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ILL-CONDITIONED EIGENSYSTEMS AND THE COMPUTATION OF
THE JORDAN CANONICAL FORM*

G. H. GOLUBt anp J. H. WILKINSON{

Abstract. The solution of the complete eigenvalue problem for a nonnormal matrix 4 presents
severe practical difficulties when A is defective or close to a defective matrix. Moreover, in the presence
of rounding errors, one cannot even determine whether or not a matrix is defective. Several of the more
stable methods for computing the Jordan canonical form are discussed, together with the alternative
approach of computing well-defined bases (usually orthogonal) of the relevant invariant subspaces.

1. Introduction. From the standpoint of classical algebra, the algebraic
eigenvalue problem has been completely solved. The problem is the subject of
classical similarity theory, and the fundamental result is embodied in the Jordan
canonical form (J.c.f). Most mathematicians encounter similarity theory in an
abstract setting, but since we are concerned here with practical algorithms, we
first review the basic result purely in matrix terms.

The J.cf. is described with reference to matrices known as elementary Jordan
blocks. A Jordan block of order r associated with an eigenvalue 4; will be denoted
by Jy(4), and its general form is adequately illustrated by the definition

A 1 0 0
0 4, 1 O
(L.1) TR =l
0 0 0 J

The basic theorem is that given any n x n matrix with complex elements, there
exists a nonsingular matrix X such that

(1.2) X 1AX =J, AX = XJ,

where J, the J.c.f. of 4, is block diagonal, each diagonal matrix being an elementary
Jordan block. Apart from the ordering of the blocks along the diagonal of J (which
can be arbitrary), the J.c.f. is unique, although X is far from unique. It will be
convenient to order the blocks in some standard way. Unless reference is made to
the contrary, we assume that the |1, are in order of nonincreasing magnitude and
that the blocks associated with a specific 4; are ordered to be of nondecreasing size.
Thus if the matrix A of order 12 has only 2 distinct eigenvalues 4, and 4, with
|A:] = |4,), and A, is associated with 2 blocks of order 2 and one of order 3 while
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ILL-CONDITIONED EIGENSYSTEMS 579
A, is associated with one block of order 2 and one of order 3, its J.c.f. will be
presented in the form
[Ja(4y)
JA41)
(1.3) J5(Ay)
J2(42)

J3(42)

Here A, is an eigenvalue of multiplicity 2.+ 2 + 3 = 7 and 4, of multiplicity
2 + 3 = 5. The example illustrates that there may be more than one block of a
given dimension associated with a specific 4;.

Let us consider the significance of the existence of a block J,(4,) in J, where
J,(4;) starts in rows and columns s and ends in rows and columns ¢, and

(1.4) r=t—s+1.

Equating columns s to t on both sides of equation (1.2), we have
Ax, = Ax,, (A-ADx, =0,
AxXgpy = AXopq + X, (A — ADx,4, = X,

(1.5)

AXgyg = AXgy 2 + Xgiqs (A= Ad)xse = X544,

Ax, =A%, + x,_y, (A—-ADx, =x_q,

where, here and later, we shall denote the ith column of a2 matrix X (say) by x;.
The first of these relations implies that x, is an eigenvector corresponding to 4;.
The remaining equations imply that

(A= Ad)Pxp; =0, (4= AlPx.4, =0,

' e (A= A0 T, = (4~ Ad)Yx, = 0.
Notice that in general the x,.; satisfy the relations
(1.7) (A= 2AP X oy =x,#0 and (4 — APxs4 -1 = 0.

We shall refer to any vector x such that (4 — A’ 'x #0,(4 — A’ x =0,as a
vector of grade p, and for uniformity, an eigenvector becomes a vector of grade 1.
It is evident, for example, that

(1.6)

(18) (A — ADXopXgq 3 + Gy Xg4 g + 0gXg) = U2Xg,
' (A = AD*(epXgs g + 0y Xg4 g + 0oX) =0,

so that a,X,, 5 + ;X4 + &oX, is @ vector of grade 3 for all «; provided a, # 0.

The vectors x,.; arising in the Jordan canonical reduction are special in that

they satisfy the chain relations (1.5). We shall refer to the vectors of grades 1, 2,

3, - - - associated with a Jordan block as principal vectors of grades 1,2,3, - .
Clearly det(A1 — J,(4)) = (A — 4), and we may associate such a polynomial

with each of the blocks in the J.c.f. These polynomials are called the elementary
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divisors of A. An enumeration of the elementary divisors gives a unique specification
of the J.c.f. Corresponding to a Jordan block of dimension unity the elementary
divisoris(4 — 4,),1.e.,itis linear. Ifall the Jordan blocks in the J.c.f. are of dimension
unity, then the J.c.f. is strictly diagonal, the matrix has n independent eigenvectors
given by the columns of X and all the elementary divisors are linear. These four
properties are fully equivalent to each other. Notice that if there are n distinct 4;,
then all the blocks are necessarily of dimension unity. Departure from strict
diagonal form can occur only if there is at least one multiple eigenvalue, though
even in this case the J.c.f. can be diagonal.

A matrix is said to be defective if the J.c.f. is not strictly diagonal. In this case,
at least one elementary divisor is nonlinear and the number of independent
eigenvectors is less than n; the remaining columns of X are principal vectors of
the appropriate grades.

A matrix is said to be derogatory if there is at least one A; which is associated
with more than one diagonal block in the J.cf. If such a 4, is associated with
k different blocks, then there are precisely k independent eigenvectors associated
with ;.

It should be emphasized that a matrix may be defective without being
derogatory and vice versa, or it can be both defective and derogatory. If the 4,
are distinct, it cannot be either. If 4 is normal{including Hermitian, skew Hermitian
or unitary), then its J.c.f. is always strictly diagonal, and the X producing the
J.c.f. may be chosen to be unitary. A normal matrix with a multiple eigenvalue is
therefore derogatory but not defective.

We do not report on numerical experiments in this paper, although many of
the algorithms described have been implemented with success. It is the aim of
this paper to emphasize the problems associated with computing invariant sub-
spaces and to stimulate research in this area. We have not attempted to be
encyclopedic (despite the length of the paper) but state those principles which
we feel are of importance in this area.

2. Linear differential equations and the J.c.f. The practical significance of the
J.c.f. of a matrix A is that it provides the general solution of the associated system
of linear differential equations with constant coefficients defined by

2.1 — = Au,
@D dt “
where u is a vector of order n. Under the linear transformation u = Xv, the
equation becomes

| dv dv
2.2 X —=A4X —=X"1AXv = Jv.
(2.2) 7 v or 7 Xv v
Hence the J.cf. gives a simplified version of the original system. If J is strictly
diagonal (i.e., 4 is not defective), the transformed system is

dv;

(2'3) E = /1,-1),-,

and in terms of variables v;, the equations are completely decoupled. The general
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solution is
(2.4) o =00t u=Y o%; e,

and is therefore directly expressible in terms of the »n independent eigenvectors x;
and n independent constants v{%, the initial values of the v;. Notice that the analysis
is not affected by any multiplicities in the A; provided J is strictly diagonal. An
eigenvalue A; of multiplicity r is then associated with r independent eigenvectors
and r arbitrary v!”. When 4 is defective, the linear transformation does not give
a complete decoupling of the equations, but there is a decoupling of those equations
involving the v; associated with each specific block from those associated with all
other v;. The general solution is most readily exposed in terms of the concept of
the “exponential” of a matrix. We define exp (B) by the relation

(2.5) exp(B)=I+iB+iBz+~--+iB’+---,

1! 2! r!
the matrix series being convergent for all B. The solution of (2.1) such that u = u®
when t = 0 is given by

- (2.6) u = exp (Atyu'©.
From the series expansion it will readily be verified that
@27 exp (XBX ™ 1t) = X exp (B)X "1,

and hence the solution of (2.1) is
u=Xexp(J)X u®

or

(2.8) v = exp (Je'®, wherev = X u.

If J(4;) is a typical block in J, then exp (Jt) has the same block structure, with
exp (J,(;)t) in place of each J,(4;), and the form of exp (J,(4,)t) is fully illustrated
by the relation

1 41! 1321 133!

1 g1 22!
(29) exp (J4(4)1) = exp (4;1)
1 1
1

Hence on transforming back from the v-coordinates to the u-coordinates, the
solution corresponding to the initial problem is again given in terms of the vectors
x; but corresponding to a Jordan block J,(4;), terms involving exp (4;)t%/s!
(s=0,---,r— 1)arise.

This discussion gives the impression that the theoretical significance of the
J.c.f. is fully matched by its practical importance since it is precisely because of
its relationship to the solution of systems of linear differential equations that the
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algebraic eigenvalue problem occupies such a prominent position™in practical
applied mathematics. The principal objective of the remainder of this paper is
to show the basic limitations of the J.c.f. from the point of view of practical compu-
tation and, indeed, to cast doubt on the advisability of trying to determine it.

Before proceeding, it is useful to consider the degree of arbitrariness in the
matrix X involved in the reduction to J.c.f. If the 4; are distinct, J is diagonal
and the x; are the unique eigenvectors. The only degree of arbitrariness is in the
scaling of the x;. Werhave

(2.10) D 'X"'4AXD=D"'JD =,

where D is a nonsingular diagonal matrix.

Turning now to the case where J has a single block of dimension r, we see that
there is already a wide freedom of choice in X. Suppose, for illustration, that there
is a block of order 4 associated with 4;; then from (1.5) we see, writing B = 4 — A,
that

Blaxgys + bxgy, + cx.4q + dxg) = axg45 + bx, + X,

(211) B(axs+2 + bxs+1 + st) = X541 + bxu
B(ax ., + bx,) = ax,,
B(ax,) =0,

where the a, b, ¢, d are arbitrary, but a # 0. Hence the chain of vectors x, ;,
X,4, Xs41, Xs may be replaced by the chain of vectors given in (2.11) and on this
account X may be replaced by X P, where

I
a b c d
a b ¢
(2.12) P =
a b
a
I

The derogatory case, i.e., the case when there is more than one block associated
with a given 4;, may be illustrated by the case when there are blocks of orders
2 and 3 starting in positions s and ¢, respectively. From the two chains

Bx, =0,
(2.13) Bxs+1 = xs7

Bxg4y = Xgi1,
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the two generalized chains defined by

Blaxgs, + bxgy + cx; + dx, + ex) = axgyy + bx, + dx,,

(2.14a) Blax,,, + bx, + dx,) = ax;,
B(ax,) = 0,
and
B(fx,+1 + 8%, + hx, 4y + ix,) = fx; + hx,,
(2.14b) B(fx, + hx) o,

may be derived, where the a, b, ---, i are arbitrary, except that a # 0, h # (,
and X may be varied correspondingly.

3. Sensitivity of the eigenvalues of a defective matrix. Blocks of dimension
greater than unity in the J.c.f. can emerge, if at all, only as the result of the presence
of multiple eigenvalues. In the classical theory there is a clear-cut distinction
between equal and unequal eigenvalues, In practice, the situation is very different

" since a matrix may not be representable exactly in the computer and, in any case,
rounding errors are, in general, involved in computing transformations. Let us
consider the effect of small perturbations qn the eigenvalues of an elementary
Jordan block J,(4;). If the zero element in position (r, 1) is replaced by ¢, the
characteristic equation

(3.1) (A=) =¢

and the multiple eigenvalue A, is replaced by r distinct eigenvalues A; +
¢*"(cos (2sm/r) + isin(2sn/r)) (s =0,---,r — 1). Suppose A; is of order unity,
r = 10and & = 107 !°. Then the separation of the perturbed roots is of order 10™*
and they cannot in any reasonable sense be regarded as ‘“‘close”.

In practice, we have to diagnose multiplicities and the degree of defectiveness
from computed eigenvalues. When these are determined by a very stable algorithm,
we cannot rely on any of them being recognizably “‘close”, even when the given A4
really does have some multiple eigenvalues. When A has an elementary divisor of
high degree, this danger appears to be particularly severe.

However, even this remark somewhat oversimplifies the situation. One tends
to be seduced by the simplicity of the J.c.f. and as a result to attach too much
significance to every detail of it. When attempting to construct “difficult™ matrices
for practical experiments, it is common to take a nondiagonal J.c.f, subject it to
some exact similarity transformation and then to regard the resulting matrix as
wholly typical of a defective matrix.

But this is to attach too much significance to the unity elements in the Jordan
blocks. If D = diag (d,) is any nonsingular diagonal matrix, then from (1.2) we have

(3.2) D 'X~"'4XD = D~ 'JD.

Hence if J has a unity element in position (p, p + 1), the matrix D™'JD has
d; ', d, ., in this position; by a suitable choice of the d; the unity elements may be
given arbitrary values. The choice of the unity elements in the J.c.f. is purely for
notational convenience. However, in classical mathematics we can make a sharp



584 G. H. GOLUB AND J. H. WILKINSON

distinction between zero and nonzero elements, a luxury we are dented in practical
computation. We refer to a matrix as being in quasi-J.cf. if the only difference
from strict J.c.f. is that some of the super-diagonals have values other than unity,

It is possible for a matrix A4 to be highly defective without its eigenvalues being
unduly sensitive. Suppose, for example, that A is such that there is an orthogonal
matrix X for which

(3.3) X'AX =7,

where J is of quasi-J.c.f. in which nonzero super-diagonal elements are all 1071°,
Perturbations of order 107 1° in J (which correspond to perturbations of order
10~1% in A since X is orthogonal) produce perturbations of order 107! at most
in the eigenvalues. If |4, ]| is of the order of unity, then from the point of view of
10-digit decimal computation, the eigenvalues of 4 are not at all sensitive. One
cannot even rely on defectiveness being characterized by sensitivity of the corre-
sponding eigenvalues. Nevertheless it is true that d,/0c = O(¢'”~ ') for some
perturbations when J has.a block of order r, and hence, 04;/0e > 0 as ¢ = 0.
This means that if we are prepared to extend the precision of computation
indefinitely, we shall ultimately gain only one figure of accuracy for r extra figures
of precision. '

At this stage, one might ask what is the “natural’ quasi-J.c.f. for computa-
tional purposes. A reasonable definition is that it is the J for which the correspond-
ing [ X1 X, = »(X) is a minimum. If this J has super-diagonal elements
which are all small relative to ||J|,, the matrix 4 will not have sensitive eigenvalues.

As a final result relating small eigenvalues and small singular values, we note
the following theorem (for the definition of singular values, see § 7).

THEOREM. Let A be an n x n matrix with A, = ¢ and |A,| < |4} and such that
there are p Jordan blocks of dimensions ky, ky, -, k,, withk; Sk, < --- = k,,
associated with A,. Thenif A = XJX ™1,

(34)  Opmjui(A) S IXUNX 7 gleffr=41 + O(lel»-s+272),  j=1,2,--,p.
Proof. ’
Opj+1(A4) = an—j+l(XJX-1) < 04(X)0p- ;4 XY

3.5
(3.5) < 04(X)04(X "= s 1.

Since the singular values of J are given by [A(JJT)]'/3, it is obvious that they
are singular values of the elementary Jordan blocks. Consider the k x k block

(3.6) K=

— -

From the form of KK7”, k — 1 of the singular values are close to unity and since
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their product is ¥, the remaining singular value is O(¢"). In fact,

| . [ Kx|,
3.7 o(K) = min
.7 () = 2 T,
and taking %7 = (1, —¢, &%, .-+, (—=1)*" 15~ 1), we have
(3.8) oK) = lel* + O(lef**?2).

The result is thus established. Note that although we have shown that the singular
values are small, we have not shown and cannot show that the elements of the
corresponding singular vectors are correspondingly small.

4. Nl-conditioned eigenvalues. Since in practice it will usually be impossible
to determine whether a matrix has exactly equal eigenvalues, it is necessary to
consider the problem of the sensitivity of a simple eigenvalue with respect to
perturbations in A. If J is the J.c.f,, we have

4.1) AX =XJ, ZA=JZ, Z=X"*

When A, is a simple eigenvalue, x, is the corresponding right-hand eigenvector
and

4.2) Ax, = Ay,
If 2T is the first row of Z, then
@4.3) 2TA = 2T4,.

It is customary to define the left-hand eigenvector y, of A corresponding to 4,
as the vector satisfying

(4.4) yid = yia,,
and hence if we write Y = Z¥, the first column of Y gives this eigenvector and
4.5) YEX = 1.

Consider now the corresponding eigenvalue 1,(¢) and right-hand eigenvector
x,(¢) of A + B, where |B||, = 1. For sufficiently small ¢, it is easy to show that
A4(€) and x,(¢) may be expanded as convergent power series

@.6)  Af) =, +pe+pEt+ -, xy(8) = x; + v,8 + v,85 4+ -,

where the v; lie in the space spanned by x,, - - -, x,. (Note that in general these x;
will include principal vectors which are not eigenvectors.) Equating coefficients
of ¢ in the relation

4.7 (A +eB)(x; +vye+ ) =(A + pie+ )Xy + 08+ )
gives
(4.8) Bxl + Avl = llvl + plxl.

Now both v, and Av, lie in the space spanned by x,, ---, x,, and from (4.5),
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yix; =0 (i=2,---,n). Hence premultiplying (4.8) by y¥, we obtain

(4.9) Py = YiBxy/y{x;.

As derived above, y{x; = 1, but clearly in (4.9), x, and y, may be arbitrarily scaled
and it is convenient computationally to have {x,[[, = |y,l, = 1. In this case,
yx, = s, (in the notation of [25]), where s, is the cosine of the angle between
x; and y,. From (4.9),

04 I B, lIx 1
e 3 = |p,h< Y1ll211Bll. 1”2_:____.

0¢ |s=0 N Sy 7 Is4

The derivative is finite for any “direction” of B. This is in contrast to the case
where 2, is associated with a defective matrix when |04,/0¢|,-, = co0. This latter
result is in agreement with (4.10) since the left-hand and right-hand eigenvectors
are orthogonal correspondmg to a “defective’ A;. The bound in (4.10) is attained
when B = y,x¥, since then

(4.10)

(4.11) J’1Bx1 = yfylexl = 1.

Further, taking B = €'y, x¥, we can make (34,/0¢), - , have any required phase.
There is one very unsatisfactory feature of the above analysis. The quantity s; is
not invariant with respect to diagonal sintilarity transformation. Consider the
matrix

PR
(@.12) —[1 2],

with

(413) ll = 3’ A’Z = 17 yil = 21/2 , X = —2_1/'2—9 §y = 1.

The eigenvalue 4, is therefore very well-conditioned, as indeed are all eigenvalues
of all normal matrices. However, we have

2 o 1
4.14) D™'AD = |: - :l, where D = I: :l,
o 2 o
and now
(4.15) yfll = x’{ = _E__i__ Sy =

T 1+ AV (1 + a?)/2’ (1 +a?

Hence we may make s; arbitrarily small by taking « sufficiently large or
sufficiently small. It is clear that a small s; induced in this way is a very artificial
phenomenon. In this example, when s, is small, |[D~*4D|, » | A|,. In practice,
the relevant values of s; are those for D~ ! 4D, where D has been chosen so that
D~'A4D], is a minimum. Reducing this norm to a true minimum is not vital,
and in practice, the process of balancing described by Parlett and Reinsch in [12]
is usually adequate. ,
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High sensitivity of an eigenvalue A; has now been encountered in two different
contexts, first when 4, is associated with defectiveness and secondly when a value
of s; is small. We now show that when an s; is small, 4 is necessarily relatively close
to a matrix with a multiple eigenvalue. Let

(4.16) Axy = A1xy, J’X{A = .V?ll, 5 = y{!x’ with |lx]l; = Iyl = 1,

and suppose P is a unitary matrix such that Px, = e,, where e] = (1,0, ---, 0).
Then
4.17) PAPEPx, = J,Px,, (PAP®)e, = Ae,,

and B = PAPY must be of the form

[k | bE
(4.18) B= [O—FIZ]'

Further,

(4.19) sy = Yix; = (FPY)(Px,) = (Py,) ey,
and writing Py, = p,;, we have

(4.20) PUB = pIPAPH = YIAPH = 1,(/1P¥) = 1T,
while

4.21) s, = plle, = Py;.

Hence if we write p? = (p,,|v¥), where v is of order n — 1,

- b
4.22) 0% + v8B, = Af,  oH(B, — A0 + ;—,nﬁH_; -0,
v

ie., the matrix B, + Pp,,(vb%/v¥v) has A, as an eigenvalue and v as a left-hand

eigenvector. Now

_ [ob¥
P11 (DHD)
and when s, is small, a small relative perturbation in B converts A, into an eigen-
value of multiplicity at least two. Since the I,-norm is invariant with respect to
unitary transformations, the same remark is true of A. By a similar argument,
Kahan in an unpublished paper has shown that the denominator (1 — s?)'/2
may be replaced by 1 in the final bound. However, the above argument shows
that the relevant bound is |s,] [|b,]lo/(1 — s?)'/? and in replacing |Ib, ]|, by ||Bl,
and hence by || 4], the result is weakened. When A is normal, B is also normal and
b, = 0. Hence if |s;| < 1 for a normal matrix, A, must already be a multiple
eigenvalue. This is otherwise obvious, since if 4, is a simple eigenvalue of a normal

matrix, y, = x, and s; = 1. The bound we have given is, in general, a considerable
improvement on the bound given by Ruhe [16].

Mol Ubgll _ Issl Ubsll _ _sullBl2 _ _sillA4llz

@2 R R e (e L (T

£ 1P

5. Almost linearly dependent eigenvectors. The perturbation analysis described
above can be used to give the first order perturbation of x, resolved in the directions
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X,, -+, X,. In the case when 4 is nondefective, this leads to

= [ yi'Bx, 2

(5.1) xy(e) = x; + s{i; (Si(li — 11))xi} + O(e%),
and the coefficient of x; is bounded by 1/|s(4; — 4,)|. Hence we obtain a large
perturbation in the direction of x; if s; or A, — 4, is small. However, this analysis
is rather unsatisfactory. When A has an ill-conditioned eigenvalue problem, the
set of x; will be almost linearly dependent, as we show below. The fact that some of
the x; have large coefficients need not necessarily mean that the perturbation as a
whole is large.

The left-hand eigenvector y, is orthogonal to x,, - -+, x,, and hence x, may
be expanded in terms of y,, x,, - -+, x,. In fact,

(5.2) Xy =8y + Y X

i=2
since y¥x, =5, and y¥x; =0 (i = 2,---, n). Equation (5.2) may be expressed in
the form

(5.3) .;1 Bxi = s;y,/(1 + 2“3)1/2

where

(5.4) By =11+ X2, Bi=—af(l + Fa)'?, |IBl,=1.

Hence we have a unit vector g so that

(5.5) 1XBll; = Isyl/(1 + Y a)!'? < sy,

and when s, is small, the vectors x; are “almost linearly dependent”. (Note that
in general, the x; (i = 2,---, n) will include principal vectors which are not
eigenvectors.) Anticipating §7, we note that (5.5) implies that ¢,(X) < |s,}.
Conversely, if a set of the x; are almost linearly dependent, then at least one of the
associated s;is small and A has an ill-conditioned eigenvalue. Suppose, for example,

} 4 p
(5.6) Y ax;=u, wherelul,=¢, Y of =1.
i=1 i=1

Then if the vectors y; are the normalized columns of (X ~1)#, we have
(5.7) ayix; = yi'u, 5 = ylufoy, |s} £ e/l

Since at least one a; is such that |o;] > p~*/?, this means that at least one s; is small.
In fact, it is obvious that at least two of the s; must be small, since otherwise just
one of the eigenvalues would be sensitive and the remainder insensitive; as the
trace is obviously not sensitive, this is impossible.

This result emphasizes one very unsatisfactory feature of ill-conditioned
eigensystems. Suppose we have managed (in spite of the practical difficulties) to
obtain correctly rounded versions of a set of ill-conditioned eigenvectors x, - - -, Xp-
We may now wish to determine an accurate orthogonal basis for this subspace of
dimension p. However, since the vectors x,, - - -, X, are almost linearly dependent,
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when we perform the Schmidt orthogonalization process on these x,, the orthogonal
basis is bound to be poorly-determined. In fact, information about the last of the
orthogonal vectors will be completely vitiated by the rounding errors which will
usually be inherent in the representation of the x; in the computer.

This casts doubt on the advisability of attempting to determine the x; them-
selves and suggests that it might be better to determine directly an orthogonal
basis for the subspace corresponding to such vectors.

6. Orthogonal bases for invariant subspaces. The eigenvectors of 4 correspond-
ing to A are the solutions of the equation (4 — Al)x = 0. If A — Al is of nullity n,
(rank = n — n;), then there will be n, independent eigenvectors. These vectors
spanasubspace P, thenullspaceof 4 — AL Letx{), x{), .-+, x{!)be an orthogonal
basis of this subspace P, .

Turning now to the solutions of the equation (4 — AI)?x, we can clearly see that
they include any vector in P, ,since if (4 — Al)x = 0, then certainly (4 — AI)*x = 0.
The nullity of (4 — AI)> may therefore be denoted by n, + n,, where n, = 0.
If the nullspace is denoted by P,, then P, > P, and the basis x{"), x{"), - - , x{! may
be extended to an orthogonal basis of P, by the addition of further orthogonal
vectors x{, x$, .-+, x{2). These additional vectors satisfy the relations

(6.1) b= (A= ADx® £0, (4- AP =0, i=1,---,n,,

and hence they are vectors of grade 2.
We now show that n, < n,, for the vectors u; are nonnull and satisfy the
relation (4 — ADu; = 0. Hence they lie in P;, and if n, > ny,

(6.2) Sow; =0, ie,(4—A)Y ax? =0,

which means that ) ax? = P,. But ) a;x{*) is orthogonal to the x{!’ by the
construction, and hence we have a contradiction.

Continuing in this way by considering the nullitiesof (4 — A1)3,(4 — AI)%, - -+,
we obtain numbers nj, n,, -+ such that n;,, < n, and orthogonal bases of
subspaces P; such that P,,, o P,. The subspace P, is of dimension m; = n; +
-+~ 4+ n;. In general, the orthogonal vectors x! are such that (4 — AT " !x{® # 0
but (4 — AI¥x$ = 0.

The sequence comes to an end with (4 — A, where (4 — AD**! is of the
same nullity as (4 — AN~

Comparing these spaces with those spanned by the chains of vectors associated
with A in the J.c.f,, we see that P, is the space spanned by the principal vectors of
grade 1, P, that spanned by principal vectors of grades 1 and 2, etc. Notice, though,
that the space spanned by x{?, - -+, x2 is not in general the same as that spanned
by the principal vectors of grade 2 in the Jordan chains.

n, is equal to the number of blocks associated with A in the J.cf, and, in
general, n, is the number of those blocks which are of dimension not less than s.

The derivation of these orthogonal bases is in some ways more satisfactory
than that of the Jordan chains themselves, and though the chains may be derived
from the orthogonal bases, there will in general be a loss of digital information
in this process.
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7. The singular values. In the previous section it was shown that in the
solution of the complete eigenvalue problem, we are concerned with the deter-
mination of the nullities or ranks of sequences of matrices. Rank determination is
a notoriously dangerous numerical problem, and in practice the only reliable way
of doing it is via the singular value decomposition (5.V.D). Accordingly we now
give a brief review of the S.V.D. and the properties of singular values.

For our purposes, the singular values of a complex m x n matrix A may be
defined to be the nonnegative square roots of the eigenvalues of the matrix 4%4.
Clearly A”A4 isann x nnonnegative definite Hermitian matrix, and its eigenvalues
may be denoted by ¢? (i = 1, - - -, n); the g, are the singular values of A. Although
apparently a more sophisticated concept than the eigenvalues, the determination of
the singular values is more satisfactory from the computational point of view.
The g, are defined in terms of the eigenvalues of a Hermitian matrix, and these are
always insensitive to small perturbations in elements of that matrix. We shall
assume that the ¢, are ordered so thatg, 2 ¢, 2 -+ 2 0,. The 6? may be defined

via the min-max properties of (x?4%A4x)/x"x, i.e., of

I x|
l1xII3
o ax), o |Ax],
(1.1) 01(X) = max T2 = Al o(X) = min S
and

o(A) = [Bll, = 0,(4) — o(B)
= oA + B) = 0,(4) + 0,(B) £ 0,(A) + |Bl,.

From the last of these relations, the well-conditioned nature of the o, is well

exposed. :
Although we have defined the o; via 4”4, they should not be determined in

this way. In practice, they are computed via the S.V.D., which is defined as follows.
Any m x n complex matrix A may be factorized in the form

(7.3) A=UZVH

(72)

where U and V are m x m and n x n unitary matrices, respectively, and Z is an
m x n matrix with £; = ¢, and X;; = 0 otherwise. Golub and Reinsch [4] have
described an extremely efficient and stable method for determining the S.V.D.
and hence the g;. The computed U and V# are almost orthogonal to the working
accuracy, and the computed ¢; correspond to those of some (4 + E), where
I Ell./I| Al ; is a modest multiple of the machine precision. Since the ¢, are insensitive
to E, this is very satisfactory.
Clearly, from (7.3},

(7.4) A4 = VSHZVHE  AHAqV = VIHY,
so that the columns of V are orthogonal eigenvectors of 474. Similarly
(7.5) AAY = UZZHUH,  AA%U = UZZH,

and the columns of U are orthogonal eigenvectors of 44 H
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Turning now to the case when A isn x n, we have, from the definitions of the
eigenvalues and of the singular values,

(7.6) [T4 = det(4), . [1(6?) = det (474) = |det (4)2,

and hence

(7.7) I1141 = [T,
We have the fundamental resyjt that A, = 0 iff 0, = 0 and both imply that 4 is
singular. The three broperties are fully equivalent.

From this it is intuitively obvious that if 4 is “nearly” singular, 1, and Op
are “small” with appropriate determination of the terms “nearly” singular and
“small”, As a measure of the proximity of 4 to singularity we shall take
IEN:/IAll, = &, where E is the matrix of minimum norm such that 4 + E is
singular. Since 4 + E is singular, there eXists a y such that

(7.8) (A+ E)y =0.
Hence
o= mindA A j-E
W e s = s s =
On the other hand, since min (Il 4xi/lIx])) is attained for some unit vector, y (say),
(7.10) o = Ay, Ay= 0,2 with |jz||, = 1,

Hence (4 — ¢,2)%)) = 0,and 4 — ¢,2)¥ must be singular. But ||g,zy* | =0, and
¢ =min (|E|,/||4],) < 9./l 4]l ; hence a/l4]; = e
Turning now to 4., We have

Ay =1,y for some Iy, =1

and

(7.11) O =min””§\7;”§”’%;”=llnl.
On the other hand, from 7.7,

(7.12) 1" £ a,0771,

(7.13) foil" < 0,f0; = 0,/ 4], =,
giving

(7.14) [ < o.8'm.

This last relation is disappointing, but unfortunately it is a best possible result,
as is illustrated by the matrices K, typified by

0100

0 010

(7.15) K, = 000 1/
e 000
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In general, |4} =¢'™ (i=1,---,n),but 6, = --- =06,_, =1 and g, = &. All
extreme examples are of this kind, since we have equality in (7.12) only if | 4] = |4,
(all n)and 6y = 0, = -+ = 0,_,. In practice, then, we may well have a matrix

which is singular to working accuracy and therefore has a negligible singular value
but which has no eigenvalues which can be regarded as in any sense small.

The practical consequences of this theorem are very serious. The most stable
algorithms for computing eigenvalues can guarantee only that each computed
eigenvalue 4; is exact for some A4 + E;, where | E,||,/||A], is a modest multiple of
the machine precision, and it is difficult to conceive how such algorithms can be
improved upon, except, of course, by working to higher accuracy at least in some
significant part of the computation. This means that (4 + E; — AI) is exactly
singular and hence that 4 — 2l is within |E;||, of a singular matrix. Hence
A — A has a singular value bounded by ||E;|,, but the bound for the smallest
eigenvalue of 4 — A} involves ||E;|; All that we can guarantee a priori is
that each computed A; will have an error which involves the factor ||E ||}/, and
this may be far from small.

For a normal matrix, |1, = o,, and hence this weakness disappears. If 4; is
an eigenvalue of 4, then 4 + E, has an eigenvalue 4} such that

(7.16) 14 — 4 S E.

Unfortunately, the realization that this result is true has tended to lead to an
overconfidence when dealing with real symmetric and Hermitian matrices, which
are the commonest examples of normal matrices.

8. Factorizations of almost-singular matrices. If B is an exactly singular matrix
and B = XY is a factorization of B, then either X or Y (or both) is exactly singular.
Most of the common factorizations used in practice ensure that one of the factors
is certainly not singular, and hence with exactly singular B and exact factorization,
the other factor must be singular.

A factorization which is frequently used is B = QR, where @ is unitary and
R is upper triangular. Clearly Q is nonsingular, and hence if B is singular, R must
also be singular and therefore have a zero eigenvalue and a zero singular value.
But the eigenvalues of R are its diagonal elements and hence at least one r;; must
be zero, indeed r,, unless B is “special”’.

Now consider the case when B is almost singular and let us assume for
simplicity that B is factorized exactly. We have o{R) = o{(B) since the g; are
invariant with respect to unitary transformations. Hence R must still have a
negligible singular value. However, we can no longer guarantee that any r; is
pathologically small since the r; are merely the eigenvalues, the bound for which
involves (g ,(B))*"".

This result is important in practice because many algorithms for solving the
complete eigenproblem of a matrix first compute the eigenvalues and then attempt
to determine the eigenvectors from them. If A is an eigenvalue given by a stable
algorithm, (4 + E — AI) will be exactly singular with [|E|//|A|| small, and hence
B = A — Al will be almost singular. The situation appears particularly favorable
when A is normal since the computed A will then have an error which is small
relative to ||A|l,, i.e, to |4,|. Unfortunately, although B is normal, the same is



ILL-CONDITIONED EIGENSYSTEMS 593

not true of R, and hence we still cannot guarantee that R will have any patho-
logically small r;. Now the weak bound for 4, is attained only when B is extremely
pathological, and hence one might expect that failure of R to have a small diagonal
element would be rare. Unfortunately, this is far from true. Attempts were made to
construct an algorithm based on this factorization in the case where A is a sym-
metric tridiagonal matrix. For such matrices, a particularly satisfactory algorithm is
known for the determination of the A’s. Nevertheless, it was found in practice that
when the QR factorization of A — AI was performed for each of the n computed 4
in turn, almost invariably some of-the R were such that they had no small r;, and
all algorithms based on a search for a negligible r;; failed disastrously.

The LLT factorization of a positive definite matrix 4 is known to be extremely
stable, and it might be thought that when such an A4 was near to singularity, this
would be bound to reveal itself in the corresponding L. That this is not true is
illustrated by the matrices 4 = L,LT, where L, is of the form illustrated by

1
-1 1
8.1) L, = q :_1 )
-1 -1 -1 1

It is easy to show that ¢,(4,) = 1,(4,) = 04~"), and hence for quite modest
values of n, the matrix A4, is almost singular. Yet there is no obvious indication of
this in the factor L, since all of its diagonal elements are unity.

Finally, we consider the factorization given by Gaussian elimination with
complete pivoting. This, too, would appear to be quite favorable, and yet it can
fail quite catastrophically. Indeed, if 4, is of the form illustrated by

1 -1 -1 -1

1 -1 -1

(8.2) A, =
1 -1
1

then it can be shown that ¢,(4,) = O(27"), and hence A, is almost singular for
quite modest n. Yet the factorization given by Gaussian elimination with complete
pivoting is

(8.3 A, =1x A4,

ie., A, is itself the upper triangular factor, and its diagonal elements are all unity.

These examples illustrate the fact that the determination of singularity, much
less than rank, by means of simple factorizations is not a practical proposition.
On the other hand, the S.V.D. is extremely reliable, and since the computed o;
correspond to A + E where [|E|j,/| All, is of the order of the machine precision,
it provides an excellent means of determining the numerical rank.
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9. Vectors by matrix powering. In the next three sections, we discuss some of
the algorithms which have been designed to find bases for the successive nullspaces
of powers of (4 — AI) corresponding to an eigenvalue A.

For simplicity of notation, we shall work throughout with B = 4 — ],
We shall not for the moment discuss numerical stability, but knowing that most
simple factorizations are numerically unreliable for finding the rank of a matrix,
we shall use only the S.V.D. for this purpose. Let the S.V.D. of B be denoted by

where U, and V] aren x nunitary matrices. Since Ais an eigenvalue, B is a singular
matrix. If it is of nullity n,, then B, will have n, zero singular values, and we may
write

(92) BVl = U]Zl - [WA_% |£_J.

For consistency with later stages, we write W, = V,, and the last n, columns of
W, clearly give an orthogonal basis for the principal vectors of grade 1, while the
matrix 4, has orthogonal columns.

Proceeding to the nulispace of B2, we have

63) BV, = B*W, = (B4, | 0] = [B,] 0],
the zero columns obviously persisting. We now compute the S.V.D. of B, :
©.4) B, = U,%,VY,

where U, isan n x nunitary matrix and ¥, an(n — n,;) x (n — n,) unitary matrix.
Writing :

~ V, .
m
we have
(9.6) B*W, = [U,Z,{ 0].

——
n—ny ny

Since the nullity of B* is n; + n,, B, will have n, zero singular values, and we
have

©.7) B*W, = [4, | 010]

n2 n

Writing Zi‘ﬂ n; = m,, the matrix 4, has n — m, orthogonal columns. The last
m, columns of W, give an orthogonal basis for vectors of grade 2 and grade 1.
The last n, of these columns are those of W, having been unaltered by this second
step. '
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The general step is then as follows:

(9-8) BW, =[A4;.,]0]---] 0],

' Wms ms mr

9.9) B W, =[B.,(|0|---|0], whereB,,, = BA,.,,
(9:10) Byry = Ut 1 Zoa 1 Vit q,

where U, , is an n X n unitary matrix and V.., an (n — m,) x (n — m,) unitary
matrix. B,, , has n,, , zero singular values and writing

~ Vst ~
(9.11) s+1 = s Wiry = WVesr,
9.12) By Wiy = [Uge 1 Z4110] -+ 10]
(9.13) =[442] 0 |-+ 0]
Ns+1 T

The process terminates when A,,, is of full rank.

The main weakness of this algorithm is the difficulty of recognizing which of
the elements of ¢; may be treated as zero. This is well illustrated when 4 and
therefore B is normal. If such a matrix Were inserted into this algorithm, then at
the first step, the singular values would be |4,, |4,] - - - |4, , of which n; would be
treated as zero. For a normal matrix, the process should terminate here since all
vectors are of grade 1. However, if one continues, the singular values in the second
step would be |4,]%,|4,]%, - -+, |4,)% and some of these might well be regarded as
negligible. The algorithm can be modified to limit this shortening, but even then
it compares unfavorably in most respects with the algorithm of the next section.

10. Vectors by orthogonal deflation. Again it is convenient to work with B,
and we assume that it has an eigenvalue of multiplicity k. We write B) = B and
denote the S.V.D. of B¥) by

(10.1) B = WUy

where there will be n, zero singular values. Hence

(10_2) B® = (V(l))HB(l)V(I) = (V(l))HU(I)Z(l) — W(l)Z(l),

and we may write

2
(10.3) B? — [B‘(ll)__*_o:l}n — Ny
BE 10 i,

From the orthogonality of W), the first n — n, columns of B‘*) are orthogonaland
therefore independent. Relation (10.1) shows that the last n; columns of V()
give n; orthogonal eigenvectors (i.e., vectors of grade 1) of BY) corresponding to
A=0.

If n, =k, then we have dealt with all the eigenvalues. Otherwise B will
have k — n, zero eigenvalues and we can proceed to the consideration of vectors
of grade 2. Let z be an arbitrary nonnull vector partitioned conformally with B
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so that zT = [x7| y7]. Then
- [B®
(10.4) B®z = [Ji}x
B(Z)
21

and when x = 0and y # 0, zis a vector of grade 1. If x # 0, then it follows from
the independence, of the first n — n, columns of B‘® that B®z # 0. However,
we have

B

(10.5) (B?)?z = [F}Bgﬁ)x,
21
and from the same linear independence, z is a vector of grade 2 iff B%x = 0.
Hence we may proceed as follows. Let the S.V.D. of B be given by

(10.6) BY = UPTO(y @),
where £ has n, zero diagonal elements if B{ is of nullity n,. Hence
(10.7) (V(Z’)HB‘fl)V(z’ = (V(Z))HUu)Z(Z) = W(2)2(2),

and we may write

TR3) _
(10.8) (V@EBRAY@ = [313 0}}" m,
B 10 in,

Again the first n — m, columns of (V®)¥BRAV?® are orthogonal and hence
independent. Introducing the unitary matrix

2
(10.9) I7(2) —_ Vv(—)—P R
0 I

B .0 0
(10.10) B® = (@B — BY) 0 0
By By 0
e

It is obvious that n, < n, ; otherwise B® and hence B'*) would have been of nullity
greater than n;.

Again if m, =k, the process is complete. Otherwise B{}} has some zero
eigenvalues, and we proceed via its S.V.D., this next stage being typical. If

(10.11) B® = URIZ@®)(yeHH,
then
(10.12) (VOWBR) Y@ = (VOEUPITG) = O

and again introducing

(10.13) 7o = Vj)—{—o ,
0 |1
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we are led to

B9 0 0 0
BY 0 0 0
C B@ _ (DONHRATG) = |t

(10.14)  B® = (PO)IBOp :
By B} 0 0
By BY] BYH 0
—— —— —_—— =
n-mj ni ny n

where n5 is the nullity of B{). By an argument similar to that used above, the
nonnull columns of B and of leading principal submatrices of orders n — m,,
n — my are linearly independent. The process clearly terminates when m = k,

at which stage B¢, ! is no longer singular. Since

(10.15) BstD = pHBY = YHBY,
where V = VOPATE ... 7O the principal vectors of BY) may be found via

those of B** ). For simplicity of notation, we expose the case when s = 3 which is
wholly typical. We may write :

B{ | 07in — my
10.16 B9 = [J—l-]
( ) P | C{jmy

and it is evident that

(10.17) (B} [(Bf{‘f)' 0].
P
Hence
x (BE)x
0.18 @p| | =
1019 B ][y] [PIX+C‘y]’

and since B{"} is nonsingular, (B{}))'x is not null unless x = 0. All vectors in the
relevant invariant subspace have their first n — m; components equal to zero,
and since

0 0
(10.19) (B ]l ] I:C’y}

it is evident that we may concentrate on the matrix C given explicitly by
0 O 0
(10.20) C=|BYy 0 0
Bf) BE 0

A discussion of vectors of grade 3 will be fully illustrative. Let us take any vector x
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of order my and partition conformally into xT = [xT| xT | xI]. If x, # 0, we have

0 0
(10.21) Cx=|BY|x;+| 0 |x,,
BY) B
0 0
(10.22) Cx=1|0 |BfYx, =| 0 |z (say).
|5 BY

But since we know the columns of B{Y are independent, z # 0, and since also the
columns of BYY are independent, C*x # 0. On the other hand, C*x = 0 for any x.
The last n, columns of the identity matrix therefore give n, orthogonal vectors of
grade 1, the next n, columns of it give vectors of grade 2 and the next n; columns
give vectors of grade 3.

Interpreting this result in terms of B for the general case, we see that the
last n, columns of ¥ give orthogonal vectors of grade 1, the next n, give orthogonal
vectors of grade 2, etc.

When the process terminates, B$;" ) is nonsingular and its eigenvalues are
the remaining eigenvalues of B, i.e. B + AI gives the remaining eigenvalues of
A. We can now turn to the next eigenvalue of A and repeat this process starting
from B**1) 4+ AL In this way, a canonical form is ultimately attained, which may
be illustrated in the case when A4 has only three distinct eigenvalues 4,, 4,, 43 by

- =

i Ingh
Yoy Al g
X3y Xagf Adf pn§)

Xsi Xsaf Ys3 Ysu 4,1
Xe1 Xe2| Xe3 Xea Xgs| 43l
X1 Xqal Xq3 Xa4 Xgs| Yee A3l }"(13)

——

n'?

n$

——

In the example given here, there were two stages with A, three stages with 4,
and two stages with A, and the integers n{" are the nullities exposed in the successive
stages of the process. The matrix V being the product of unitary matrices is itself
unitary. Note that we have denoted the submatrices in the diagonal blocks by Y;;
and outside these blocks by X;. From the definition of the algorithm, we have
n$® = n'%, {, and the columns of ¥, , ; are linearly independent. We already know
that n{>, n$> give the number of vectors of grades 1 and 2, respectively, associated
with 1;, and the corresponding columns of V provide the vectors themselves.
The remaining .columns of V cannot, of course, give vectors corresponding to
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1, and 4, since, in general, the latter will not be orthogonal to those of 2;. We have
not yet established that n{?, n?), n?) gives the number of vectors of grades 1, 2, 3
associated with 4,, and that n{" and n{" the vectors of grades 1, 2 associated
with A;, and this we now do. _

We cannot proceed further with the reduction without departing from unitary
similarities. However, if we now admit general similarities, the submatrices
denoted by the X ;; may be annihilated. To annihilate X,,, for example, we
premultiply by ZZ;' and postmultiply by Z,,, where Z,, is equal to the identity
matrix with a block X,,/(4, — 1,) in the same position as is occupied by X,.
The X|; are eliminated in this way in the order X3,, X3y, X435 Xa1, X523, X515
X¢s» X64, -+ . It is obvious that the Y;; are unaffected by this. The final result
is that we have

0 0
Y,y A
A,
(1024) C=M"1AM = 0 Yos Al o |,
Y53 Y54 )"21
A0
0 0 :
L Yie 4A3l]

where M is no longer unitary (though its last n{¥ + n{¥ columns are still
orthogonal). From the properties of the Y;, ; ; described above, it is now evident
that the n{? have the significance described above and indeed that all the columns
of M give independent (but not orthogonal) vectors of the relevant grades corre-
sponding to 4,, 4,, 4;. Notice that we have now proved that the canonical form
(10.23) which is achieved purely by unitary transformations gives a full specification
of the J.c.f There is no need actually to proceed to the form (10.24) in order to
find the J.c.f. However, from the form C and the rank properties of the Y, ;, we
may proceed to a demonstration of the J.c.f. itself. It is easy to show that by further
similarities (10.24) may be reduced to

(10.25) Kes Aol .

21
- K76‘ 231J
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where K, , ; is a matrix of the form

10
0 1
(10.26) 00
00
L0 0 O

having the same dimension as Y,,, ;. Apart from the ordering of the rows and
columns, this is the J.c.f.

It should be emphasized that we are not recommending proceeding beyond
the form (10.23), and, indeed, if one requires an orthogonal basis associated with
each of the 4;, one should return to the original matrix with each eigenvalue in turn.

The outstanding weakness of the algorithms of this section and the previous
one is that the volume of work may be excessive. To find the vectors for a matrix
of order n corresponding to an eigenvalue 4, of multiplicity k having just one
block J,(4,) in the J.cf, one must perform an S.V.D. on matrices of orders n,
n—1,---,n — rin succession (the last one merely to reveal that there are no
more eigenvalues equal to 4, ).

Both algorithms were suggested by Kﬁblanovskaya [10], but not in terms
of the S.V.D., and have also been described by Ruhe [14], though in different terms
from those used here. '

-

0
0
1
0

11. Economical algorithm for determination of vectors. An alternative
algorithm suggested by Golub and Wilkinson is considerably more economical in
general (though not necessarily superior in other respects). Again corresponding
to an eigenvalue A, one works with B = 4 — AI. We first give the basic motivation.
Suppose we have already determined independent vectors u,, u,, u; of grade 1,
vectors vy, v, of grade 2 and vectors w,, w, of grade 3 (not necessarily orthogonal).

If x is any vector of grade 4, then Bx is of grade 3 and hence lies in the subspace
spanned by the u;, v;, w;. In fact, x must satisfy a relation

(11.1) Bx = [uy|uy|uz| vy | vy | wy|wyle,

where « is a vector of order 7. However, the totality of independent solutions of
(11.1) includes vy, v,, w, , w,, which will have been obtained by previously solving

(11.2) Bx = [uy|uylus|v,|v,]p and Bx = [u; | uyfusly.

We need a procedure which will reject these previous solutions. Indeed, the
solutions needed at the current stage are solutions of (11.1) which are independent
of vy, v5, wy, w,. To this end, we observe that instead of solving (11.1), we may
equally well solve

(11.3) Bx = ([uy fuy | us| vy | vy | wy | wy]2)a,

where Z is any nonsingular 7 x 7 matrix, preferably unitary if one does not wish
to sacrifice numerical information. Now B is a singular matrix, and a convenient



