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PROGRAM Lotka-Volterra model (larch bud moth)

INITIAL

INTEGER icount

CONSTANT tmx = 24.0, icount
opgc

CONSTANT opgb = 0.01,
CONSTANT opge = 0.0001
CINTERVAL cint = 0.1
XERROR yl = 1.0E-6, y2

TABLE inshi, 1,30/ 1949.
1953.

1957.

1961.

1965.

1969.

1973.

1977.

0.

121.

TABLE insme, 1,30/ 1949.

TABLE inslo, 1,30/ 1949.
1953.
1957.
1961.
1965.
1969.
1973.
1977.

=O’

opga

0.0001,

= 1,.0E-6

0000,
0000,
0000,
0000,
0000,
0000,
0000,
0000,
0630,
6230,

.4090,
.2980,
.1400,
.5670,
.8720,
.0180,

0000,

.0000,
.0000,
.0000,
.0000,
.0000,
.0000,
.0000,
.0180,
.7970,
.2460,
. 6380,
.1160,
.1970,
. 6120,
.0080,

0000,
0000,
0000,
0000,
0000,
0000,
0000,
0000,

.0070,
.8660,
.3550,
.5710,
.0000,
.0210,
.5000,

1950.
1954.
1958.
1962.
1966.
13870.
1974,
1978.
0.
767.
0
45,
0.

1.
333.
0.

1950.
1954.
1958.
1962.
1966.
1970.
1974.
1978.
0.
331.

0000,
0000,
0000,
0000,
0000,
0000,
0000,
0000,
2490,
7910,

.2580,

5560,
0970,
8720,
6690,
1420/

0000,
0000,
0000,
0000,
0000,
0000,
0000,
0000,
0820,
7600,

.0850,
.8780,
.01%0,
.0680,

0230,

.0560/

0000,
0000,
0000,
0000,
0000,
0000,
0000,
0000,
0090,
0050,

.0001,
.5570,
.0001,
.3330,
.5630,

— 24 —

= 0.00001
opgd = 0.0001

1951.
1955.
1959.
1963.
1967.
1971.
1975.

252.

413.

19.
18.

1951
1955.
1959.
1963.
1967.
1971,
1975.

126.

248.

10.

1951.
1955.
1959.
1963.
1967.
1971.
1975.

=
(] .
ONOWORNO

0000,
0000,
0000,
0000,
0000,
0000,
0000,

.2530,

1130,

.2000,

5200,

.0420,

3070,
5850,

.0000,

0000,
0000,
0000,
0000,
0000,
0000,

. 4440,

5410,

.0800,

8170,

.0020,

5690,

.7490,

0000,
0000,
0000,
0000,
0000,
0000,
0000,

.0020,
.3300,
.0120,
.9700,
.0001,
.5660,
. 9170,

1952.
1956.
1960.
1964.
1968.
1972.
1976.

42.
362.
368.

1952.
1956.
1960.
1964.
1968.
1972.
1976.

21.

184.

173.

1952.
1956.
1960.
1964.
1968.
1972,
1976.

11.
68.
50.
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L7.

0.0001, 0.0170/

0.2971
36.0
.948
.8359
.589

(N eTNoNN o]
I O '
ANACO N

v}
0
t

bst
cst
dst
est

[ T I |
oo

abold
acold
adold
aeold

OOOO
OCOOO

gold = 1.0E20

.icount = icount + 1

PRINT L7, icount, a, b, ¢, d, e

.FORMAT (1X,I3,5E12.4)

END $ "of INITIAL"

PIbdot 2.0*er*erb

—_ 2y -

DYNAMIC
DERIVATIVE

time = t + 1954.0
insmax = inshi(time)
insmed = insme(time)
insmin = inslo(time)
yldot = a* (1.0 - y2)*yl
y2dot = -c*(1.0 - yl)*y2
X2 = b*y2
er = alog(x2) - alog(insmed)
PIdot = er*er
yl = INTEG(yldot, d)
y2 = INTEG(y2dot,e)
PI = INTEG(PIdot,0.0)
yladot = (1.0 - y2)*yl + a*(1.0 - y2)*yla - a*y2a*ryl
y2adot = -c*(1.0 - yl)*y2a + c*yla*y2
x2a = Db*y2a
era = x2a/x2
PIadot = 2.0*er*era
yla = INTEG(yladot,0.0)
y2a = INTEG(yZ2adot,0.0)
Pla = INTEG(PIadot,0.0)
ylbdot = a* (1.0 - y2)*ylb - a*y2b*yl
y2bdot = —-c* (1.0 - yl)*y2b + c*ylb*y2
x2b = y2 + b*y2b :
erb = x2b/x2



L.

INTEG (ylbdot,0.0) - 26

ylb =

y2b = INTEG (y2bdot,0.0)

PIb = INTEG(PIbdot,0.0)

yledot = a*(1.0 -~ y2)*ylc - a*y2c*yl
y2cdot = (yl1 - 1.0)*y2 - c*(1.0 - yl)*y2c + c*ylc*y2
X2c = Db*y2c

erc = x2c¢/x2

PIcdot = 2.0*er*erc

ylc = INTEG(ylcdot,0.0)

y2c = INTEG(y2cdot,0.0)

Plc = INTEG(PIcdot,0.0)

ylddot = a*(1.0 - y2)*yld - a*y2d*yl
y2ddot = -c*(1.0 - yl)*y2d + c*yld*y2
x2d = b*y2d

erd = x2d/x2

PIddot = 2.0*er*erd

yld = INTEG(ylddot,1.0)

y2d = INTEG(y2ddot,0.0)

PId = INTEG(PIddot,0.0)

yledot = a* (1.0 - y2)*yle - a*yle*yl
y2edot = -c*(1.0 - yl)*y2e + c*yle*y2
X2e = Db*y2e

ere = x2e/x2

PIedot = 2.0*er*ere

yle = INTEG(yledot,0.0)

y2e = INTEG(y2edot,1.0)

PIe = INTEG(PIedot,0.0)

END $ "of DERIVATIVE"
TERMT (t .ge.tmx)
END $ "of DYNAMIC"
TERMINAL

PRINT L9, PIa, PIb, PIc, PId, PIe
.FORMAT (4X, 5E12. 4)

"Calculate length of gradient™
g = PIa*PIa + PIb*PIb + PIc*PIc + PId*PId + PIe*PIe

"If length of gradient is sufficiently small, stop"
IF( g .LE. 1.0E-5 ) GOTO L5

"If iteration does not converge, stop also"
IF( icount .GT. 100 ) GOTO L4

"If length of gradient has grown, decrease opg"
IF( g .LE. gold ) GOTO L2

opga = opga/2.0
opgb = opgb/2.0
opgce = opgc/2.0
opgd = opgd/2.0
opge = opge/2.0

"If norm of differences between angles has not changed much, "



L2..ab = PIb/PIa

"increase opg" - '7 -_—
dab = ab - abold ~

IF( dab*dab .LT. 0.03 ) opgb = 1.5*%opgb
ac = PIc/Pla

dac = ac - acold

IF( dac*dac .LT. 0.03 ) opgc = 1l.5%*opgc
ad = PId/PIa

dad = ad - adold

IF( dad*dad .LT. 0.03 ) opgd = 1.5%*opgd

ae = PIe/Pla
dae = ae - aeold
IF( dae*dae .LT. 0.03 ) opge = 1l.5%*opge

"If new parameter values become negative, system becomes instable"
"Reduce opg also, and repeat"
La..ast = a - opga*PIa
IF( ast.GT.0.0 ) GOTO Lb
opga = opga/2.0
GOTO La
Lb..bst = b - opgb*PIb
IF( bst.GT.0.0 ) GOTO Lc
opgb = opgb/2.0
GOTO L1b
Lc..cst = ¢ - opgc*Plc
IF( ¢st.GT.0.0 ) GOTO 1d
opgc = opgc/2.0
GOTO Lc
Ld..dst = d - opgd*PId
IF( dst.GT.0.0 ) GOTO Le
opgd = opgd/2.0
GOTO 1Ld
Le..est = e - opge*PIle
IF( est.GT.0.0 ) GOTO L3
opge = opge/2.0

GOTO Le

"Okay! A new set of parameter values has been found. Iterate"
L3..a = ast

b = bst

c = cst

d = dst

e = est

abold = ab

acold = ac

adold = ad

aeold = ae

gold = g

PRINT L8, PI, opga, opgb, opgc, opgd, opge
L8..FORMAT (4X,6E12.4)

GOTO L1

"The iteration did not converge. Print out message"
L4..CONTINUE :

"That’s it"
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L5..CONTINUE

END $ "of TERMINAL"

END $ "of PROGRAM"
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14.11 Genetic Learning

Let us now return to the mechanisms of learning. I had mentioned
earlier that gradient techniques are dangerous because of potential
stability problems, besides the fact that they are not biologically
plausible.

In this section, I shall introduce another optimization technique
that does not exhibit the stability problems characteristic of gradient
techniques, and while this approach is not biologically plausible in
the context of neural learning, it has at least been inspired by biology.
Genetic algorithms were first developed by John Holland in the late

1960s [14.14]. As with the neural networks, the basic idea behind
genetic algorithms encompasses an entire methodology. Thus, many
different algorithms can be devised that are all variations of the same
basic scheme.

The idea behind genetic algorithms is fairly simple. Let me de-
scribe the methodology by means of a particular dialect of the ge-
netic algorithms applied to the previously introduced linear system
backpropagation network. In that problem, we started out by ini-
tializing the weighting matrices and bias vectors to small random
numbers. The randomization was necessary in order to avoid stag-
nation effects during startup. Yet we have no reason to believe that
the initial choice is close to optimal or even that the weights remain
small during optimization. Thus, the initial weights (parameters)
may differ greatly from the optimal weights, causing the optimiza-
tion to require many iterations. ‘Also, since backpropagation learning
is basically a gradient technique, the solution may converge on a lo-
cal rather than a global minimum, although this didn’t happen in
this particular example.
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Genetic algorithms provide us with a means to determine optimal
parameter values more reliably even in “rough terrain,” i.e., when
applied to systems with a cost function that has many “hills” and
“valleys” in the parameter space.

Let us assume that we already know approximate ranges for the
optimal weights. In our case, the optimal weights belonging to the
W1 matrix assume values between —2.0 and +2.0, those belonging
to the W2 matrix assume values in the range —0.5 to 0.5, those from
the b! vector are between —0.05 and 0.05, and those from b? are
bounded by —0.005 and 0.005. I am cheating a little. Since I solved
the backpropagation problem already, I know the expected outcome.
The more we can restrict the parameter ranges, the faster the genetic
algorithm will converge.

We can categorize the parameter values by classifying them as
‘very small,’ ‘small,’ ‘large,” and ‘very large,’ respectively. In terms
of the terminology used in Chapter 13, we transform the formerly
quantitative parameter vector into a qualitative parameter vector.
A semiquantitative meaning can be associated with the qualitative
parameters using fuzzy membership functions as shown in Fig.14.23
for the parameters stored in W1,

The number of levels can, of course, be chosen freely. In our example,
we decided to use four levels, nlev = 4. Let us now denote each class
by a single upper—case character:

A & very small
B & small
C & large
D & very large

Thus, each qualitative parameter can be represented through a single
character. We may now write all qualitative parameter values into
a long character string such as:

ABACCBDADBCBBADCA

where the position in the string denotes the particular parameter and
the character denotes its class. The length of the string is identical
to the number of parameters in the problem. This is our qualitative
parameter vector.
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Somehow, this string bears a mild resemblance to our genetic code.
The individual parameters mimic the amino acids as they alternate
within the DNA helix. Of course, this is an extremely simplified
version of a genetic code.

In our example, let us choose a hidden layer of length lhid = 8.
Consequently, the size of W' is 8 x 4, since our system has four
inputs, and the size of b! is 8. The size of W2 is 3 x 8, since the
system has three targets, and the size of b? is 3. Therefore, the

total number of parameters of our problem npar is 67. Thus, the
parameter string must be of length 67 as well.

The algorithm starts out with a genetic pool. We arbitrarily gen-
erate nGenSt = 100 different genetic strings and write them into
a matrix of size 100 x 67. In CTRL-C (or MATLAB), it may be
more convenient to represent the genes by integer numbers than by
characters. The genetic pool can be created as follows:

2
E
3
=2
LY
(

GenPool =ROUND(nlev * RAND(nGenSt, npar)
+ 0.5 *x ONES(nGenSt, npar))

Initially, we pick 10 arbitrary genetic strings (row vectors) from our
genetic pool. We assign quantitative parameter values to them us-
ing their respective fuzzy membership functions by drawing ran-
dom numbers using the fuzzy membership functions as our distri-
bution functions. Next we generate weighting matrices and bias
vectors from them by storing the quantitative parameters back into
the weighting matrices in their appropriate positions. Finally, we
evaluate our feedforward network 301 times using the available in-
put/target pairs for each of these 10 parameter sets. The result will
be 10 different figures of merit, which are the total errors, the sums
of the individual errors for each training pair, found for the given
weighting matrices. We sort the 10 performance indices and store
them in an array. This gives us a vague first estimate of network
performance.

We then arbitrarily pick two genetic strings (the parents) from our
pool, draw an integer random number k from a uniform distribution
between 1 and 67, and simulate a crossover. We pick the first k char-
acters of one parent string (the head), and combine them with the
remainder (the tail) of the other parent string. In this way, we obtain
a new qualitative genetic string called the child. We then generate
quantitative parameter values for the child using the fuzzy member-
ship functions and simulate again. If the resulting performance of
the child is worse than the fifth of the ten currently stored perfor-
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mance indices, we simply throw the child away. If it is better than
the fifth string in the performance array, but worse than the fourth,
we arbitrarily replace one genetic string in the pool with the child
and place the newly found performance index in the performance ar-
ray. The worst performance index is dropped from the performance
array. If it is better than the fourth, but worse than the third stored
performance, we duplicate the child once and replace two genetic
strings in the pool with the two copies of the child. Now 2 of the 100
strings in the pool are (qualitatively) identical twins. If it is better

than the third but worse than the second performance, we replace
four genetic strings in the pool with the child. If it is better than the
second but worse than the first, we replace six genetic strings in the
pool with the child. Finally, if the child is the all-time champion, we
replace 10 arbitrary genetic strings in the genetic pool with copies
of our genius.

We repeat this algorithm many times, deleting poor genetic ma-
terial while duplicating good material. As time passes, the quality
of our genetic pool hopefully improves.

It could happen that the very best combination cannot be gen-
erated in this way. For example, the very best genetic string may
require an A in position 15. If (by chance) none of the randomly
generated 100 genetic strings had an A4 in that position or if those
genes that had an A initially got purged before they could prove
themselves, we will never produce a child with an A in position 15.
For this reason, we add yet another rule to the genetic game. Once
every nmuta = 50 iterations, we arbitrarily replace one of the char-
acters in the combined string with a randomly chosen new value,
simulating a mutation. Eventually, this mutation will generate an A
in position 15.

Obviously, this algorithm can be applied in an adaptive learning
mode. Our genetic pool will hopefully become better and better,
and with it, our forecasting power will increase.

Of course, this algorithm can be improved. For instance, if we
notice that a particular parameter stabilizes into one class, we can
recategorize the parameter by taking the given class for granted and
selecting new subclasses within the given class. In our example, we
might notice that the parameter 27, which belongs to W*, always
assumes a qualitative value of C, i.e., its quantitative value is in the
range between 0.0 and 1.0. In this case, we can subdivide this range.
We now call values between 0.0 and 0.25 ‘very small’ and assign a
character of A to them. Values between 0.25 and 0.5 are now called




‘small’ and obtain a character value of B, etc. I decided to check

for recategorization once every 50 iterations, whenever I simulated a

mutation. I decided that a recategorization was justified whenever

90% of the genes in one column of GenPool had assumed the same
~value, nperc = 0.9.

I ran my genetic algorithm over 800 iterations, which required
roughly 2 hours of CPU time on our VAX-11/8700. The execution
time was less than that of the backpropagation program since each
iteration contains only the forward pass and no backward pass and
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the length of the hidden layer was reduced from 16 to 8. Thus,
for a fair comparison between the two techniques, I should have
allowed the genetic algorithm to iterate 2800 times. The results of
this optimization are shown in Fig.14.24a.

,
e

Genetic Network of Linear System
300. T T ! v ; '

250. F-411---
200. | (AINLAMIRE 40 10 1R Tk iR LA
3 g1 1!

150.

Total Error [-]

100, }---*+-4: B B

50. : L
0.0 100. 200. 300. 400. 500. 800. 700. 800.

Iteration Count [#]

Figure 14.24a. Optimization of linear system with genetic algorithm.

Obviously, this optimization didn’t work too well. Figure 14.24b
shows a moving average computed over 100 iterations. The first
value in Fig.14.24b is the average of the first 100 values of Fig.14.24a,
the second value is the average of values 2 through 101 of Fig.14.24a,
etc. I computed the moving average using the AVERAGE function

of SAPS-II.
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Moving Average of Genetic Network
180. ' : k B ; ;

175.
170.
165.

160.

Total Error [-]

155.

150. ; i i i i i
100. 200. 300. 400. 500. 800. 700. 800.
Iteration Count [#]

Figure 14.24b. Moving average of linear system.

The genetic algorithm does indeed learn. However, progress is
painfully slow. My interpretation of these results is as follows: The
terrain (in the parameter space) is very rough. Therefore, since we

decided to use only four levels, each level contains both high moun-
tains and deep gulches. Since we only retain the class values but
not the quantitative values themselves, we throw away too much in-
formation. Consequently, I decided to rerun the optimization with
nlev = 16. Since there are now more possible outcomes, I decided
to consider 30% a solid majority vote, and thus, I reduced nperc
to 0.3. Another 1.2 CPU-hours later, I obtained the results for the
modified algorithm. The simulation required less time because the
optimization was terminated after 445 iterations. The results are
shown in Fig.14.25.

Genetic Network of Linear System

L3 ¥ T 13 13

250.

200.

150.

..............................................................

Total Error [-]

100.

50.
0.0 50. 100. 150. 200. 250. 300. 350. 400. 450.

Iteration Count [#]

Figure 14.25. Optimization of linear system with genetic algorithm.
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This time, the genetic algorithm learned the weights much faster.
Unfortunately, good genetic material was weeded out too quickly,
and the algorithm ended up in a ditch.

Montana and Davis designed another genetic algorithm specifically
for the purpose of training neural feedforward networks [14.25]. They
argue against eliminating useful information by coding fuzzy infor-
mation into our genetic strings. Indeed, both the crossover operator
and the mutation operator can be applied to both quantitative (real)
and qualitative (fuzzy) parameters. In addition, they designed a set
of interesting more-advanced genetic operators. They claim that
networks function due to the synergism between weights associated
with individual nodes. Thus, instead of applying the crossover algo-
rithm blindly, they keep all the incoming weights of a node intact,
and use either those of the father or those of the mother. Also, they
consider multiple crossovers. Each node with all its incoming weights
is arbitrarily taken from either the father or the mother. Thus, they
simulate multiple crossovers of entire features. This makes a lot of

sense. Montana and Davis also developed a very interesting con-
cept of node assessment. They evaluate the quality (error) of a
network in exactly the same manner that I use, i.e., they add the
errors of the network over all training pairs. Then they remove an
individual node from the network, i.e., they lobotomize all incoming
and outgoing connections of that node by setting the correspond-
ing weights equal to zero and recompute the quality of the modified
network. They repeat the same procedure over and over, each time
lobotomizing exactly one node. Using this information, they define
the node whose presence has the least effect on the overall quality as
the weakest node. Their mutation algorithm influences all incoming
and outgoing weights of the weakest node in the hope of thereby
improving the quality of the overall network. Again, this algorithm
makes a lot of sense from an engineering point of view. They use a
different distribution function for randomizing the initial weights of
the network. Initially, they evaluate the quality of the entire genetic
pool. However, in each generation, they pair up only one couple (as
I do) and produce only one child, which replaces the worst genetic
string in the genetic pool (unless it is even worse). The parents
are chosen randomly, but with a distribution function such that the
second—-best genetic string is chosen 0.9 times as often as the best,
and the third-best string is chosen 0.9 times as often as the second
best, etc. Also this rule makes a lot of sense. Figure 14.26 shows
the results of a simulation of the same problem that was discussed
earlier, but now using the algorithm by Montana and Davis [14.25].
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Figure 14.26. Montana—Davis optimization of linear system.

The algorithm is very efficient. The error is reduced quickly and
the system learns fast. Unfortunately, it stagnates. Because the
real parameter values are stored, no new information is entered into

the system except through mutation. The system finds the smallest
error among all the combinations of parameters present in the initial
genetic pool reliably and quickly, but then it is stuck. The local
superman wipes out his competition effectively and efficiently and
becomes a tyrant ... unfortunately, he is but a midget in global
terms.

This algorithm suffers from the same disease as mine. In both
algorithms we were greedy and tried to retain as much good genetic
material as possible. We never let a good genetic string die. This is
the seed of stagnation.

Even the fittest among us must die for progress to survive.

Goldberg suggested using a genetic algorithm closer to a biological
model [14.6]. He proposed the following genetic dialect: We start
out with a randomly chosen qualitative genetic pool (as in my algo-
rithm). We evaluate the quality of the entire genetic pool (as in the
case of the algorithm by Montana and Davis). We rank the genetic
strings according to their quality. We define the fitness of a genetic
string as:
1.0

t = 14.43
fitness total error ( )

We then add up the fitnesses of all genetic strings in the genetic pool
and define the relative fitness of a genetic string as:




4=

B
2
<1
<
2
;E_
E

»z(

relative fitness = fitness (14.44)

sum over all fitnesses

We then replace the entire genetic pool by a new pool in which each
genetic string is represented never, once, or multiple times propor-
tional to its relative fitness. Poor genetic strings are removed, while
excellent genetic strings are duplicated many times. We then pair
the genetic strings up arbitrarily. Each pair produces exactly two
offspring, one consisting of the head of the first string concatenated
with the tail of the second and the other consisting of the head of
the second string concatenated with the tail of the first. We then
let the old generation die and replace the entire genetic pool by the

. new generation. The algorithm is repeated until convergence.

This algorithm grants fit adults many children with varying sex
partners, potentially including twin siblings, and deprives unfit
adults of the right to reproduce. The algorithm enforces strict birth
control.

An obvious disadvantage of this genetic dialect is the need to eval-
uate the fitness of the entire genetic pool once per generation. Thus,
we can optimize this algorithm over 16 generations only if we wis'h to
compare it to the previously advocated dialect. However, I decided
to compute 100 iterations anyway. Figure 14.27a shows the results
of this optimization. I plotted the mean value of the total errors of

all genetic strings in the genetic pool.
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Figure 14.27a. Optimization of linear system with Goldberg’s algorithm.

The results are disappointing. If the algorithm has learned anythiflg,
the improvement is lost in the noise. I then computed a moving
average of the previously displayed mean values over 50 generations.
The results are shown in Fig.14.27b.
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Figure 14.27b. Moving average of Goldberg’s algorithm.

Notice that the algorithm does indeed learn. However, the progress
is unbelievably slow. I ran this program in batch. It required just

over 12 CPU-hours. Obviously, I cannot determine whether this
algorithm will stagnate or find the true minimum, but I believe that
it will eventually find the true minimum.

The problem with Goldberg’s algorithm is the following. The en-
tire idea of the genetic crossover operator bases on the naive belief
that the child of two fit parents is, at least in a statistical sense, a
fit child. This belief is justified in nature since the genetic parame-
ters reflect features and the child will inherit an entire feature either
from the father or the mother. The overall fitness of a person is
defined as the cumulative quality of all of his or her features. Thus,
by inheriting features from both parents, fit parents will indeed have
fit children. However, in our case, the individual parameters don’t
represent features. Each parameter influences all features, and each
feature is influenced by all parameters. There is no compelling rea-
son to believe that the crossover child of two fit parents is more fit
than the average genetic string. Amazingly, the simulation results
showed that such a child is indeed statistically more fit than the av-
erage genetic string ... but only by a narrow margin. This is why
progress was so incredibly slow. It might have been worthwhile to
combine Goldberg’s algorithm with the previously proposed algo-
rithm by Montana and Davis by combining the genetic operators of
the latter (crossover of features and mutation of the weakest node)
with the social behavior of the former (replacement of the entire
population once per generation), but I was afraid that the director
of our computer center would knock me over my head if I continued
in this way.
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We have just demonstrated the power of evolutionary develop-
ment. We learned a lesson: For evolution to work, we must per-
mit all individual genetic strings to die, irrespective of their qual-
ity. Retaining any individual string invariably leads to stagnation
and the evolutionary process comes to a halt. It is the power of
ever—changing nonrepetitive variations — we call this phenomenon

a chaotic steady-state — which enables the evolutionary process to
continue.

In the beginning, there was Chaos.

Chaos nurtures Progress.

Progress enhances Order.

Order tries to defy Chaos at all cost.

... But the day Order wins the final battle
against Chaos, there will be mourning.
’Cause Progress is dead.

Genetic algorithms are a class of simple stochastic optimization tech-
niques. Their behavior was demonstrated here by means of a neural
network learning problem. However, no direct relationship exists
between the two. Genetic algorithms can be interpreted as one par-
ticular implementation of a Monte Carlo optimization technique and
can be applied to arbitrary optimization problems. We shall return
to this discussion in the companion book of this text in the context
of general-purpose parameter—estimation methods. It made sense
to introduce the genetic algorithms here due to their inspirational
biological foundation.

In the context of artificial neural networks, the genetic algorithm
provides us with a systematic and stable technique to optimize arbi-
trarily constructed networks. This idea is fairly new and hasn’t yet
been exploited to its full potential. The idea is fruitful, because it
removes configuration constraints on artificial neural networks. For
instance, it allows us to optimize arbitrarily connected perceptron
networks in a general, systematic, and robust (though fairly ineffi-
cient) way.




