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Abstract

One of the standard problems in controller design of linear systems is
the so-called pole placement problem. Although there are meanwhile a
couple of algorithms for this probiem on the market, the most common
approach (at least for single-input systems) is the one suggested by
Jiirgen Ackermann'- As it was recently shown by Alan Laub e¢ a//a 2, this
algorithm is numericaily harmful. For systems of larger than 10% order,
double precision is required on a 32-bit machine (e.g. VAX); for systems
larger than about 15™ order, the algorithm fails altogether. Newer
algorithms making use of a numerically more stable transformation (e.g.
Hessenberg form) are behaving better, but were shown to fail as well for
systems of larger than approximately 20t to 25™ order. The authors
therefore suggested (without proof) that the pele placement problem is
intrinsically ill-posed.

In this paper, we present an aigorithm which shows numerically
stable behavior for much larger systems, thus contradicting the above
conjecture. This algorithm is closely related to the one suggested by
Roppeneckers, It therefore lends itself equally well to single-input and
multi-input systems. In case of several inputs, the additional freedom is
used to optimize the numerical behavior of the algorithm. However even in
the single-input case, the algorithm behaves numerically much better than
any other pole placement algorithm that we are aware of.



Numerical Resolution of the Feedback Matrix

The numerical machine resolution of a computer is usually defined in
the following sense:

eps=1;

WHILE 1+eps>1, ...
eps = eps/2; ...

END

eps = 2%*eps;

It is now interesting to ask ourselves how well the poles of the
Closed-loop system can possibly be determined as a function of the
previously defined machine resolution gps. The following algorithm may
answer this question:

// [a,b,lambda,res rrell=resoi(n)
// Caiculate the Resolution of the Feedback Matrix
DEFF csrt

a=RAND(n);

b = RAND(n,1);

k = RAND( 1 ,n);

aa=a - b¥*k;

lambda = EI6(aa);

lembda = CSRT( lambda);

bb=aa + |00®*EPS*RAND(aa);

p = EIG(bb);

p = CSRT(p);

res = NORM( lambda-p,'INF')/100;
rrel = res/EPS;

RETURN

It 1s coded In CTRL_C4, a command driven interactive program for
control system design. CTRL_C is basically a superset of the well known
program MATLABS by Cleve Moler. We prefer to present our algorithms in
CTRL_C rather than in MATLAB for its increased readability.

This algorithm first defines the system matrix (s), the input vector
(), and the feedback vector (#) as random matrices. Then, the
Closed-loop system matrix (as) is computed, and its eigenvalues are
evaluated which are the poles of the closed-loop system. These are then
sorted in &SR7 into ascending order of their real values whereby positive
imaginary parts always precede negative imaginary parts. Then, the
closed-loop matrix is perturbed (ss). For that purpose, we add random
values to each element of the matrix. These random elements are scaled
by 700%sps, as it makes little sense to multiply a number smailer than |
by 4ps itself, and add it up to something lerge. Then, the new eigenvalues



are computed and sorted. Finally, we compute an infinity norm of the
difference of the old and the new poles, and divide again by /00 for
normalization purposes. Obviously, we cannot expect any poles to lie
closer to the desired poles, independently of the algorithm we use. Thus,
res is really the absolute numerical resolution, and rre/ is the relative
numerical resolution of the feedback matrix.

We calculated this resolution on 3 VAX for different system orders,
and obtained the following results:

gstem|  RES | RREL
5 540717 | 342
10 5.88-10°17 4.36
15 1.0210°18 7.36
29 1511078 | 103
25 1.89-10718 | 1362
30 230110716 | 15.64
35 25210716 | 13.18

Of course, these numbers depend on the random number generator but
it is obvious that, with increased order, the resolution of the feedback
matrix decreases only slightly. Thus, the concept of state feedback itself
s numerically sound.

Pole Placement According to Ackermann
The pole placement algorithm can be expressed in the following way:

Xx=AX+bu

g(s)= X8 (51— a)" b= 1
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The feedback 10op can be expressed in the following way:
+ ‘
=y gl ——5{“ 'S
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z(s) = k'x(s)
u=u. - k'x

r

x=(A-bk)x + bu = A x+bu,

The desired pole locations can be expressed as:
d(s)=Isl-A]=s"+a,s"'+ +a

n

Thus, we find:

2(s) _ peorey = K1(8)
uis) k'g(s) dfs)
z2(s) _ ks) _ 1:(3)

us(s) ~ d(s) + K'Us)  dq(s)
that is:
d.(s) = d(s) + k'I(s)
By comparing the coefficients, we find:
Lk=a-d

where:

and therefore:

k= (L) (a-d)



The exact notation of this algorithm was taken from Mansour®. The
coefficients of the transfer function vector can e.g be found by
transforming the system into controller-canonical form. A CTRLC
function which implements this algorithm is the following:

// [k]=pol1(a,b,lambda)
// Calculates State Feedback of SI-System by Pole Placement
DEFF ctran
flag = 'FALSE';
GLOB(fleg);
[n,m] = SIZE(lambda);
IFmed, ..
IFnot, ..
DISPLAY('Poles must form a vector”'), ...
flag = 'TRUE'; ...
RETURN, ...
END, ...
END
nn =n*m;
{n,n] = SIZE(a);
IF nnoon, ...
DISPLAY("Number of poles inconsistent with system order’), ...
flag = ‘TRUE'; ...
RETURN, ...
END
caux = EYE(a);
[enew bnew cnew] = CTRAN(a,b caux);
IF flag='TRUE’, ...
RETURN, ...
END
dd = -anew(n,n:-1:1)";
aa = REAL(POLY( lambda));
sa=s8a(2:n+1);
1=cnew(:,m-1:1);
f=1\(ea - dd);
k = REAL(T);
RETURN

First, we make sure that the input /smsas (containing the desired
poles) is really a vector. Then, we check that there are as many poles
specified as there are states in the system. Function ctran transforms
the SIMO-system:

x=AX + bu
Y=x

into controller-canonical form. In this new form, the matrix csew
contains the coefficients of the £ matrix (columns in reverse order), and
the last row of the matrix anew contains the coefficients of the open-loop



denominator polynomial os) (also in reverse order). The rest of the
algorithm is self-explanatory. Function 2oy calculates the coefficients
of the polynomial whose roots were stored in /smégs. The backslash
operator denotes “left-division® (that is: multiplication from left by the
inverse, calculated by use of Gaussian elimination).

The transformation is done by first calculating the controllability
matrix:

Q.=[b,Ab,A%, .. A"b]

then using the last row of its inverse for the construction of an
“observability matrix” of the modified system (A,q):

T=0g;0A;qA%; .. ;qA™ ']

"," being used for concatenation from the right whereas ;" being used for
concatenation from below. T is then wused for the similarity
transformation:

= -1 = =T
Ay =TAT', b, =Tb, ¢, =cT

new new

A CTRL_C function for this purpose would be:

// [anew ,bnew cnew]=ctran(a,b,c)
// Trensforms System into Controller-Canonical Form
DEFF contr
DEFF obser
flag = 'FALSE’;
6LOB( fag);
q = CONTR(a,b);
IF flag="TRUE', ...
RETURN, ...
END
{n,m] = SIZE(b);
IFmol, ..
DISPLAY(‘Algorithm only for single-input systems'), ...
flag = ‘TRUE’; ...
RETURN, ...
END
[p.,n1] =SIZE(c);
IFnion, ..
DISPLAY('C must have n columns’), ...
flag = ‘TRUE'; ...
RETURN, ...
END
IF RANK(qe)<an, ...
DISPLAY( 'System is not controllable'), ...



flag = "TRUE'; ...
RETURN, ...
END
qein = INV(qc);
q=gein(n,:);
t = OBSER(a,9);
tin = INV(t);
anew = t*a*tin;
bnew = t*b;
cnew = c*tin;
RETURN

which is pretty self-explanatory. The two functions conér and obser
calculate the controilability matrix and observability matrix, resp.:

// [qcl=contr(a,b)
// Calculates Controllability Matrix
flag = 'FALSE’;
©=b;
aux =b;
[n1,n2] = SIZE(a);
IFnton2, ..
DISPLAY( ‘A must be a square matrix'), ...
flag = "TRUE; ...
RETURN, ...
END
n=nl;
[n1,m] = SIZE(b);
IFnton,..
DISPLAY('B must have n rows'), ...
flag = 'TRUE’; ...
RETURN, ...
END
FOR i=2:n, ...
aux = a*aux; ...
q = [qc,aux]; ...
END
RETURN

// [qo]=obser(a.c)
// Calculates Observability Matrix
flag = 'FALSE’;
E=c;
aux = c;
(n1,n2] = SIZE(a);
IFnton2, ..
DISPLAY('A must be a square matrix’), ...
flag = ‘'TRUE'; ...
RETURN, ...
END
n=nl; 4
[p,n1] = SIZE(c);



IFnlon, ...
DISPLAY(‘C must have n columns'), ...
flag="TRUE'; ...
RETURN, ...

END

FOR i=2:n, ...

"aux = aux*a; ...

- = [qo;aux]; ...

END

RETURN

which are easily understandable.

Numerical Behavior of Ackermann's Algorithm

As suggested by Alan Laub?, we now analyze the numerical behavior of
this algorithm. For that purpose, we execute in a sequence the previously
described function #£sa. and the function cons for different values of
- the system order ~

// [err erl]=coni(a,b,lambda,res)
// Calculates the Numerical Condition of POL1
DEFF csrt
DEFF poll
flag = ‘'FALSE';
GLOB(flag);
k = POL1(a,b,lambda);
IF flag="TRUE’, ...
RETURN, ...
END
8 =3 - b*k;
p = ElG(ea);
p = CSRT(p);
err = NORM( lambds-p, INF');
erl =err/res;
RETURN

in which we calculate the closed-loop system matrix (ss) for the feedback
found by function Pol//7. Then we compare its eigenvalues (p/ with the
desired eigenvalues (/smbas). £frr IS thus the absolute numerical
resolution of the Por/ algorithm, and e/ is the numerical resolution
relative to the best possible case (rss). As suggested by Alan Laub, the
results were deplorable:



System
grder ERR ERL
5 83510715 | 166
10 1221077 1.77-10°
15 0.0023 2.20-10'3
20 Rank{Q,) <n

For larger system orders, the accuracy of this algorithm decays
rapidly. At order 15, hardly any accuracy is left, and at order 20, the
algorithm is unable to invert the controllability matrix, as it has (for
numerical reasons) no longer full rank. Even the 10™ order system could
only be treated due to the double precision arithmetics used by CTRL_C.

The pole placement algorithm built into CTRL_C (PL4cE) failed on
this problem altogether, issuing some lines of “trap”™ — whatever this may
mean.

what went wrong in this algorithm? First, we had to defactorize our
polynomials, and lateron factorize them again. This operation is known to
be potentially harmful on larger order systems. However, even worse in
our case was the computation of the controllability and modified
observability matrices. If the original matrix A had the eigenvalues
(y,--,S,), then the matrix A" has the eigenvalues (s,"!,..,5,"1). That is:

small eigenvalues have become even smaller, while large eigenvaiues are
getting yet larger. Also the condition of A™! has been worsened by
roughly the power (n-1), and Q_ is hardly any better. We therefore must

seek for an algorithm which does not commit either of these two sins.

Eigenstructure Approach

A number of authors™78:%:10 gyggested to use the additional freedom
in the pole placement of multi-input systems for (partial) eigenstructure
selection. We shall show that this approach is fruitful, and amazingly
even leads to a numerically much better behaving algorithm in the
single-input case. |

Given the MIMO-system:

x=Ax + Bu



together with the feedback equation:
u=u_+Kx
The closed-loop system is supposed to have the following properties:
eigen(A+BK) = (s,,S,,-,S,]

modal(A+BK) =[v,,v,,..,v ]

thus:
(A+BK)v, = 5,v,
or:
[(A-s1),B1¥[v,;ql=0
where:

q; = Ky,
that is, the vector [ v, ; q; I must lie in the nullspace of the matrix:
S(s) =[(A-s),B]
After repeating this operation on all n poles, we can caiculate:

K = [ G0, 0,] IV, VgV, T = QV!

This algorithm works as long as the system is fully controliable, B has the
maximum rank (m), and all desired poles are distinct (as otherwise V may
be singular). Ackermann's algorithm does not require the poles to be
distinct, but the numerical behavior of that algorithm gets even worse if
the poles are placed on top of each other. We tried that algorithm on a 5th
order random system with poles located at [ -1 ; -2 ;-3 ; -4; -5 ], and
with all poles located at -1. In the first case, the resolution was roughly
10°"", in the second case it was 1073 only.

How can we implement our new algorithm in terms of a CTRL_C
function? First, we have to evaluate the nullspace of the rectanguiar
matrix S(s)). The dimensions of that matrix are mx(n+m). If none of the



desired poles coincides with a pole of the open-loop system, the rank of
that matrix is certainly n, but even if such a coincidence exists, the rank
of S shall usually still remain n due to the concatenation with the
B-matrix; thus, the new algorithm does not require the desired poles to be
different from the poles of the open-loop system as some of the
previously described algorithms do.

We now build the following matrix:

(n+m)

N
MM = | & ‘s;

MM=[S,S5]

MM = MM(, 1:n+m)

This square matrix MM has certainly still the same Rank(MM)=n, and
it spans the same space as S. Now we perform a QR decomposition on that
matrix MM:

(Q,R]=QRMMM)

which creates two matrices Q and R such that MM=Q*R, where Q is a
unitary matrix, and R is upper triangular with diagonal elements in
decreasing order. As Q has Rank(Q)=(n+m), obviously the Rank(R)=n, that
is, R has m rows equal to zero.

{n+m) {n+m) (n+m) nom  (nem)

R \L"

MM = Q*R = Q, "R

(n+m)

that is, Q, spans the same space as MM and thus as S, whereas Q, is an

orthogonal extensions, and thus the nullspace of S. We could have achieved
the same also by use of a singular value decomposition, but the much
“Cheaper” QR algorithm is very well suited for our purpose, and it is
numerically about as sound as SVD.



There must exist a vector x, such that Q,x =[ v, ; q; ], that is:

1 m i 1

1
:021*H vk CQZ1’_’H=Y1.

(L
(]
R
¥
=]
i
=]

Only m components of the v;-vector can be chosen freely. This is in

-agreement with the previously found statements that in the single-input
case the pole placement problem has a unique solution, whereas the
system with n inputs allows for free selection of the entire modal matrix
as well.

We select v, as follows:

-9 A closed =

100]
Pg

In this way, we try to decouple the solution as much as possible. In
our algorithm, we cancel those rows of Q,, and v; which we cannot choose

freely, and solve the remaim‘ng (non-singular) system for X. Then, we use
x to determine q,. A CTRL_C function which implements this algorithm is

as follows:

// [k]=poim(a,b,lambda)
// Pole Placement for M|-System with m Linearly Independent Inputs
DEFF gim
flag = 'FALSE";
[n1,n2] = SIZE(8);
IFnion2, ..
DISPLAY('A must be a square matrix’), ...
flag="TRUE; ...
RETURN, ...
END
n=nl;
[n1,m] = SIZE(D);
IFnton, ..



DISPLAY('B must have n raws'), ...
flag = 'TRUE'; ...
RETURN, ...
END
IF RANK(b)<m, ...
DISPLAY('B~-matrix must have full rank'), ...
flag = ‘TRUE'; ...
RETURN, ...
END
[n1,m1] = SiZE(lambda);
IFmiet, ..
IFniod, ...
DISPLAY( Poles must form a vector'), ...
flag = 'TRUE'; ...
RETURN, ...
END, ...
END
nm=nl*ml;
IF nneon, ...
DISPLAY('Number of poles incansistent with system order'), ...
flag = 'TRUE'; ...
RETURN, ...
END
[12,h] = SORT(REAL( lambda));
h = lambda(i2);
FORi=1:n~1, ...
d = NORM(h(i+1)-h(i)); ..
IF d<10%*EPS, ...
DISPLAY( 'Poles must be distinct’), ...
flag = ‘TRUE'; ...
RETURN, ...
END, ...
END
v = EYE(8);
qq = ONES(m,1);
FOR i=1:n, ...
1i = lambda(1); ...
vi=v(:i);...
[qi,vvi] = QIM(a,b,n,m,li vi,i); ...
v(: 1) =vvi; ...
o = [9q,4i]; ...
END
@ =q(:,2:n+1);
f=q/v;
k = REAL(T);
RETURN

// [qi,vvil=gim(a,b,n,m li vi,i)

// Pole Placement with m Inputs

// Auxilliary Mecro

// Calculates the Null-Space and the gi-Yector
s = [(a-1i*EYE(a)),b];

mm ={s's'];

mm = mm(:,1:n+m);



{g,r] =QR(mm);
g2 =q(:,n+1:n+m);
g21 =q2(1:n,);
kli=i-n+m;
kZ2=1i;
IF k141, ...
‘k2=k2-kl1 +1;..
ki=1;..
END
vii = vi(i);
Q21 =q21(i,);
IFkix1, ...
vii = [vi( 1:k1-1)vii]; ..
oq21 =[q21( 1:k1-1,:);0921]; ...
END
IF k2<n, ...
vii = [viivi(k2+1:n)]; ...
aq21 ={qa21;,921(k2+1:n,1; ...
END
xx = qq21\vii;
vvi=q21%xx;
q22 =q2(n+ 1:n+m,:);
Qi = q22%xx;
RETURN

Of course, in the single-input case, there does not remain any area of
zero elements, and the closed-loop system matrix is full. However, the
problem of finding the feedback matrix is reduced to » QR-decompositions
and (n+/) linear system solutions. Thus, we have justified hope to face a
better numerical behavior of this algorithm. :

Numerical Behavior of Eigenstructure Method

We tried this algorithm by use of the following CTRL_C test function:

// [err er1]=con3(a,b,lambda,res)
// Calculstes the Numerical Condition of POLM
DEFF csrt
DEFF poim
flag = ‘FALSE’;
GLOB( fag);
k = POLM(a,b,lembda);
IF flag="TRUE", ...
RETURN, ...
END
aa=a+ b¥*;
p = EI6(aa);
p =CSRT(p);
err = NORM( lambda-p,’ INF');



erl =err/res;
RETURN

The results were as follows:

Syslem! ERR | ERL
5 1.5310718 3.05
10 37410716 5.44
15 5.96-10°18 5.34
20 8.331071% | 57
25 20110713 | 1048
30 258107 | 11.17
35 2.6010°13 | {pz3s5

We stopped at order 35, as the algorithm required already 21 min CPU
time to execute on a VAX 11/750. However, it is obvious that this
algorithm could easily be used for larger systems as well.

We also compared the number of floating point operations for
Ackermann's algorithm and the eigenstructure approach. For low order
systems, they were not much different. However, Ackermann's algorithm
is roughly proportional to 9xorder=, the other to 100xorder>.

Summary

An algorithm has been shown which allows to compute the state
feedback matrix of the pole placement problem for single-input and
multi-input systems. This algorithm differs frcm those previously known
in that its numerical behavior is much more stable, and therefore allows
for much larger system orders to be treated.

As more and more controller design problems are solved today by use
of digital computers, such numerical considerations are of utmost
importance.
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