 -z-

—> Weoe cou une Teut

:\"Q_Cf'\.vu7u&.a . Orn C,O&Mou-ﬁl
Usae ol %:acx._u)r "‘QC/QA.\.C@l\m. &
\oacl peopatadion Nroluiug :

eSS

WD W Ly
mmmmmm

BLLTo0
mmmmm
wwww
hhhhhh
wwwwww
BUWWEHEE
IIIIII
mmmmmm

NNNNNNN
SEeng 2
RRRENS <

dnddd B
SIITITST =

Backpropagation Networks

k- Backpropagation networks are multilayer networks in which the var-
"Z(ious layers are cascaded. Figure 14.11 shows a typical three-layer

backpropagation network.

AN
3 Wi

)
il

Figure 14.11. Three-layer backpropagation network.

~ Yy —

The sigmoid function is particularly convenient because of its simple
partial derivative:

0y . s

.Y (1.0 — y) = logistic(y) (14.17)
The partial derivative of the output y with respect to state z does
not depend on z explicitly. It can be written as a logistic function
of the output y.

We shall train the output layer in basically the same manner as in
the case of the single-layer network, but we shall modify the formula
for é;. Instead of simply using the difference between the desired
output j; and the true output y;, we multiply this difference by the
activation gradient:

oy . o a
§j =5 (B —v) =9 (L0-y) (% —v) (14.10°%)

Therefore, the matrix version of the learning algorithm for the output
layer can now be written as:

WP, . = WP+g * (YE .+ (ONES(y2)—yE) .* (F—y])) * uf’ (14.13°%)

The subscript k denotes the k' iteration, whereas the superscript
n denotes the n'® stage (layer) of the multilayer network. I assume
that the network has exactly n stages. Equation (14.13%*) is written

in a pseudo—~CTRL-C (pseudo-MATLAB) style. The ‘x’ operator
denotes a regular matrix multiplication, whereas the ‘.x’ operator

2
£

£

&

3

k]

=

s.z(

denotes an elementwise multiplication. The vector u is obviously
identical to y}~!. Let:

& =yP .+ (ONES(yR) —yP) .= (§ —yP) (14.18)

denote the k' iteration of the § vector for the nth (output)

stage of the multilayer network. Using Eq.(14.18), we can rewrite
Eq.(14.13%*) as follows:

WP, =WE4g * &0 % ud’ (14.19)

Unfortunately, this algorithm will work for the output stage of the
multilayer network only. We cannot train the hidden layers in the
same fashion since we don’t have a desired output for these stages.
Therefore, we replace the gradient by another (unsupervised) up-
dating function. The § vector of the £t* hidden layer is computed as
follows:

8t =yt .x (ONES(yt) — yt) .+ (WE' « Gt (14.20)

Instead of weighing the & vector with the (unavailable) difference
between the desired and the true output of that stage, we propagate
the weighted § vector of the subsequent stage back through the net-
work. We then compute the next iteration of the weighting matrix
of this hidden layer using Eq.(14.19) applied to the £*! stage, i.e.:

Wi, =Wh+g * 6 » uf' (14.21)
In this fashion, we proceed backward through the entire network.

The algorithm starts by setting all weighting matrices to small
random matrices. We apply the true input to the network and prop-
agate the true input forward to the true output, generating the first
iteration on all signals in the network. We then propagate the gra-
dients backward through the network to obtain the first iteration on
all the weighting matrices. We then use these weighting matrices
to propagate the same true input once more forward through the
network to obtain the second iteration on the signals and then prop-
agate the modified gradients backward through the entire network
to obtain the second iteration on the weighting matrices. Conse-
quently, the u’ and y* vectors of the {** stage are updated on the
forward path, while the §¢ vector and the W* matrix are updated
on the backward path. Each iteration consists of one forward path
followed by one backward path.

e

The backpropagation algorithm was made popular by Rumelhart
et al. [14.32]. It presented the artificial neural network research com-
munity with the first systematic (although still heuristic) algorithm
for training multilayer networks. The backpropagation algorithm has
a fairly benign stability behavior. It will converge on many problems
provided the gain g has been properly selected. Unfortunately, its
convergence speed is usually very slow. Typically, a backpropagation
training session may require several hundred thousand iterations for
convergence.

Several enhancements of the algorithm have been proposed. Fre-
quently, a bias vector is added, i.e., the state of an artificial neuron
is no longer the weighted sum of its inputs alone, but is computed
using the formula:

x=W:-:u+b (14.22)

Conceptually, this is not a true enhancement. It simply means that
the neuron has an additional input, which is always ‘1. Conse-
quently, the bias term is updated as follows:

bk+1 =bx+g- 5;: (14.23)

Also, a small momentum term is frequently added to the weights in
order to improve the convergence speed [14.19):

Wit = (10+m) - Wi +g- 8 - uy’ (14.24a)
The momentum should obviously be added to the bias term as well:
brir = (1L.0+m) by +g -8 (14.24b)

The momentum m is usually very small, m ~ 0.01.

Other references add a small percentage of the last change in the
matrix to the weight update equation [14.12]:

AWy =g- S.k cuy’ (14.250,)
Wk+1 = Wk + AWk +m- AWk—-l (14.25b)

Finally, it is quite common to limit the amount by which the §
vectors, the b vectors, and the W matrices can change in a single
step. This often improves the stability behavior of the algorithm.

axoC

&ﬁﬁ]ﬂa tional “Brand
=

hidden
layer

Figure 14.14. Backpropagation network for XOR.

The length of the hidden layer is arbitrary. In our program, we made
this a parameter, lhid, which can be chosen at will. The program is
shown here:

/] This procedure designs a backpropagation network for XOR
/] Select the length of the hidden layer (LHID) first
/]

deff limit -¢
deff tri -c

/!

// Define the input and target vectors
//
inpt=[-1 -1 1 1

-1 1 -1 1}
target=[-1 1 1 —-1};

—\& -

=1
5
éi’
g
S
t.z(

/] Set the weighting matrices and biases

// »

W1 =0.1*(2.0«RAND(lhid,2)— ONES(lhid,?2));
W2 =0.1*(2.0«RAND(1, lhid)— ONES(1, lhid));
b1 = ZROW(lhid,1); b2 = ZROW(1);
WW1=ZROW(lhid,2); WW2=ZROW(1,lhid);
bb1 = ZROW(lhid,1); bb2 = ZROW(1);

//

// Set the gains and momenta

//

gl=0.6; g2=0.3;

ml =0.06; m2 = 0.03;

/1

|/ Set the termination condition

/!

crit = 0.025; error =1.0; count =0;

/1

// Learn the weights and biases
//
while error > crit, ...
count = count +1; ...
... |/ Loop over all input/target pairs
error =0; ...
for nbr = 1:4, ...
ul = inpt(:, nbr); ...
y2h = target(nbr); ...

... /| Forward pass

zl =WW1xul +bbl; ...
y1 = LIMIT(z1); ...

u2 =y1; ...

z2 =WW2x*xu2+4+5bb2; ...
y2 = LIMIT(=z2); ...

... |/ Backward pass
e =y2h - y2; ...

delta2 = TRI(y2) . * e; ...

W2=W2+g2x*delta2 » (u2')+ m2x WW?2; ...

b2 = b2 + g2 * delta2 + m2 % bb2; ...
deltal = TRI(y1) .« (WW2')xdelta2); ...

W1=W1+gl=sdeltal *x(ul')+mlxsWW1; ...

b1 = b1 + g1 = deltal + m1 *bbl; ...
error = error+ NORM(e); ...
end, ...

=
g
&
3
&
%2(

BT R

... // Update the momentum matrices and vectors
WWi=W1; Ww2=W2; ...
bbl = b1; bb2 = b2; ...

end

/1l

/| Apply the learned network to evaluate the truth table
/!

y = ZROW(target);

for nbr = 1:4, ...

ul = inpt(:,nbr); ...
zl=WW1xul+bbl; ...
y1 = LIMIT(=1); ...

u2 =y1; ...

22 =WW2x*xu240bb2; ...
y2 = LIMIT(z2); ...

y(nbr) = y2; ...
end

/!

/] Display the results

/1
y
/1

return

It took some persuasion to get this program to work. The first
difficulty was with the activation functions. The sigmoid function is
no longer adequate since the output varies between —1.0 and +1.0,
and not between 0.0 and 1.0. In this case, the sigmoid function is
frequently replaced by:

y= ;2; - tan~!(z) (14.30)

which also has a very convenient partial derivative:

1.0

9y _
1.0 + z2

5 = (14.31)

2
3
However, this function won’t converge for our application either.

Since we wish to obtain outputs of exactly +1.0 and —1.0, we would
need infinitely large states, and therefore infinitely large weights.

Without the 2/7 term, the network does learn, but converges very
slowly. Therefore, we decided to eliminate the requirement of a con-
tinuous derivative and used a limit function as the activation func-
tion:

'g
5
B
2
s
L
k

—-w—

// ls] = LIMIT(z)
//

// This procedure computes the limit function

//
[n,m] = SIZE(z);
for:i=1:n,

Z(i) = MIN([MAX([z(z),—1.0]),1.0)); ...

//

return

In this case, we cannot backpropagate the gradient. Instead, we
make use of the fact that we know that all outputs must converge
to either +1.0 or —1.0. We therefore punish the distance of the true
output from either of these two points using the tri function [14.19]:

// [y] = TRI(=)
//

// This procedure computes the tri function

//

[n’m] = SIZE(t);

y = ONES(n,m)— ABS(z);
/!

return

We call this type of network a pseudobackpropagation network.

In addition to the weighting matrices, we need biases and mo-
menta. The optimization starts with a zero—weight matrix, but adds
small random momenta to the weights and biases. After each itera-
tion, the momenta are updated to point more toward the optimum
solution.

The program converges fairly quickly. It usually takes less than 20
iterations to converge to the correct solution. The program is also
fairly insensitive to the length of the hidden layer. The convergence
is equally fast with lhid = 8, lhid = 16, and lhid = 32.

This discussion teaches us another lesson. The design of neu-
ral networks is still more an art than a science. We usually start
with one of the classical textbook algorithms ... and discover that

~ it doesn’t work. We then modify the algorithm until it converges in

a satisfactory manner for our application. However, there is little
generality in this procedure. A technique that works in one case
may fail when applied to a slightly different problem. The back-
propagation algorithm, as presented in this section, was taken from

