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method for solving (11.1) is via the S.V.D. of B:
(11.4) B = UZVH,

where Z has n, zero elements, assumed to be in the last n, diagonal positions.
Hence we wish to solve :

(11.5) Z(Vx) = Zy = UR({ug | uy [ uz [vg 05| wy [w,]2)
(11.6) = ([U¥u, | UMu, | Uuy | URv, | Uv, | UBw, | UBw,)Z)a.

Solutions are obtained via these values of o for which the right-hand side p has
zero components in the last n, positions. In our example, n, = 3, and the equations
become

[o1y1 = py]
032 = P2
G3Y3 = P3
(11.7) OaYas= P4 |-
Oys =0
Oy =0
L Oy, =0

Components ys, Vg, V', are therefore arbitrary and in our algorithm are taken to
be zero, since they merely result in including multiples of u,, u,, u5 in the vector «
derived from y.

We have still to discuss how we avoid duplicating the vectors we have
previously produced. Suppose at the stage when we are determining the vectors
v, and v, we have computed a Z (which might be called Z,) such that

(X X X7
X X X
X X X
(11.8) (Ubu, | Ubu, | UR)Z, = | X X X | = [pWp@p@].
X 0 0
X 0 0
Lx 0 0

Then v, and v, are obtained by solving £y = p, where p takes in turn each of the
vectors p'® and p'®, giving independent solutions. Now when we have to solve
the set :

(1.9 Zy = ((Uuy | U, | UMuy | Uvy | UMv,) 20,
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Z
if we take Z = [ : I:l[Wz],then(ll.9) becomes

(11.10) Zy = [PV p? | p | Uty | UMv,](W; e

Columns two and three have already been dealt with and gave us v; and v,.
The new solutions are obtained by solving

(11.11) . Ty = ([pV| U, | U¥v,]1Z, ).

Notice that in this stage we are left with only three columns (i.e., n,) just as
in the previous stage. Again we determine a Z, which will make the trailing columns
of the matrix in parentheses on the right of (11.10) of the requisite form, ie., with
zero in positions 5, 6, 7 (the last n, positions). The number of vectors of this form
will decide how many vectors of grade 3 we obtain. The algorithm is now complete,
and we observe that at each stage we are dealing with a system of the form

(11.12) 2y = (R2)a,

where R is always an n x n,; matrix, and we wish to determine Z so that RZ
is of the requisite form, i.e., its trailing columns have zeros in the last n, positions.
This is conveniently done via an S.V.D. composition. We write

R,
R, }""

——
ny

(11.13) R =

where R, is an n, x n, matrix. If R, = U,Z,V¥, where I, has at the sth stage
n, zero diagonals, then taking Z = V,,

RV,
(11.14) RZ = ,
U,Z,

and the last n, columns are of the required form with regard to the n, zero elements
inXx,. .

The general algorithm may now be described by its typical stage at which
we determine vectors of grade s + 1. We assume that by this time we have

n, vectors of grade 1: u{", uV, -+, ulV),

(11.15) n, vectors of grade 2: u®, u®, -+, u;7),

.......................................

n, vectors of grade s: u$), u§), -, u.

We then assemble an n x n, matrix R®*1), the first n, — n, columns of which will
be denoted by P, the origin of which will become obvious during the description
of this next stage. The remaining n, columns are U#u$, - .-, U¥u$. This matrix
R¢*V js partitioned in the form

(1116) R(s+ 1) |:R(51+1) :l} '

s+ 1
R§*Y

ny
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If the S.V.D. of R§* V) is U+ DE+D(ps*+ Y where the number of zero elements
in 2¢* 1 is denoted by n,, ,, then

(11.17) . RETDYGHD Ry Dyerh - Py ‘ PyY
: Ut Dy(s+1) P(2s1+1) ‘ 0
e~

nyThRs+y RBs+1

and the vectors y§*Y, ... y$* 1 are obtained by solving £y = p, where p takes

each of the last ny,, columns of the matrix on the right in turn. The uf* " are
then obtained by multiplying these vectors by V. The n x (n; — n,, ) matrix in
the first n — n,, ; columns of the matrix on the right of (11.17) is the matrix P¢*"
required in the next stage. The process terminates when ny,; = 0.

In the first stage we solve

(11.18) Ty =0

and obtain the solutions y =e,_, 4, €,-, 42, €,, the last n; columns of
the identity matrix and hence u{", ---, uf! are the last n; columns of V. The
vectors of grade 1 are therefore orthogonal, but this is not true of any of the
subsequent sets of vectors, though by taking y,_, +1, ", J, to be zero in each
of the subsequent solutions of Zy = p, one ensures that all vectors of grades
higher than one are orthogonal to those of grade 1.

Observe that the successive S.V.D.’s are all performed on a matrix of order
n; X ny.Inthe case when n; = 1and thereis only one block in the J.c.f. associated
with the current eigenvalue, this will be a 1 x 1 matrix at each stage and the
process comes to an end when the last element of U#u{ is nonzero!

12. Comments on algorithms for principal vectors. So far we have concentrated
mainly on the formal aspects of the algorithms, though in using the S.V.D. we are
tacitly recognizing numerical difficulties. The first problem is how to select our 4
when.forming B = A — AI. In practice, the eigenvalues of A should have been
found using some stable algorithm such as the QR algorithm. Although the
computed 4; may be arbitrarily bad, each should be exact for some matrix A + E;,
where E; is such that ||E,[,/|All, is merely a modest multiple of the computer
precision. Hence B = A — A, should have at least one negligible singular value
relative to ||A]l,, however “poor” A; may be in an absolute sense. However,
if A really is defective, the computed /4, are probably not the best values to use.
If, for example, A has a well-defined J.cf. (i.e, in the optimum quasi-J.cf., the
superdiagonal elements are of the order of magnitude of [ A[/,) and there is just
one block J,(4,) associated with ,, one will expect the computed /; to include a
set of r values Z,, ---, 4, which, though not particularly close to 4,, will be such
that their sum is very close to rA,. If one could recognize such a block, one should
use the mean of those values 1 and then work with B = 4 — 11. However, in
practice, the situation will be much more obscure than this, and it is a difficult
problem to decide which values of 4 to use.

Whichever of the algorithms we use, we shall need at each stage when an
S.V.D. is performed a satisfactory criterion for deciding which singular values
may be regarded as “zero”. The situation is most satisfactory in connection with
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the deflation technique. At each stage, the matrix on which the S.V.D. is performed
has been determined by a unitary similarity on (4 — AI), and it is reasonable to
use some tolerance ¢[| 4|, throughout, when ¢ is “small” but appreciably larger
than the machine precision.

In the powering algorithm, the rth matrix is of degree r in the elements of A4,
and the decision is much less satisfactory. A modification of the procedure has
been developed which ameliorates this difficulty, but matrix powering would seem
to have nothing to recommend it in comparison with the deflation algorithm.

The Golub-Wilkinson algorithm is far superior fram the point of view of
economy of computation ; while the first S.V.D. is done on A — I, the others are
all performed on a submatrix of a set of n, vectors. If the vectors u{ are normalized
at each stage, a negligible singular value would be one which is small compared
with unity. If in the matrix ¥ obtained from B = 4 — Al itself the smallest singular
value to be regarded as nonzero is quite close to the tolerance, then in determining
all subsequent solutions of equations of the form Xy = p, the element y,_, is
obtained by dividing by this almost negligible o, _, . The vectors obtained with this
process are not orthogonal, as they are with the other two and there does appear
to be a danger that they may be almost linearly dependent with a consequent
loss of digital information. _

None of the three processes gives principal vectors satisfying the chain
reaction typical of the columns of the X producing the J.c.f. Modified vectors
satisfying the chain reaction can be determined from the computed vectors, but
the volume of work is substantial and care is needed to avoid losing digital
information. Some such loss is inevitably involved in going from the orthogonal
sets given by the powering and deflation algorithms, since the vectors in the chains
may be arbitrarily near to linear dependence. Indeed, one might well ask whether
one should move from the orthogonal sets to sets satisfying the chain relations.
The answer must depend on what the vectors are needed for, and here numerical
analysts would welcome discussion with applied mathematicians, since this is
clearly a subjective matter. Further experimentation is necessary before the
algorithm can be fully assessed.

13. Poorly-defined J.c.f. As mentioned previously, there is a natural tendency
to construct “difficult” examples for testing purposes by taking a J.c.f. and sub-
jecting it to some simple similarity transformation. Such examples severely
underestimate the difficulties associated with ill-conditioned matrices. The point
is well illustrated by considering the Frank matrices F, defined typically by

"5 403 2 17

4 4 3 2 1

(13.1) Fo=| 33 21
2 21

L 1 1.

Even for quite modest values of n, some of the eigenvalues and eigenvectors are
very ill-conditioned, and yet one has a simple method of determining them by



ILL-CONDITIONED EIGENSYSTEMS 605
observing that, for example,
1T -1 0 0 07
0 1 -1 0 0

0 0 1 -1 O|F -4y
0o 0 0 1 -1
LO‘O 0 0 -1l
(13.2) o _
4 1-4 A
= 3 1—-4 A = Gs
2 1-i 2
L 1 1-2l

This result is quite general and enables us to determine the eigenvalues of Fs,
for example, from those of the quasi-symmetric tridiagonal matrix

0 1. -
4 0 1
(13.3) T, = 301
2 01
L 1 04

The determination of these latter eigenvalues is a well-conditioned problem for
all values of n. We are able to remove the ill-condition in this way because the
transformation can be performed exactly, ie., without rounding error. The
eigenvalues of F, are very sensitive to perturbation in elements in the top right-hand
corner, and by transforming to T, and then working explicitly with a tridiagonal
matrix one ensures that no rounding errors are effectively made in these elements!
From this transformation it is easy to show that eigenvalues of F, are such that
A, = 1/A,_,+,. It is the smaller eigenvalues which are ill-conditioned.

To illustrate the nature of the ill-conditioning, we concentrate for the moment
on F,, and discuss the problem from the point of view of computation on KDF9
which has a 39-digit binary mantissa, i.e., rather less than 12 decimal digits of
accuracy. .

By row transformations, we see that det(F,) = 1, and if F, is the matrix
resulting from a perturbation ¢ in position (1, n), we have det (F) = 1 + (n — 1)le.
Since the determinant is the product of the eigenvalues, it is evident that changes of
+1/(n — 1)!in this element alter the product of the eigenvalues from the true value,
1,to 0 and 2, respectively. When n = 100, for example, this represents a change of

“approximately 10718, To obtain the eigenvalues correct to 10 decimals even
with an extremely stable general purpose algorithm would require computation
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with a mantissa of about 170 decimal digits. Yet the eigenvalues may be determined
via T, working to ten decimals only.

For n = 12, the situation is not yet too serious with 12-digit decimal com-
putation, since 11! = 4 x 107. One can expect to obtain some correct digits even
in the most ill-conditioned eigenvalues. The quantities s; for the four smallest
eigenvalues are

(134) s, =5x1078 s, =3x10"% 5,0=4x10"% s5=15x 1078,
the corresponding eigenvalues being |

Az =00310-.-, A, = 00495,

(13.5)
Jo=00812---, 1o =01436"-,

where we have given only the order of magnitude of the s;. In fact the errors in the
eigenvalues as computed on KDF9 using the very stable QR algorithm were
4 x 1076, 7 x 1075, 5 x 1076 and 10”7, respectively, and from the sensitivity
considerations discussed in § 4, these results are seen to be extremely creditable.

From the discussion in that section, we also know that there is certainly
a matrix having a double eigenvalue 4, at a distance within | Fy,||sy,, but in fact,
F,, is much nearer to a defective matrix than this. Indeed, it is near to quite a
number of different defective matrices. Let us consider first the possibilty of
inducing defectiveness by a perturbation ¢ in the (1, 12)-element only. The modified
characteristic equation is

(13.6) [T~ 4) — 111e=0.

If we draw the graph y = [](4; — 1), then the modified eigenvalues are at the
values of A for which [] (4; — 1) = 11le. The situation is illustrated in Fig. 1.

Taking ¢ to be negative, we obtain a double root when the line y = 11leis
tangential to the curve, which first occurs at a point between 4,, and 4,,. If we
take ¢ positive, a double root is obtained when the line is tangential to the curve
at a point between A, and 4,,. It is surprisingly easy to compute these points
quite accurately, provided [[(4; — 1) is computed from G,,, not from F,!
The value of ¢ is quite a lot smaller than ||F,,|s,;, and on reflection, this is not
surprising. In establishing that result, we attempted to induce a double eigenvalue
at the value 4; itself for which the s; is small. It is to be expected that a smaller
perturbation is needed to produce a double eigenvalue at some point “between”
that 4; and some other 4;. As we have seen, there are always perturbations &B
for which 04;/0e = +1/s;. At least one of the other A; must be changing fast “to
keep the trace correct”, and we would expect to be able to make A,(¢) and some
4{e) move towards each other. As they get nearer, we would expect s; to get even
smaller, and one feels intuitively that a perturbation nearer the order of magnitude
I4(4; — 47)si is likely to give a double eigenvalue at a value of roughly 3(4; + 4)).
The quantity |4(4; — 4,)s is likely to be much smaller than | A||s; since the relevant
4;is likely to be at least “fairly close’ to 4;. This certainly proves to be true for F .
In fact, a value e = —1071%(3.95 .. .) gives a double root between i,; and 4,,
at A =0.038---.
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0.04 1
00377 y=1te
0.02 {

0.01 -
A Ay Ao A

0.00 r——— # . T —— - - -~ T ——
001 0.03 0.04 0.05 0.06 0.07 0.08, 0.09 0.10 0.11 0.12 0.13 0.14 D0.15

—-0.02 {
—0.03 4
—0.04 4
—0.05 4
—0.06 1
—-0.07 4
~0.08 4
—-0.09 4
—0.101
-0.11
~-0.124
-0.134

y =det (F—AI)

/

y=11lg —101(12-2)e,

Fic. 1

If perturbations ¢, and ¢, are made in F,(1, 12) and Fy,(2, 12), respectively,
then the characteristic equation becomes

13.7) [T( — 4) — 11le, + 10%,(12 — 2) = 0,

and the eigenvalues are at the intersection of the straight liney = 11!¢; — 10le, x
(12 — ) with the curve y = [] (4 — 4). By appropriate choices of ¢; and &;,
this line can be made tangential to the curve at two points, one between 4,, and
A, and one between A, and Jy. The values are in fact &; = —1077(6.24 ---) and
g, = —1077(3.9 ---) and it gives coincident eigenvalues at 0.036 --- and 0.116.
Notice that if one attempts to solve these perturbed matrices by the QR algorithm
on KDF9, the separation of the “paired” eigenvalues may, at first sight, seem
disappointing. Two points should be emphasized. First, since the KDF9 has a
mantissa with less than 12 decimal digits, the perturbations ¢; cannot be inserted
with any great precision since they occur via entries 1 + ¢;. Hence even if the
¢; are determined accurately, they cannot be included in 1 + ¢; without incurring
- an error of between 107! and 107 !2, Further, in solving the perturbed matrix
A + E on KDFY9, the effect of rounding errors will imply that a computed 4; is
an eigenvalue of 4 + E + E; when | E;|[,/||A||, is likely to be a modest multiple
of 273° (e, 107!*7). Since we are now extremely close to a defective matrix,
s; will be quite a lot smaller than the corresponding value for 4 itself. In fact,
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with &, = —107!%(3.9 - - +), the two close computed values of 1 were 0.03758 --.
and 0.03968 - - - , the mean of these being 0.03863 - --; this is very close to the
minimum point of J](4 — ) between A,, and A;,. Again working with the
perturbed version of G,,, it is possible not only to insert the perturbations
accurately (since they now arise as ¢; — ¢, and ¢, and notas 1 + ¢; and 1 + ¢,),
but also to compute the eigenvalues of the perturbed matrix accurately. Altogether,
the Frank matrices provide good material for investigating ill-conditioned eigen-
values and eigenvectors. It is clear that by the time n = 20, F, is very near to a
large number of defective matrices having different sets of multiple eigenvalues
and even elementary divisors of different degrees. It is natural to ask what informa-
tion one should really extract and why.

Continuing with F, , and KDF9 (and we make no excuse for being so specific—.
the “difficulty”” involved in dealing with a matrix is intimately associated with
the precision of computation one is prepared to use ; on a 40-decimal digit computer
F, , could reasonably be regarded as well-conditioned!) the dilemma is particularly
acute. The computed g, 4,4, 4141, 41, all have some accuracy, and it is debatable
whether there is anything to be gained by pretending that they are equal or equal
in pairs, etc. On the other hand, if one treats them as distinct and computes the
corresponding eigenvectors, not only will these eigenvectors inevitably be
inaccurately determined, but they will also be almost linearly dependent: Indeed,
if we use the QR algorithm, they will be®xact for some 4 + E with ||E[,/| 4]/, of
the order of 273, The s, for this matrix will be quite close to those of A itself,
and the smallest of these is roughly 3 x 10~ % How much information do we have
at best about the space of dimension four spanned by the corresponding eigen-
vectors? From § 5 we see that these vectors are linearly dependent to within less
than 3 x 1078 Certainly the fourth orthogonal direction is extremely poorly-
determined. Indeed, all four vectors are “fairly”” parallel, and in performing the
Schmidt orthogonalization process, there will be a loss of figures at each stage.

Would it not be better to group these four eigenvalues together and to attempt
to determine directly a set of four orthogonal vectors spanning the corresponding

"invariant subspace? One can certainly determine the subspace in this way much
more accurately. Whether it is better or not depends on what one really wants.
If accuracy is an overriding consideration, the “‘best” thing to do is to group all
12 eigenvalues together, and then any 12 orthogonal vectors specify the subspace
exactly, e,,e,, -, e;, being an obvious choice! Here we have the ultimate
absurdity of perfect accuracy in a set of vectors but no information.

A sensible compromise would seem to be the following. On a t-digit computer,
we might aim to determine the smallest groupings of the eigenvalues for which
one can claim that all the computed orthogonal bases “have t’ correct digits”.
Obviously one must have ¢’ < t, and if one insists on ¢’ being too close to ¢, one
runs the risk of being forced into large groups with a consequent loss of information.
There is no need to get into abstruse discussions about the meaning to be attached
to the angle between a computed set of s orthogonal vectors and an exact set of
s vectors defining the subspace. Since we are unlikely to require less than 3 decimal
digits (say), we would merely be arguing about the relative merits of 6, sin 6, tan 0,
2sin (6/2), etc., when § < 10™3, and clearly such matters are of no importance.
The following is a perfectly adequate measure of the angle between the orthonormal
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set uy, Uy, - -+, U and the orthonormal set v,, v,, - -, v,. We may write
(13.8) U =00y + oo+ a0 1y, i=1,-,5,

and the r; might reasonably be called the residual vectors. If the two bases spanned
the same subspace, then r; = 0. Therefore max ||r;|| may be regarded as a measure
of the errors in the u; relative to the v;. In fact, ||r;|| is the sine of the angle between
u; and the space spanned by the v;.

14. Calculation of orthogonal bases of invariant subspaces. In classical
51m11ar1ty theory, unitary similarities play qulte an important role, since when
XH
(14.1) B = X"'AX = X"4X,

and hence matrices which are unitarily similar are also conjunctive. The fundamental
result with respect to unitary similarities is that for any complex matrix A, there
exists a unitary matrix X such that

(14.2) XHAX = T,

where T'is upper triangular with the eigenvalues of 4 on its diagonal. This is known
as the Schur canonical form. The ordering of the 4, on the diagonal may be chosen
arbitrarily.

Unitary transformations are of great significance for numerical analysts
because a wide range of algorithms based on them are numerically stable. When 4
is real, it may in general have some complex eigenvalues, though these of course
occur in conjugated pairs. It is convenient to remain in the real field whenever
possible, and there is a single modification of Schur’s result which states that when
A is real, there is an orthogonal X (i.e., a real unitary X) such that

- (14.3) XTAX = T,

where T is now almost triangular, except that corresponding to each complex
conjugate pair of eigenvalues T has a 2 x 2 block on the diagonal having as its
two eigenvalues this complex pair. This is usually known as the Wintner—
Murnaghan canonical form [29].

It is precisely this form which is produced by the double Francis QR algorithm,
perhaps the most widely used general-purpose algorithm for finding the eigen-
system of a nonnormal real matrix. This algorithm works directly with a real-upper
Hessenberg matrix but a general real matrix may be reduced to this form by a
(real) orthogonal similarity. (For detailed discussions, see {28].) The combined
reduction from general form to real almost triangular T is extremely stable, and
it has been proved [25] that the computed matrix is such that '

(14.4) T = XT(4 + E)X,

where X is exactly orthogonal and ||E||/|| 4| is a modest multiple of the machine
precision. Further, the computed X is very close to the exactly orthogonal X for
which (14.4) is true and hence, in particular, has columns which are orthogonal
almost to working accuracy. Since the computed T is exactly orthogonally similar
to A + E and the s; are invariant with respect to orthogonal transformations,
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the s; of the matrix T give information that really is relevant. The left-hand and
right-hand eigenvectors of T may be readily computed ; the right-hand eigenvectors
are required in any case, and the additional work needed to compute the left-hand
eigenvectors of T is a negligible percentage of that for the complete reduction,
Ignoring the 2 x 2 blocks for the moment, we determine the left-hand and right-
hand vectors for the eigenvalue in position r on the diagonal by a triangular back
substitution with matrices of order n — r and r, respectively. The vectors are of
the forms

(145) (01 aO’ Yes Yew1s oo yyn) and (x11x2s 1xra09"’90)a

and if these are normalized vectors, the corresponding s = x,y,. The complication
caused by the 2 x 2 blocks is not substantial and is discussed in detail in [28,
pp. 372, 374]. The computed s; are invaluable in any case, since they give the
sensitivities of the eigenvalues of T, i.e., of (4 + E).

Now let us consider the eigenvalues in the first s positions along the diagonal
of T. We may write

T, T, s

(14.6) X A+ EX = [ . ”]} ,
\9_/ T, }"“
* s ?—Psl

and hence

(14.7) A4+ EX,=XT,,,

where X consists of the first s columns of the orthogonal matrix X. Notice that
this is true even if there are 2 x 2 blocks included in T, provided the first of
a pair of conjugate eigenvalues is not in position s. These s orthogonal vectors
therefore provide an orthogonal basis for the invariant subspace of A + E
corresponding to this group of s eigenvalues, and, as we have remarked, even the
computed columns of X are accurately orthogonal. They do, of course, provide
information only about the subspaces of 4 + E rather than of A itself, but any
loss of accuracy due to this perturbation is inherent in the problem and cannot be
avoided without working to a higher precision (or exactly!) at least in some
significant part of the computation. Although the individual eigenvectors corre-
sponding to those s eigenvalues may be almost linearly dependent, the columns of
X, being orthogonal, cannot have this shortcoming.

There is no correspondingly simple method for computing a set of orthogonal
vectors giving the invariant subspace corresponding to a set of 4; which are not
in the leading position. However, given any collection of 4,, it is possible to trans-
form Tinto an upper triangular T having these 4, in the leading positions by means
of an orthogonal similarity. Hence we have an orthogonal Y such that

(14.8) YT+ FY=T,

where F is the result of rounding errors, and since the process is stable, || F|/|| Tl
and hence ||F||/| A is of the order of the machine precision. Hence, finally,

(149) Y'XTA+ E+QOYX =T,
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where G = XFXT and ||G||, = |F|,, and the first s columns of YX give an
* orthogonal basis of the subspace corresponding to the selected s eigenvalues.

The transformation from T'to T was first described by Ruhe [14]. It is achieved
by a sequence of orthogonal similarities, each of which is a plane rotation and
is based on the following observation. If

P a
(14.10) | T:[O r],

then there is a plane rotation R such that

: r 1
R'TR = [ q].
0 p
If this is true, then clearly

To k=10 )
(14.11) R[O r__pR.. .

or

cos§ sin 67[0 q r-p g cos@ sinf
(14.12) ) . ) .
—sin@ cos6 |0 r—p 0 O]l —sinf8 coséd
For this to be true, (r — p)cos 6 — gsin 8 = 0, giving

(14.13) cosf = g/a, sinf =(r— p)a, a=./(r—p?*+q°

and a simple verification shows that with this choice of R, the relation is true.
Ruhe gave the analogous result in the complex case; in this, g becomes g in the
transformed matrix. Using this algorithm, any eigenvalue may be brought into
any required position along the diagonal by a sequence of plane rotations. When
Tisreal but has 2 x 2 blocks corresponding to complex eigenvalues, an analogous
result is true in which a complex pair is always kept together in the form of a
real 2 x 2 block. One needs only two additional algorithms which serve to inter-
change the position of a single real diagonal element and a real 2 x 2 block and
to interchange the positions of two 2 x 2 blocks. (N.B., the 2 x 2 blocks need not
remain invariant; only their eigenvalues.) The relevant algorithms have been
coded on KDF9 and are numerically stable.

There remains the problem of the grouping, and there does not yet appear
to be a perfectly satisfactory method of deciding on this. It cannot be decided
purely on the basis of the separation, since even multiple eigenvalues corresponding
to elementary divisors of moderate degree will not in general lead to “close”
eigenvalues in the computed set. Further, even when the exact A; and 4; are by
no means pathologically close, they may be so sensitive that small perturbations
in 4 may make them so. A good working test is that a perturbation E may make
them coincident if
EE_”Z_ + LE__'.I.E >

= H’l - Ajla

(14.14) Lt B
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though since || E|//s; is merely a first order perturbation, a smaller ||E|| than this
may well be adequate.

However, we are not merely concerned with whether the computed 4; and 4;
could belong to a multiple root. If this is our criterion, then the groups will be
much smaller than is advisable. A reasonably satisfactory rule is that if our aim is
to have ¢’ decimal digits correct in the subspace on a t-digit decimal computer,
then 4, should be coupled with A; when '

(14.15) 14 — Af max (s, Is}]) < 1077 4],

where || 4| rather than || 4], is used since a practical criterion is required. This
criterion has been applied on KDF9 and found to be quite sound. We may illustrate
this in action by means of a simple example. Consider the matrix

1 10
(14.16) 01 1
e 0 1

The eigenvalues are 1 + ¢'/3, 1 + we!/3, 1 + w?e'’?, where w is a complex cube
root of unity. The separation is ¢'/3, /3, and hence when ¢ is of the order of machine
precision, the eigenvalues willnot appear unduly close. But the left-hand eigenvector
correspondingtoe!/3is[e2/3, £!/3, 1],and theright-hand eigenvectoris[1, £/3, ¢2/3],
and hence the corresponding s; = 3e2/3/(1 + &*/* + £*/) with similar results for
the other eigenvalues. Hence (4, — 4,)s, = 3\/53, and this product fully exposes
the danger. These two eigenvalues would be grouped together even if one were
making the tolerance very lax.

One difficulty encountered in experimentation with algorithms for finding
invariant subspaces is that of obtaining a correct orthogonal basis against which
to test computed subspaces except in the case of rather artificially constructed
matrices. In practice, we have found it useful to work with A itself and with A
such that 4;; = Qv 1=in+1-j> ie., A is the reflection of 4 in its center point.
Eigenvectors, etc., of A are merely those of A with components in the reverse order.
If A and A are solved by the same algorithm, then one can compare orthogonal
bases obtained with the two matrices. At least one computed subspace has an
error which is of the order of magnitude of the angle between the two computed
subspaces. Where it has been possible to determine a correct basis by independent
means, the error in each of the computed subspaces has proved to be of the same
order of magnitude as the angle between them. One might expect this to be true
generally unless there is some special reason for errors to be correlated in some way.

For matrices with well-defined J.c.f’s, the orthogonal bases determined by
an algorithm based on the above have been correct almost to working accuracy.
Even if one takes t' almost equal to ¢, only the eigenvalues associated with multiple
roots have been grouped together.

The results obtained with the Frank matrices are interesting. For n = 16,
the 9 smallest computed eigenvalues and their true values are given in Table 1.
Six of the computed values are complex and with imaginary parts which are quite
comparable with the real parts. Only with 4,, do we begin to have any significant
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accuracy, and Ay has four correct figures. The largest eigenvalues were given very.
accurately.

TABLE 1

Computed eigenvaiues True eigenvalues

Are = —0.02710 + i (0.04506) A = 0.02176
Ays = —0.02710 — i (0.04506) Ays = 0.03133

Ars = 006121 + i (0.09907) Are = 004517
Ay = 0.06121 — i (0.09907) Ays = 0.06712
Az = 0.1882 + i (0.06248) Ays = 0.1051
Ay = 0.1882 — i (0.06248) A= 01775
Ao = 03342 Ao = 03307
Ao = 0.6809 /g = 0.6809
dg = 1.469 g = 1.469

Orthogonal bases were computed for subspaces of dimensions 2, 4, 6, 7, 8,9
obtained by grouping the corresponding number of smallest eigenvalues together.
(Notice we did not compute spaces of dimension 3, 5 since conjugate pairs were
always kept together in order to be able to work in the real field.) The angles
between the computed bases and the true subspace are given in Table 2. The
subspaces of order 2 and 4 are scarcely of any significant accuracy, but that of
order 6 is correct to about 3 decimals and that of order 7 to almost six decimals.
Notice that this accuracy in the subspace is attained, although some of the 4;
are very poor. (It should be emphasized, though, that every computed 4; is an
eigenvalue of some A + E, with || E||/|| 4] of the order of 273%)

TABLE 2

Dimension Angle between computed and true subspace

3.05 x 1072
1.73 x 1072
6.23 x 1074
1.74 x 10~
1.73 x 10~8
2.67 x 10710

\O 00 3 O H N

We may look at these results from an alternative point of view. If the matrix
F,¢ is regarded as having relative errors of order 107!2 in its elements, then the
invariant subspace corresponding to its two smallest elements is scarcely deter-
mined at all, while that corresponding to its smallest 7 eigenvalues for example
is determined to about six decimals.

15. Inverse iteration and ill-conditioned eigensystems. Inverse iteration is one
of the main tools used in practice for the calculation of eigenvectors from computed
eigenvalues. The motivation for inverse iteration, due to Wielandt [23], springs
from the observation that if 4 is a matrix with a complete set of eigenvectors x;,
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then an arbitrary vector may be expressed in the form

(15.1) y= ) ax
i=1
and hence
(15.2) A=k 'y = i ox;/(A; — k).

i=1
If|A; — k| « |4; — k| (i # j), the components of x; will be very much larger than
the coefficients of the remaining x;, unless the vector y happens to be very deficient
in x;. If, in particular, k is a very accurate approximation to 4;, the right-hand side
of (15.2) may be written in the form

[ajxj + Y ald; — kxy(e — k)}

i%j

1

(15.3) ( Tk
and the normalized form of this vector will be x; to very high accuracy. However,
for nonnormal matrices, a computed A may not be particularly near to any eigen-
value, and it appears that one can no longer expect such a spectacular performance
in one iteration.

Varah was the first to point out that this is not so. The simplest way to see
this is to forget about the expansion of y and concentrate directly on the solution
of (A — Al)z = y, where ||y|l, = 1. We may write

(15.4) (A= Az/lzll, = y/zllz, w=12/lzll,, y/lzll, =7
giving
(15.5) (A-Aw=r, lwly=1, [rl=1/jzl,=¢ (say).

The first of equations (15.5) may be expressed in the form
(15.6) (A= rwhw = dw,

and hence 4 and w are an exact eigenvalue of eigenvector of the matrix 4 — rw”.
Since |rw®||, = |||, = &, itisevident thatif ||z||, is “‘large”, A and w are satisfactory
since they are exact for a neighboring matrix.

Now if we start with a value of A which is an exact eigenvalue of A + E, then
however poor 4 may otherwise be,

(15.7) (A+ E— Al)g=0 forsome |g, = 1.

Hence (4 — Al)g = —Eq and if one takes y = —Egq/||Eq|,, the solution of
(A— Az =y is z=gq/|Eq|, and |z|| 2 1/||E|,. With this choice of y, then,
we obtain a very large z in one iteration, and the corresponding w = z/||z|, is
a satisfactory eigenvector corresponding to A. Obviously, if we take as initial y
an arbitrary unit vector, the probability of it being very deficient in the vector
— Eq/||Eq||, is very small and hence inverse iteration will “work” in one iteration
with almost any starting vector.

However, Varah also produced an argument Wthh suggested that when 4
is related to an ill-conditioned eigenvalue, there are severe disadvantages in



ILL-CONDITIONED EIGENSYSTEMS 615

performing more than one step of inverse iteration, and a satisfactory analysis of
the phenomenon was subsequently given by Wilkinson [27]. It is instructive to
analyze this phenomenon in terms of the S.V.D. decomposition. We showed in
§ 5 that if 4; is an ill-conditioned eigenvalue, the associated s; is small and the
matrix X of eigenvectors has a small singular value o, < |s. If the S.V.D. of X
is

(15.8) X =ULVH, XV =Us,
then
X 1
(15.9) u, = Gv,, = G—[oclx1 + a,x, + -0 + a,x,], Wwherea; = v,

and hence the unit vector u, expanded in terms of the x; has very large coefficients.
If we take an arbitrary vector y, it can be expressed in the form

(1510) y= ﬁlul + o+ ﬁnun,

where the §; are distributed in a natural way. When it is transformed to its expansion
in terms of the x;, we have

s o[ T [ T [
On [ 0,

and in general all the coefficients of the x; will be very large but will be in ratios
which are independent of the §;, provided S, is not small. From (15.11),

= (A4 — A"ty = B, X o, f, X2
2= -4y [a * ]zl-ﬁ o L=t

° amBn xn
+ ["”o__"-' + }A" _— /1,
and z will in general be a large vector for two reasons : first, because ¢, is small and
second, because usually one of the (4, — 1) will be moderately small (though not
usually pathologically so). Now when z is normalized prior to doing the second
iteration, the coefficients of the x; in this normalized z will no longer be special

in the way that they were in the first “arbitrary” y.
In fact, the normalized vector will be essentially

(15.12)

A=A Ai— A
e LTI RR M ks PR P
A’l_;" /12'—/1
(15.13)
RN Sld
Ty A "

and the coefficients of the x; will be of order unity. In the first vector these coefficients
were all large but canceled out to give a vector of normal size. Consequently, in
the second step of inverse iteration, the growth in size will come only from the
comparative smallness of a 4; — A and will not be reinforced by the smallness of 5,,.
This will be true of all subsequent steps unless at the rth step all the quantities
((A; = A/(A; — A)) are almost equal, when the normalized value will have large
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components of each of the x; in the same ratios as in the first vector. In this case,
every rth iteration will give a large growth and consequently a satisfactory vector.
This situation will usually occur when A has an elementary divisor of degree r.
Varah has effectively used this behavior of the iterates to give information cn
the structure of the J.c.f. of 4 [21].

The analysis may be carried out in an alternative way which is also instructive.
We observe first that if 4, is an exact eigenvalue of 4, then 4 — 4,I is singular,
and if

(15.14) (A — AD) = UZVE,

then o, = 0. Consequently,

(15.15) (A - ADw, =0, uf(4 - 41) =0,

agd v, and u, are normalized right-hand and left-hand eigenvectors of A, with
Up Uy = S;.

Now suppose 4; is an exact eigenvalue of 4 + E; then ¢,(4 — A4,I) = ||E|,.
If we now write

(15.16) A—=2I=UZV¥ and (4 - 4Dy, = oy,
then ¢, < | E||. An arbitrary unit vector y may now be expanded in the form
(15.17) - y = Zajuj, with [all, = 1
and
(15.18) z=(A- )"ty =Y 2
g

The coefficient of v, is a,/c,, and
(15.19) lots/0a 2 /I EJ.

Unless y is accidentally deficient in u,, the full growth takes place in the first
iteration. The normalized z is essentially of the form

n=~1

(15.20) Uy + Y Pilis
1

where the y; are small. To see the effect of the second iteration, one requires an
expansion in terms of the u; rather than the v;, and we now show that in this
expansion the coefficient of u, is small. Indeed, since ufv, is roughly s; from the
previous argument, and all the y; are small, this is immediately obvious. The
normalized z is therefore an unfortunate vehicle for inverse iteration since it is
deficient in u,,.

16. Improvement of an invariant subspace. Suppose 4 has been reduced to
upper triangular form T by a unitary similarity X with a group of associated 4,
in the s leading diagonal positions of T. We then have, for the computed X and 7,

(16.1) AX — XT = E.

The error analysis guarantees that E will be almost negligible to working accuracy.
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Each element of the matrix E may be determined in practice by accumulating the
whole of the inner product involved in double-precision before rounding. If
F = X 'E, then

(16.2) X 'AX =T+ X 'E=T+F,

and since the computed X is almost exactly orthogonal, one can compute F via

XTE. From an‘invariant subspace of T + F one can improve the corresponding
subspace of A itself. We partition T + F in the form

T, T, F,, F
(163) [ 11 12:' + [: 11 12],

0 T, F21_ Fy,
where T;, contains the grouped eigenvalues. The relevant invariant subspace of T
is spanned by the first s columns of I, and hence if we write

T, T, Fi, Fi; I _ 1
164 ([o Tu]+ [le Fn]) [ﬂ" [7}”“”“]’

[I YT] gives the improved subspace. From (16.4), neglecting second order
quantities,

(16.5) T+ Fiy + T, Y=T,; +Gy,, T, Y+ F; =YT,,,
and Y is the solﬁtion of

(16.6) (T, Y = YT,] = —Fy;.

The matrix Y may be determined column by column via the relations
(16.7) T2yy — tus = —J1, (T =ty )y = —fy,

(16.8) T332 — 12V — t22)2 = [, (o2 = t2D)y, = —f3 + ti2):-

In general, the rth column of Y is the solution of a triangular system of
equations with matrix (T, — ¢,,.I).

From Y one can determine G,, via (16.5).

If one includes the second order terms, then (16.6) becomes

(16.9) [T.Y = YTy ] = —Fpy + [=FpY + Y(T,,Y + Fyy + FipY)),

and after solving (16.6), an improved right-hand side is that in (16.9) in which
the computed Y is used. In this way, Y may be repeatedly improved by iteration.

However, there is little point in this. The matrix F is not known exactly.
There are errors made in computing E in the first place and further errors in
computing X ~'E, and here no purpose is served in computing Y accurately.
In (16.3) we have purposely refrained from writing

[Tu sz:,
(16100 LFy Tl
where Ty = Ty + Fiy, T =T+ Fiay Ty =Ty + Foy,

although this would have simplified the expressions. This is because it is necessary
to keep the F matrix separate from the T matrix on the computer. The information
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in F would promptly be lost if the addition were carried out. However, there are
_ obviously slight advantages in replacing (16.6) by

(16-11) (Tzzy - YnTu) = "sz-

The improved subspace X, is now X, = X, + X,Y. It is no longer quite
orthogonal, but this is of no importance. If one wishes to continue with the
refinement of the subspace, one should return to the computation of the residual
via the relation

(16.12) AR, X,] - [X,1X,)[T) = E,
where
~ I:Tu + Gy, le]
(16.13) T = .
0 T,

The new E will not be smaller than E in general, but the next correction to the
subspace will be. If ¥ = [X,| X,], then

(16.14) X 4X -T=X)'E=F,

and one can still use the approximation (X)~* = X7. When computing the new
correction Y, the equations corresponding to (16.6) will be

(16.15) | [T22}7— Y,Tu] = —Fu,

and T;; = Ty; + S;, is no longer upper triangular. However, we may use T}, in
place of T;, since YS,, will be of second order. :

The process of iterative refinement is wholly analogous to that used with
linear equations (see, €.g., [25, Chap. 4]). In general, we can continue until we have
a basis which is correct to working accuracy. Indeed, at the time when the process
terminates, the new X, will be obtained in terms of the old X, and the original

X, by the relation
(16.16) X, (new) = X, (old) + X, Y,

where X, Y is small. The true sum on the right-hand side will be accurate to more
than the working precision.

The final X, will not have orthogonal columns, but they will be almost
orthogonal. If true orthogonality is required, no appreciable loss of accuracy
will occur when the Schmidt orthogonalization process is performed.
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