inputs and outputs
of 6k, 8. and &,, as Yk, Ye, Ym and ug, Uc, U, respectively, as shown in Figure 10.3. Then

with M = T . Suppose that the input signals of the dynamical system are

. N z
[ i 0 1 0 0 0 0 '
- _ x
ye | =103k 0 0 0 0 v | ue | =A ] ye
Ye 0 02¢ 0 0 0 0 " U, Ym
Yrm -k - 1 -1 -1 -01]]| °
i ) i | Um ]
ie.,
T
[ o ] =Fo(M,A) | z
P
F
where
[ 0 1 0. 0 0 0 ]
kTR ELTE h TR b 0
M=|03 0 0. 0 0 0 ., A=10 6 0
0 02 0.0 0 0 0 0 6,
| -k -z 1.-1 -1 -0.1 ]

General Affine State-Space Uncertainty

We will consider a special class of state space models with unknown coefficients and show
how this type of uncertainty can be represented via the LF'T formulae with respect to
an uncertain parameter matrix so that the perturbations enter the system in a feedback
form. This type of modeling will form the basic building blocks for components with
parametric uncertainty.

Consider a linear system Gs(s) that is parameterized by k£ uncertain parameters,
01,...,6k, and has the realization

r k k .
A+ 64 | B+ 6B
Gﬁ(S) — i:};l i:kl
C+> 6C; | D+ 6:D;
L i=1 i=1 .




962 - W2~ 1INEAR FRACTIONAL TRANSFORMATION

Ym E Umn
Om

T

o |

Ye Ue
0.3 —> 6k
Yk Uk

Figure 10.3: Mass/Spring/Damper System

Here A, A; € R**", B, B, € R**™ C,C; € R %" and D, D; € R X,

The various terms in these state equations are interpreted as follows: the nominal
system description G(s), given by known matrices A, B,C, and D, is (A, B,C, D) and
the parametric uncertainty in the nominal system is reflected by the k scalar uncertain
parameters 83,...,0;, and we can specify them, say by §; € [ 1, 1] The structural
knowledge about the uncertainty is contained in the matrices A;, Bl, C’l, and D;. They
reflect how the 7’th uncertainty, ¢;, affects the state space model.

Now, we consider the problem of describing the perturbed system via the LFT
formulae so that all the uncertainty can be represented as a nominal system with the
unknown parameters entering it as the feedback gains. This is shown in Figure 10.4.

Since Gs(s) = Fu(Ms,1I) where

3 k k
A+>5:A; B+ 6B

M5 zil zil ,

C+> 6C: D+ 6D;
L. i=1 i=1 .

we need to find an LF'T representation for the matrix M;s with respect to

>

Apzdiag{611,621,... (SkI}

"To achieve this with the smallest possible size of repeated blocks, let ¢; denote the rank
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m————

@ =

I

z A B BQ‘ z

Y ~—C D Dig tB— u

Y2 U2
C'2 D21 D22

Orl

Figure 10.4: LFT Representation of State Space Uncertainty
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of the matrix

pa[d B Cgmimimoins
D;

i

for each 2. Then P; can be written as

*

L;
W,

R;

P =
Z;

where L; € R*"*%, W, ¢ R *% R, € R"*% and Z; € R" %%, Hence, we have

*

L; R;
6:P; = [6:14,] :
W, Z;
-and Mj; can be written as
My M, Ap May
/'-_M_\ r~ N ~7 N~ —
A B . Ly - L 611, Ry 27
Ms= | ¢ D 154 Wi, ' L
oLy | | By ZE
l.e.
M M.
Ms=7F(| T T2 A
Moy 0

Therefore, the matrices By, Cy, D2, D31, and D2, in the diagram are

B, = [Li Ly - Li|
D, = :Wl Wy - Wk]
C: = [R Ry - Rk]*
Dy = [Zl Zy - Zk]*
D = 0
and
Ga(A)=fu(fe([$; RS




-1\ S =
10.3. Basic Principle 265

e———

10.3 Basic Principle

We have studied several simple examples of the use of LFTs and, in particular, their
role in modeling uncertainty. The basic principle at work here in writing a matrix LFT
is often referred to as “pulling out the As”. We will try to illustrate this with another
picture. Consider a structure with four substructures interconnected in some known
way as shown in Figure 10.5.

..........

.............
.............

Figure 10.5: Multiple Source of Uncertain Structure

This diagram can be redrawn as a standard one via “pulling out the As” in Fig-
ure 10.6. Now the matrix “M” of the LFT can be obtained by computing the corre-
sponding transfer matrix in the shadowed box.

We shall illustrate the above principle with an example. Consider an input/output

relation
a + bés + cb162 Cw
z = Sw =:
1+ (1(51 (52 + 65f
where a, b, c,d and e are given constants or transfer functions. We would like to write

G as an LFT in terms of 6; and §2. We shall do this in three steps:

1. Draw a block diagram for the input/output relation with each § separated as
shown in Figure 10.7.

2. Mark the inputs and outputs of the §’s as y’s and u’s, respectively. (This is
essentially pulling out the §s).

3. Write z and y’s in terms of w and u’s with all §’s taken out. (This step is equivalent
to computing the transformation in the shadowed box in Figure 10.6.)

U Uy
Y2 U2
ys | =M | u3
Y4 Uq
z w
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A,
— AQ :,
I B -
e . S U R -

Figure 10.6: Pulling out the As

where .
[0 —e -d 0!1
1 0 0 0.0
M=11 0 0 0.0
0 —be —-bd+c 0.0D
| 0 —ae —ad 1.a ]
Then
6 I 0
z=Fu (M,A)w, A= 12 :
0 61

All LF'T examples in the last section can be obtained following the above steps.

10.4 Redheffer Star-Products

The most important property of LFTs is that any interconnection of LFTs is again an
LFT. This property is by far the most often used and is the heart of LFT machinery.
Indeed, it is not hard to see that most of the interconnection structures discussed early,
e.g., feedback and cascade, can be viewed as special cases of the so-called star product.
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a |«
z Ug 5 Ya . -
c
| us 5y ys w1 5, Y1 W
—'d v, o =, —e

Figure 10.7: Block diagram for G

Suppose that P and K are compatibly partitioned matrices

K= K1 Kis
Koy Koo

Py Py
Py Py

such that the matrix product P»;K7; is well defined and square, and assume further
that I — P53 K, is invertible. Then the star product of P and K with respect to this
partition is defined as

Fi (P, K1) Py (I - K11 Pn)" Ky
Ko (I — PyoKyy) ™' Py F. (K, Py)

S(P,K) = [

Note that this definition is dependent on the partitioning of the matrices P and K
above. In fact, this star product may be well defined for one partition and not well
defined for another; however, we will not explicitly show this dependence because it is
always clear from the context. In a block diagram, this dependence appears, as shown
in Figure 10.8.

Now suppose that P and K are transfer matrices with state space representations:

A | B, B, Ak | Bkgi Bk
P = Cy | Di1 Do K = Cki1 | Dk11 Dkiz
Cy | D21 Dag Cka | Dx21 Dko2

Then the transfer matrix

S(P,K):[’Lf)]»—»[f}
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z o bW 2 w
e DR ] D—
: P ! 2 S(PK) | »
o K b
] I B

__________________

Figure 10.8: Interconnection of LFTs

has a representation

Ai{ B B e
S(PK)=| ¢ R 4|5
) = C D D = - s
o1 Du Do ol b
Cy | Dyy Do
where
i = [ A+ BQR—IDK11C2 BzR—chl
] Bx1R71C; Ag + Bgk1R™1D33Cky
B = | By + BoR™ D11 Dy ByR™' Dz
] Bgi1R™ Dy Bya + BgkiR D32 Dk
o _ | O+ DuDinRC D12R™'Cr1
] DgayR71Cy Cra + Dga1 R D32Ck1
D = [ Di1 + DisDg1i R Dy D12R™' Dz
i Dy R 1 Do Doz + Dg21R™ ' Dag D2

R=1-D3Dki1, R=1I-DgiiDas.

In fact, it is easy to show that

i- s R , Dig11 Ckar ,
LC2 Dgg BK1 AK

B = S B, By , Dgi11 Dkaz ’
L.D21 Doy Bk Bk
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¢ = s(| € Dl [Drn Cx])
| C2 Dy Dgo1 Ck2

S FD11 Do Dg11 Dkio
D3y Dsy || Dgai Diao

D

10.5 Notes and References

This chapter is based on the lecture notes by Packard [1991] and the paper by Doyle,
Packard, and Zhou [1991].



