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NINETEEN DUBIOUS WAYS TO COMPUTE
THE EXPONENTIAL OF A MATRIX*

CLEVE MOLERt aNnD CHARLES VAN LOAN#%

Abstract. In principle, the exponential of a matrix could be computed in many ways. Methods involving
approximation theory, differential equations, the matrix eigenvalues, and the matrix characteristic poly-
nomial have been proposed. In practice, consideration of computational stapility and efficiency indicates
that some of the methods are preferable to others, but that none are completely satisfactory.

1. Introduction. Mathematical models of many physical, biological, and
economic processes involve systems of linear, constant coefficient ordinary differential
equations

()= Ax(t).

Here A is a given, fixed, real or complex n-by-n matrix. A solution vector x(t) is
sought which satisfies an initial condition

x(0) = x,.

In control theory, A is known as the state companion matrix and x(¢) is the system
response.
~In principle, the solution is given by x(1)=e“x, where ¢ can be formally
defined by the convergent power series
2,42
e‘A=I+tA+—5?—+- e

The effective computation of this matrix function is the main topic of this survey.

We will primarily be concerned with matrices whose order # is less than a few
hundred, so that all the elements can be stored in the main memory of a contemporary
computer. Our discussion will be less germane to the type of large, sparse matrices
which occur in the method of lines for partial differential equations.

Dozens of methods for computing e™ can be obtained from more or less classical
results in analysis, approximation theory, and matrix theory. Some of the methods
have been proposed as specific algorithms, while others are based on less constructive
characterizations. Our bibliography concentrates on recent papers with strong
algorithmic content, although we have included a fair number of references which
possess historical or theoretical interest.

In this survey we try to describe all the methods that appear to be practical,
dlassify them into five broad categories, and assess their relative effectiveness. Actu-
dly, each of the “methods’” when completely implemented might lead to many
lifferent computer programs which differ in various details. Moreover, these details
Might have more influence on the actual performance than our gross assessment
ndicates. Thus, our comments may not directly apply to particular subroutines.

In assessing the effectiveness of various algorithms we will be concerned with the
leowing attributes, listed in decreasing order of importance: generality, reliability,
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stability, accuracy, efficiency, storage requirements, gase of use, and simplicity. We

would consider an algorithm completely satisfactory if it could be used as the basis for
a general purpose subroutine which meets the standards of quality software now
available for linear algebraic equations, matrix eigenvalues, and initial value problems
for nonlinear ordinary differential equations. By these standards, none of the
algorithms we know of are completely satisfactory, although some are much better
than others.

Generality means that the method is applicable to wide classes of matrices. For
example, a method which works only on matrices with distinct eigenvalues will not be
highly regarded.

When defining terms like reliability, stability and accuracy, it is important to
distinguish between the inherent sensitivity of the underlying problem and the error
properties of a particular algorithm for solving that problem. Trying to find the inverse
of a nearly singular matrix, for example, is an inherently sensitive problem. Such
problems-are said to be poorly posed or badly conditioned. No algorithm working with
finite precision arithmetic can be expected to obtain a computed inverse that is not
contaminated by large errors.

An algorithm is said to be reliable if it gives some warning whenever it introduces
excessive errors. For example, Gaussian elimination without some form of pivoting is
an unreliable algorithm for inverting a matrix. Roundoff errors can be magnified by
large multipliers to the point where they can make the computed result completely
erroneous, but there is no indication of the difficulty.

An algorithm is stable if it does not introduce any more sensitivity to perturbation
than is inherent in the underlying problem. A stable algorithm produces an answer
which is exact for a problem close to the given one. A method can be stable and still
not produce accurate results if small changes in the data cause large changes in the
answer. A method can be unstable and still be reliable if the instability can be
detected. For example, Gaussian elimination with either partial or complete pivoting
must be regarded as a mildly unstable algorithm because there is a possibility that the
matrix elements will grow during the elimination and the resulting roundoff errors will
not be small when compared with the original data. In practice, however, such growth
is rare and can be detected.

The accuracy of an algorithm refers primarily to the error introduced by truncat-
ing infinite series or terminating iterations. It is one component, but not the only
component, of the accuracy of the computed answer. Often, using more computer
time will increase accuracy provided the method is stable. For example, the accuracy
of an iterative method for solving a system of equations can be controlled by changing
the number of iterations.

is measured by the amount of computer time required to solve 3
particular problem. There are several problems to distinguish. For example, comput*
ing only e? is different from computing e"® for several values of z. Methods which usé
some decomposition of A (independent of ¢) might be more efficient for the secon
problem. Other methods may be more efficient for computing ¢ ““x, for one or seve
values of r. We are primarily concerned with the order of magnitude of the V{O‘k
involved. In matrix eigenvalue computation, for example, a method which requir® ‘
O(n*) time would be considered grossly inefficient because the usual methods require
only O(n>).

In estimating the time required by matrix computations it is traditional
mate the number of multiplications and then employ some factor to account for R
other operations. We suggest making this slightly more precise by defining 2 basi®

to csti-
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floating point operation, or “flop”, to be the time required for a particular computer
system to execute the FORTRAN statement

A(LT)=A(LT)+T*A(L K).

This involves one floating point multiplication, one floating point addition, a few
subscript and index calculations, and a few storage references. We can then say, for
example, that Gaussian elimination requires n°/3 flops to solve an n-by-n linear
system Ax =b.

The eigenvalues of A play a fundamental role in the study of ¢* even though
they may not be involved in a specific algorithm. For example, if all the eigenvalues lie
in the open left half plane, then e™ =0 as t-co. This property is often called
“stability” but we will reserve the use of this term for describing numerical properties
of algorithms. v

Several particular classes of matrices lead to special algorithms. If A is symmetric,
then methods based on eigenvalue decompositions are particularly effective. If the
original problem involves a single, nth order differential equation which has been
rewritten as a system of first order equations in the standard way, then A is a
companion matrix and other special algorithms are appropriate.

The inherent difficulty of finding effective algorithms for the matrix exponential is
based in part on the following dilemma. Attempts to exploit the special properties of
the differential equation lead naturally to the eigenvalues A; and eigenvectors v; of A
and to the representation

n
x(t)= Y aie*'vs
i=1

However, it is not always possible to express x(¢) in this way. If there are confluent
eigenvalues, then the coefficients «; in the linear combination may have to be poly-
nomials in « In practical computation with inexact data and inexact arithmetic, the
gray area where the eigenvalues are nearly confluent leads to loss of accuracy. On the
other hand, algorithms which avoid use of the eigenvalues tend to require consider-
ably more computer time for any particular problem. They may also be adversely
effected by roundoff error in problems where the matrix ¢A has large elements.
These difficulties can be illustrated by a simple 2-by-2 example,

A a
A=l ]
0 wu
The exponential of this matrix is
At eAl -eu.r
@x——
et = A—u
0 e

Of course, when A = u, this representation must be replaced by

a [eM ate™
e"=ly o )
There is no serious difficulty when A and u are exactly equal, or even when their

diference can be considered negligible. The degeneracy can be detected and the
fesulting special form of the solution invoked. The difficulty comes when A —u is small
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but not negligible. Then, if the divided difference

A
et —e™

A—u

is computed in the most obvious way, a result with a large relative error is produced,
When multiplied by a, the final computed answer may be very inaccurate. Of course,
for this example, the'formula for the off-diagonal element can be written in other ways
which are more stable. However, when the same type of difficulty occurs in nontrian-
gular problems, or in problems that are larger than 2-by-2, its detection and cure is by
no means easy.

The example also illustrates another property of e which must be faced by any
successful algorithm. As ¢ increases, the elements of ¢ may grow before they decay.
If A and w are both negative and « is fairly large, the graph in Fig. 1 is typical.

—t
e

FI1G. 1. The “hump”.

Several algorithms make direct or indirect use of the identity
A = (e sA/rn)m-
The difficulty occurs when s/m is under the hump but s is beyond it, for then
e <lle“/

Unfortunately, the roundoff errors in the mth power of a matrix, say B™, are usually
small relative to ||B|™ rather than |B™]. Consequently, any algorithm which tries t0
pass over the hump by repeated multiplications is in difficulty.

Finally, the example illustrates the special nature of symmetric matrices. A is
symmetric if and only if @« =0, and then the difficulties with multiple eigenvalues and
the hump both disappear. We will find later that multiple eigenvalue and humP
problems do not exist when A is a normal matrix.

It is convenient to review some conventions and definitions at this time. Unless
otherwxse stated, all matrices are n-by-n. If A = (a;;) we have the notions of transposé

= (a;), and conjugate transpose, A* = (a;). The following types of matrices hav¢
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an important role to play:

A symmetrice> AT = A,

A Hermitiane A*= A4,

A normale A*A = AA%,

Q orthogonal »Q'Q =1,

Q unitarye> Q*Q =1,

T triangular < #; =0, [>],
D diagonaled; =0, [ #].

Because of the convenience of unitary invariance, we shall work exclusively with
the 2-norm:

n 1/2
ll=[ £ P . lAl=maxfiasl

{=

However, all our results apply with minor modification when other norms are used.
The condition of an invertible matrix A is denoted by cond (A) where

[cond (A)=]A] A",

Should A be singular, we adopt the convention that it has infinite condition. The
commutator of two matrices B and C is [B, C]=BC - CB.

Two matrix decompositions are of importance. The Schur d itiog states
that for any matrix A, there exists a unitary Q and a triangular 7, sucE tEat
Q*AQ=T

fT= ('t,',»), then the eigenvalues of A are 111, -, tan.

~ The Jordan canonical form decomposition states that there exists an invertible P
such that

, P 'AP=J.
where J is a direct sum, J =J,®- - -@J,, of Jordan blocks
fAc 10 -+ 07
0O A 1 --- 0
=l : (m;-by-m).
o |
;..O O 0 e /\l‘_

The A; are eigenvalues of A. If any of the m; are greater than 1, A is said to be
defective. This means that A does not have a full set of n linearly independent

eigenvectors. A is derogatory if there is more than one Jordan block associated with a
Biven eigenvalue.

2. The sensitivity of the problem. It is important to know how sensitive a quantity
s before its computation is attempted. For the problem under consideration we are
Mterested in the relative perturbation

r(A+E)__etAH

e ™l

In the following three theorems we summarize some upper bounds for ¢ (¢) which are
derived in Van Loan [32].

lle

b(1)=
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THEOREM 1. If a(A)=max {Re (A)|A an eigenvalue of A} and w(A)=max {u|u
an eigenvalue of (A*+ A)/2}, then

d()st|Elexp [u(A)~a(A)+|EN:  (t=0).

The scalar u(A) is the “‘log norm” of A (associated with the 2-norm) and has many
interesting properties [35]~[42]. In particular, u{(A)Z a(A).

THEOREM 2. If A = PJP™! is the Jordan decomposition of A and m is the dimen-
sion of the largest Jordan block in J, then

b (1) S ENM; (1) e (120),
where

= ’ i/
M;(t)=m cond (P)osr,-nﬁ,’,(_l /i

THEOREM 3. If A = Q(D + N)Q* is the Schur decomposition of A with D diagonal
-and N strictly upper triangular (n; =0, i Z7), then

b ()SHEIMs(r)? e™sEY (12 0),

where
n—=1
Ms()= £ (NI
As a corollary to any of these theorems one can show that if A is normal, then

o (1) t|Ef """,

This shows that the perturbation bounds on ¢(¢) for normal matrices are as small as
can be expected. Furthermore, when A is normal, [le**|=e**'™|™ for all positive
integers m implying that the “hump”’ phenomenon does not exist. These observations
lead us to conclude that the e problem is *“well conditioned”” when A is normal.

It is rather more difficult to characterize those A for which e is very sensitive to
changes in A. The bound in Theorem 2 suggests that this might be the case when A
has a poorly conditioned eigensystem as measured by cond (P). This is related to a
large Ms(t) in Theorem 3 or a positive w(A)~a{A)in Theorem 1. It is unclear what
the precise connection is between these situations and the hump phenomena we
described in the Introduction.

Some progress can be made in understanding the sensitivity of ¢** by defining the
“matrix exponential condition number” v(A, ¢):

_ JA]
Y4 0= e ™I

J QDAL oA ds”
0

A discussion of v(A, ) can be found in [32]. One can show that there exists 2
perturbation E such that

IEY

p=1—

Ao

This indicates that if »(A, t) is large, small changes in A can induce relatively larg®
changes in e, It is easy to verify that

v(A, Dz Al



THE EXPONENTIAL OF A MATRIX 807

with equality if and only if A is normal. When A is not normal, v(A, ¢) can grow like a
- high degree polynomial in ¢.

3. Series methods. The common theme of what we call series methods is the
direct application to matrices of standard approximation techniques for the scalar
function e’. In these methods, neither the order of the matrix nor its eigenvalues play a
direct role in the actual computations.

METHOD 1. TAYLOR SERIES. The definition

et=T+A+A%20+ ..

is, of course, the basis for an algorithm. If we momentarily ignore efficiency, we can
simply sum the series until adding another term does not alter the numbers stored in
the computer. That is, if

k .
Te(A)= T Al/j!

and fl [T (A)] is the matrix of floating point numbers obtained by computing T, (A) in
floating point arithmetic, then we find K so that i[Tx(A)] = [Tk+1(A)]. We then
take Tk (A) as our approximation to e™.

Such an algorithm is known to be unsatisfactory even in the scalar case [4] and
our main reason for mentioning it is to set a tlear lower bound on possible per-
formance. To illustrate the most serious shortcoming, we implemented this algorithm
on the IBM 370 using “short’ arithmetic, which corresponds to a relative accuracy of
167 =0.95 107°. We input ,

A ={ 49 24}

-64 31
and obtained the output

A~[~22.25880 ~1.432766}
-61.49931 -3.474280)

Atotal of K =59 terms were required to obtain convergence. There are several ways
of obtaining the correct e” for this example. The simplest is to be told how the
¢xample was constructed in the first place. We have

r1 3 1r-1 0 7r1 377"
A’_z 4}[ 0 —17“2 4J ’

Al 3}[4:‘* 0 J[l 3}“
12 4ll o eVil2 41
“hich, to 6 decimal places is,

A [—0.735759 0.551819J

ind so

e =

-1.471518 1.103638

The computed approximation even has the wrong sign in two components.
Of course, this-example was constructed to make the method look bad. But it is
Mportant to understand the source of the error. By looking at intermediate results in
e calculation we find that the two matrices A'®/16! and A'7/17! have elements
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between 10° and 107 in magnitude but of opposite signs. Because we are using 3
relative accuracy of only 107°, the elements of these intermediate results have
absolute errors larger than the final result. So, we have an extreme example of
“catastrophic cancellation” in floating point arithmetic. It should be emphasized that
the difficulty is not themwse_rie_s‘_but the fruncation of the arithmetic. If
we had used “long” arithmetic which does not require significantly more time but
which involves 16 digits of accuracy, then we would have obtained a result accurate to
about nine decimal places.

Concern over where to truncate the series is important if efficiency is being
considered. The example above required 59 terms giving Method 1 low marks in this’
connection. Among several papers concerning the truncation error of Taylor series,
the paper by Liou [52] is frequently cited. If § is some prescribed error tolerance, Liou
suggests choosing K large enough so that

A< 1
Tc(A)—e?|= ) >§5.
ITic(A)=e” ((K+1)! (1—||An/(1<+2)
Moreover, when e¢* is desired for several different values of ¢, say t=1,--+,m, he

suggests an error checking procedure which involves choosing L from the same
inequality with A replaced by mA and then comparing [Tk (A)]"xo with T (mA)x,.
In related papers Everling [SO] has sharpened the truncation error bound imple-
mented by Liou, and Bickhart [46] has considered relative instead of absolute error.
Unfortunately, all these approaches ignore the effects of roundoff error and so must
fail in actual computation with certain matrices.

METHOD 2. PADE APPROXIMATION. The (p, q) Padé approximation to e” is
defined by

Ryq(A)=[Dya(A)] Ny (A),

where
2 _(p+qg-=ptpo!
Nyg(A)= - — A’
) l§0(P+Q)!/!(P'])!
and
q -\l X
Dyo(a)= 3 (ETAZINE ()

i=o (p+q)jlg—=/)

Nonsingularity of D,,(A)is assured if p and q are large enough or if the eigenvalues of
A are negative. Zakian [76] and Wragg and Davies [75] consider the advantages of
various representations of these rational approximations (e.g. partial fraction,
continued fraction) as well as the choice of p and g to obtain prescribed accuracy.

Again, roundoff error makes Padé approximations unreliable. For large 4.
D,.(A) approaches the series for e ™™*/? whereas Ngq(A) tends to the series for e
Hence, cancellation error can prevent the accurate determination of these matrices.
Similar comments apply to general (p, q) approximants. In addition to the cancellaticn
problem, the denominator matrix D,,(A) may be very poorly conditioned with respect
to inversion. This is particularly true when A has widely spread eigenvalues. To se¢
this again consider the (g, q) Padé approximants. It is not hard to show that for largé
enough g, we have

cond [qu (A )] =cond (e—A/?.) > (ay=a,)/2

where @y 2+ - Z a, are the real parts of the eigenvalues of A.
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When the diagonal Padé approximants R, (A) were computed for the same
example used with the Taylor series and with the same single precision arithmetic, it
- was found that the most accurate was good to only three decimal places. This occurred
with ¢ =10 and cond [D,,(A)] was greater than 10*. All other values of g gave less
accurate results.

Padé approximants can be used if ||Al| is not too large. In this case, there are
several reasons why the diagonal approximants (p =q) are preferred over the off
diagonal approximants (p # q). Suppose p <gq. About gn” flops are required to evalu-
ate R,,(A), an approximation which has order p +4. However, the same amount of
work is needed to compute R.,(A) and this approximation has order 2q >p+q. A
similar argument can be applied to the superdiagonal approximants (p > gq).

There are other reasons for favoring the diagonal Padé approximants. If all the
eigenvalues of A are in the left half plane, then the computed approximants with p > g
tend to have larger rounding errors due to cancellation while the computed approx:-
mants with p<q tend to have larger rounding errors due to badly conditioned
denominator matrices D,,(A).

There are certain applications where the determination of p and q is based on the
behavior of

lim Roq(A).

If all the eigenvalues of A are in the open left Half plane, then ¢“* - 0 as ¢ -0 and the
same is true for R,,(tA) when g > p. On the other hand, the Padé approximants with
q<p, including g =0, which is the Taylor series, are unbounded for large ¢ The
diagonal approximants are bounded as ¢ - 0.

METHOD 3. SCALING AND SQUARING. The roundoff error difficulties and the
computing costs of the Taylor and Padé approximants increases as ¢||A| increases, or
as the spread of the eigenvalues of A increases. Both of these difficulties can be
controlled by exploiting a fundamental property unique to the exponential function:

et =™y,

The idea is to choose m to be a power of two for which e*’™ can be reliably and
efficiently computed, and then to form the matrix (¢™/™)™ by repeated squaring. One
commonly used criterion for choosing m is to make it the smallest power of two for
which JA[/m = 1. With this restriction, e“’™ can be satisfactorily computed by either
Taylor or Padé approximants. When properly implemented, the resulting algorithm is
one of the most effective we know.

This approach has been suggested by many authors and we will not try to
attribute it to any one of them. Among those who have provided some error analysis
or suggested some refinements are Ward [72], Kammler {97], Kallstrom [116],
Scraton [67), and Shah [56], [57]. ‘ A

If the exponential of the scaled matrix e’ is to be approximated by R,.(A/2"),
}hen we have two parameters, g and j/, to choose. In Appendix 1 we show that if
l4)=2" then

/2

[Raq(A/2)]F =e47E,

where

IEN _ . rlal7* (q!y
W#[%J ((2q)!z2q+1)!>'
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This “inverse error analysis” can be used to determine g and j in a number of ways.
For example, if ¢ is any error tolerance, we can choose among the many (q, J) pairs for
which the above inequality implies

i1,
lal—

Since [Ruq(A/2)]F requires about (q+j+3)n> flops to evaluate, it is. sensible to
choose the pair for which g+ is minimum. The table below specifies these “opti-
mum”’ pairs for various values of ¢ and ||A[. By way of comparison, we have included
the corresponding optimum (k, j) pairs associated with the approximant [T (A/2' W
These pairs were determined from Corollary 1 in Appendix 1, and from the fact that
about (k +/ — 1)n° flops are required to evaluate [T (A/ 207

TABLE 1
Optimum scaling and squaring parameters with diagonal Padé and Taylor series
approximation.
1073 1078 1070 107'2 10713
Al
102 (1,0) (1.0) 2,0) (3.0) (3.0
(1,0) 2.1) (3, 1) 4,1) (5, 1)
107! (1,0 (2,0) (3,0 4.0 4.0)
(3,0) 4,0) 4,2) 4,4) 5.4)
10° 2,1 3.1 4.1 5. H (6. 1)
(5, 1) 7. 1) (6,3) 8.3) (7.5)
10 (2.%) (3.5 (4.5) (5.5) (6.5)
4,5) {6.5) (8,5) (7.1 9.7
102 2.8 3,8) (4.8) (5.8) (6.8)
(4.8) (5,9) (7,9 9.9) (10, 10)
10° (2,11) (3,11) 4,11) (5, 11) (6, 11)
(5,11) (7,11) (6,13) (8,13) (8, 14)

To read the table, for a given ¢ and |lA|l the top ordered pair gives the optimum (g, /)
associated with [R.q(A/2’ ))* while the bottom ordered pair specifies the most efficient
choice of (k, j) associated with [ Ti(A/2)]%.

On the basis of the table we find that Padé approximants are generally moré
efficient than Taylor approximants. When ||A| is small, the Padé approximant requires
about one half as much work for the same accuracy. As [A| grows, this advantagt
decreases because of the larger amount of scaling needed.

Relative error bounds can be derived from the above results. Noting from
Appendix 1 that AE = EA, we have

[[Rag(A/20] =] _lle*(e® - D)
e e

S|l =5 ellA] e

A similar bound can be derived for the Taylor approximants.
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The analysis and our table does not take roundoff error into account, although
this is the method’s weakest point. In general, the computed square of a matrix R can
be severely affected by arithmetic cancellation since the rounding errors are small
when compared to |[R[? but not necessarily small when compared to [R?|. Such
cancellation can only happen when cond (R) is large because R'R*=R implies

IR|P

>...__.

ond RO= R
The matrices which are repeatedly squared in this method can be badly conditioned.
However, this does not necessarily imply that severe cancellation actually takes place.
Moreover, it is possible that cancellation occurs only in problems which involve a large
hump. We regard it as an open question to analyze the roundoff error of the repeated
squaring of e*’™ and to relate the analysis to a realistic assessment of the sensitivity

of e™.

In his implementation of scaling and squaring Ward [72] is aware of the possi-
bility of cancellation. He computes an a posteriori bound for the error, including the
effects of both truncation and roundoff. This is certainly preferable to no error
estimate at all, but it is not completely satisfactory. A large error estimate could be the
result of any of three distinct difficulties:

(i) The error estimate is a severe overestimate of the true error, which is
actually small. The algorithm is stable but the estimate is too pessimistic.

(ii) The true error is large because of cancellation in going over the hump, but
the problem is not sensitive. The algorithm is unstable and another algorithm
might produce a more accurate answer.

(iii) The underlying problem is inherently sensitive. No algorithm can be
expected to produce a more accurate result.

Unfortunately, it is currently very difficult to distinguish among these three situations.

METHOD 4. CHEBYSHEV RATIONAL APPROXIMATION. Let ¢, (x) be the ratio of
two polynomials each of degree q and consider maXosx<w [Coq(x)—e~*|. For various
values of g, Cody, Meinardus, and Varga [62] have determined the coefficients of the
particular c,, which minimizes this maximum. Their results can be directly translated
into bounds for |lcgq(A)—e?| when A is Hermitian with eigenvalues on the negative
real axis. The authors are interested in such matrices because of an application to
partial differential equations. Their approach is particularly effective for the sparse
matrices which occur in such applications.

For non-Hermitian (non-normal) A, it is hard to determine how well cg(A)
approximates e™. If A has an eigenvalue A off the negative real axis, it is possible for
¢ea{A) to be a poor approximation to e*. This would imply that ¢, (A) is a poor
approximation to e™ since

”eA - qu(A)” = ’e/‘ - qu(’\ )'

These remarks prompt us to emphasize an important facet about approximation
of the matrix exponential, namely, there is more to approximating e” than just
dpproximating e” at the eigenvalues of A. It is easy to illustrate this with Padé
approximation. Suppose

OO OO
O O O O
O O N O
SO N O O
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Since all of the eigenvalues of A are zero, R;,(z) is a perfect approximation to e” at
the eigenvalues. However,

1 6 18 54
0 1 6 18
RII(A)— 0 O 1 6 3
0 0 O 1
whereas
1 6 18 36
oA = 0 1 6 18
0 0 1 6
0 0 0 1
and thus,

||eA—R“(A)l| =18.

These discrepancies arise from the fact that A is not normal. The example illustrates
that non-normality exerts a subtle influence upon the methods of this section even
though the eigensystem, per se, is not explicitly involved in any of the algorithms.

4. Ordinary differential equation methods. Since ¢ and e“x, are solutions to
ordinary differential equations, it is natural to consider methods based on numerical
integration. Very sophisticated and powerful methods for the numerical solution of
general nonlinear differential equations have been developed in recent years. All
worthwhile codes have automatic step size control and some of them automatically
vary the order of approximation as well. Methods based on single step formulas,
multistep formulas, and implicit multistep formulas each have certain advantages.
When used to compute e all these methods are easy to use and they require very
little additional programming or other thought. The primary disadvantage is a rela-
tively high cost in computer time.

The o.d.e. programs are designed to solve a single system

x=f(x,1), x(0) = xo,

and to obtain the solution at many values of +. With f(x, r) = Ax the kth column of e
can be obtained by setting x to the kth column of the identity matrix. All the methods
involve a sequence of values 0=+¢g, t;, " -+, t; =t with either fixed or variable step size
h; = t;+1 — 1. They all produce vectors x; which approximate x(¢;).

METHOD 5. GENERAL PURPOSE O.D.E. SOLVER. Most computer center libraries
contain programs for solving initial value problems in ordinary differential equations.
Very few libraries contain programs that compute ¢". Until the latter programs are
more readily available, undoubtedly the easiest and, from the programmer’s point of
view, the quickest way to compute. a matrix exponential is to call upon a general
purpose o.d.e. solver. This is obviously an expensive luxury since the o.d.e. routipe
does not take advantage of the linear, constant coetficient nature of our SpeClaj
problem.

We have run a very small experiment in which we have used three recently
developed o.d.e. solvers to compute the exponentials of about a dozen matrices an
have measured the amount of work required. The programs are:

(1) RKF45. Written by Shampine and Watts [108], this program uses the
Fehlberg formulas of the Runge-Kutta type. Six function evaluations are required pes
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step. The resulting formula is fifth order with automatic step size control. (See also
(41

(2) DE/STEP. Written by Shampine and Gordon [107], this program uses vari-
able order, variable step Adams predictor-corrector formulas. Two function evalua-
tions are required per step.

(3) IMPSUB. Written by Starner [109], this program is a.modification of Gear’s
DIFSUB [106] and is based on implicit backward differentiation formulas intended
for stiff differential equations. Starner’s modifications add the ability to solve
“infinitely stiff”” problems in which the derivatives of some of the variables may be
missing. Two function evaluations are usually required per step but three or four may

" occasionally be used.

For RKF45 the output points are primarily determined by the step size selection
in the program. For the other two routines, the output is produced at user specified
points by interpolation. For an n- by—n matrix A, the cost of one function evaluation is
a matrix-vector multiplication or n° flops. The number of evaluations is determined by
.the length of the integration interval and the accuracy requested.

The relative performance of the three programs depends fairly strongly on the
particular matrix. RKF45 often requires the most function evaluations, especially
when high accuracy is sought, because its order is fixed. But it may well require the
least actual computer time at modest accuracies because of its low overhead.
DE/STEP indicates when it thinks a problem is stiff. If it doesn’t give this indication, it
usually requires the fewest function evaluations. If it does, IMPSUB may require
fewer.

The following table gives the resuits for one particular matrix which we arbitrarily
declare to be a ‘‘typical” nonstiff problem. The matrix is of order 3, with eigenvalues
A =3,3, 6; the matrix is defective. We used three different local error tolerances and
integrated over [0, 1]. The average number of function evaluations for the three
starting vectors is given in the table. These can be regarded as typical coefficients of n*
for the single vector problem or of n> for the full matrix exponential; IBM 370 long
arithmetic was used.

TABLE 2
Work as a function of subroutine and local error tolerance.
1076 107° 10712
RKF45 217 832 3268
DE/STEP 118 160 211
IMPSUB 173 202 1510

Although people concerned with the competition between various o.d.e. solvers
might be interested in the details of this table, we caution that it is the result of only
one experiment. Our main reason for presenting it is to support our contention that
the use of any such routine must be regarded as very inefficient. The scaling and
Squaring method of § 3 and some of the matrix decomposition methods of § 6 require
on the order of 10 to 20 n° flops and they obtain higher accuracies than those obtained
With 200 n*> or more flops for the o.d.e. solvers.
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This excessive cost is due to the fact that the programs are not taking advantage
of the linear, constant coefficient nature of the differential equation. They must
repeatedly call for the multiplication of various vectors by the matrix A because, as far
as they know, the matrix may have changed since the last multiplication.

We now consider the various methods which result from specializing general
o.d.e. methods to handle our specific problem.

METHOD 6. SINGLE STEP O.D.E. METHODS. Two of the classical techniques for the
solution of differential equations are the fourth order Taylor and Runge-Kutta
methods with fixed step size. For our particular equation they become

4
Xjv1 = (I+hA +- - '+Z—’A“)x,¢= T4(hA)x;

and
1 1 1 1
Xj+1=Xj +sk1+3k2+3k3+5ka,

where k;=hAx;, k:=hA(x; +3ky), ks=hA(x;+3ks), and ka=hA(x;+k3). A little
manipulation reveals that in this case, the two methods would produce identical
results were it not for roundoff error. As long as the step size is fixed, the matrix
T+(hA) need be computed just once and then x;.; can be obtained from x; with just
one matrix-vector multiplication. The standard Runge-Kutta method would require 4
such multiplications per step.

Let us consider x(¢) for one particular value of ¢, say t = 1. If h =1/m, then

x(1)=x(mh)=xm =[Ts(hA)] xo.

Consequently, there is a close connection between this method and Method 3 which
involved scaling and squaring [54], [60]. The scaled matrix is #A and its exponential is
approximated by T4(hA). However, even if m is a power of 2, [T4(hA)]™ is usually not
obtained by repeated squaring. The methods have roughly the same roundoff error
properties and so there seem to be no important advantages for Runge-Kutta with
fixed step size.

Let us now consider the possibility of varying the step size. A simple algorithm
might be based on a variable step Taylor method. In such a method, two ap-
proximations to x;.; would be computed and their difference used to choose the step
size. Specifically, let ¢ be some prescribed local relative error tolerance and define x;+1
and x5 by

xjr1 = Ts(hiA)x;,
x5 = Ty(hjA)x;.
One way of determining A; is to require
w1 = x5l = ellx;ll.

Notice that we are using a 5th order formula to compute the approximation, and a 4th
order formula to control step size.

At first glance, this method appears to be considerably less efficient than one with
fixed step size because the matrices T4(h;A) and Ts(h,A) cannot be precomputed.
Each step requires 5 n® flops. However, in those problems which involve largé
“humps” as described in § 1, a smaller step is needed at the beginning of thé
computation than at the end. If the step size changes by a factor of more than 5, the
variable step method will require less work.
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The method does provide some insight into the costs of more sophisticated
integrators. Since

hA°®
51

we see that the required step size is given approximately by

5te 7'7°
i
The work required to integrate over some fixed interval is proportional to the inverse
of the average step size. So, if we decrease the tolerance ¢ from, say 10™° to 107°, then
the work is increased by a factor of (10%)"* which is about 4. This is typical of any Sth
order error estimate—asking for 3 more figures roughly quadruples the work.

METHOD 7. MULTISTEP O.D.E. SOLVER. As far as we know, the possibility of
specializing multistep methods, such as those based on the Adams formulas, to linear,
constant coefficient problems has not been explored in detail. Such a method would
not be equivalent to scaling and squaring because the approximate solution at a given
time is defined in terms of approximate solutions at several previous times. The actual
algorithm would depend upon how the starting vectors are obtained, and how the step
size and order are determined. It is cdnceivable that such an algorithm might be
effective, particularly for problems which involve a single vector, output at many
values of ¢, large n, and a hump.

The problems associated with roundoff error have not been of as much concern to
designers of differential equation solvers as they have been to designers of matrix
algebra algorithms since the accuracy requested of o.d.e. solvers is typically less than
full machine precision. We do not know what effect rounding errors would have in a
problem with a large hump.

®
Xjis1—Xjs1 = Xis

5. Polynomial methods. Let the characteristic polynomial of A be

n—1
c(z)=det(zI-A)=z"- ¥ cz”.
k=0

From the Cayley-Hamilton theorem ¢(A)=0 and hence
A" =COI+C1A+' c +C,,_1An—1.
It follows that any power of A can be expressed intermsof I, A, - - -, ATl
n~1 X
Ak=T BuA'
=0

This implies that ¢ is a polynomial in A with analytic coefficients in ¢:

[ o gk o gkra .
eA=k§0 k! =k§o%[,§o BkiA!]
n=if © I
=,'=0 k};oBkiE]Al
n=1
=1 a(nA’
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The methods of this section involve this kind of exploitation of the characteristic
polynomial.

METHOD 8. CAYLEY-HAMILTON. Once the characteristic polynomial is known,
the coefficients Bx; which define the analytic functions a;(t)=Y Bit/k! can be
generated as follows:

5)(,' (k <n)
B =1 (k=n)
“ COBk‘Ln—I (k > n, ] = 0)

CiBk-tn-1+ Br-1,j-1 (k>n,j>0).

One difficulty is that these recursive formulas for the B,; are very prone to roundoff
error. This can be seen in the 1-by-1 case. If A =(a) then Bro=a" and ao(r)=
Y (at)*/k! is simply the Taylor series for e*'. Thus, our criticisms of Method 1 apply.
In fact, if af = —6, no partial sum of the series for ¢* will have any significant digits
when IBM 370 short arithmetic is used.

Another difficulty is the requirement that the characteristic polynomial must be
known. If Ay, - - -, A, are the eigenvalues of A, then ¢(z) could be computed from
c(z)=T1} (z = A;). Although the eigenvalues could be stably computed, it is unclear
whether the resulting ¢; would be acceptable. Other methods for computing ¢(z) are
discussed in Wilkinson [14]. It turns out that methods based upon repeated powers of
A and methods based upon formulas for the ¢; in terms of various symmetric functions
are unstable in the presence of roundoff error and expensive to implement. Tech-
niques based upon similarity transformations break down when A is nearly deroga-
tory. We shall have more to say about these difficulties in connection with Methods 12
and 13.

In Method 8 we attempted to expand e in terms of the matrices [, A, - - -, A"
If {Ag," -+, Aa-1} is some other set of matrices which span the same subspace, then
there exist analytic functions 3;(¢) such that

e4="S B(A;
=0

The convenience of this formula depends upon how easily the A; and B;(t) can be
generated. If the eigenvalues Ay, -+ -, A, of A are known, we have the following three
methods.

METHOD 9. LAGRANGE INTERPOLATION,

n-1 n (A=Ad)
tA At k
e = e’ -Q.
;go kI;[1 (/\j—/\k)
]

METHOD 10. NEWTON INTERPOLATION.
tA A - =t
€ =eltI+Z [/\1""1/\1'] H (A_/\k[)
j=2 k=1

The divided differences [A1, - - -, A;] depend on ¢ and are defined recursively by

(A A2l =(e™ =)/ (A= A2),

A Akl =[A2, 0, ks
[A1,~--,Ak+1]=[ - bl 1] (k =2).
Al=Ar+
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We refer to MacDuffee [9] for a discussion of these formulae in the confluent
eigenvalue case.

METHOD 11. VANDERMONDE. There are other methods for computing the
matrices

(A=A

A= 7 QzAD
k=1 (Aj—Ak)
ki

which were required in Method 9. One of these involves the Vandermonde matrix

1 1 |

Al Az An
V= :

APTE A3 AR

If vy is the (j, k) entry of V™', then

k-1
Al— Z ylkA ’
k=1
and
tA = A
e =Y e"A;

When A has repeated eigenvalues, the appropriate confluent Vandermonde matrix is
involved. Closed expressions for the v are available and Vidysager [92] has proposed
their use.

Methods 9, 10, and 11 suffer on several accounts. They are O(n*) algorithms
making them prohibitively expensive except for small n. If the spanning matrices
Ag,+ -+, A,—; are saved, then storage is n> which is an order of magnitude greater
than the amount of storage required by any “nonpolynomial”’ method. Furthermore,
even though the formulas which define Methods 9, 10, and 11 have special form in the
confluent case, we do not have a satisfactory situation. The ‘‘gray’” area of near
confluence poses difficult problems which are best discussed in the next section on
decomposition techniques.

The next two methods of this section do not require the eigenvalues of A and thus
Ippear to be free of the problems associated with confluence. However, equally
formidable difficulties attend these algorithms.

METHOD 12. INVERSE LAPLACE TRANSFORMS. If #[e*] is the Laplace transform
of the matrix exponential, then

Lle = (sI-A)"".

The entries of this matrix are rational functions of s. In fact,

‘ not gn=k=1
I"A ‘1= ’
(CI=A)"=2 =
Where c(s)=det (s/~A)=s"-Y 1 gces“ andfork =1, n:

Cn—i = —trace (Ax_1A)/k, A=A 1A —Caid (Ao=1).
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These recursions were derived by Leverrier and Faddeeva [3] and can be used tq
evaluate e™*:

et = El LUs" T e (s)]Awe
k=0

The inverse transforms & '[s"“7!/c(s)] can be expressed as a power series in . Lioy
[102] suggests evaluating these series using various recursions involving the ci. We
suppress the details of this procedure because of its similarity to Method 8. There are
other ways Laplace transforms can be used to evaluate ¢“* [78], [80], [88], [89], [93].
By and large, these techniques have the same drawbacks as Methods 8-11. They are
O(n*) for general matrices and may be seriously effected by roundoff error.

METHOD 13. COMPANION MATRIX. We now discuss techniques which involve the
computation of ¢ where C is a companion matrix:

0 1. 0 - 0
0 0 1 - 0
C= .
1
LCo C1 C2 " “Cn-1

Companion matrices have some interesting properties which various authors have
tried to exploit:
(1) C is sparse.

(ii) The characteristic polynomial of C is c(z)=2z" —Z:;f, ckz”.

(iii) If V is the Vandermonde matrix of eigenvalues of C (see Method 11), then
V~YCV isin Jordan form. (Confluent Vandermonde matrices are involved in
the multiple eigenvalue case.)

(iv) If A is not derogatory, then it is similar to a companion matrix; otherwise it is
similar to a direct sum of companion matrices.

Because C is sparse, small powers of C cost considerably less than the usual n’
flops. Consequently, one could implement Method 3 (scaling and squaring) with a
reduced amount of work.

Since the characteristic polynomial of C is known, one can apply Method 8 or
various other techniques which involve recursions with the c,. However, this is not
generally advisable in view of the catastrophic cancellation that can occur.

As we mentioned during our discussion of Method 11, the closed expression for
V™! is extremely sensitive. Because V™' is so poorly conditioned, exploitation of
property (iii) will generally yield a poor estimate of e, '

If A= YCY™', then from the series definition of the matrix exponential it is easy
to verify that

e*=YeY L

Hence, property (iv) leads us to an algorithm for computing the exponential of 3
general matrix. Although the reduction of A to companion form is a rational process
the algorithm for accomplishing this are extremely unstable and should be avoided
(14]. '

We mention that if the original differential equation is actually a single nth ordgr
equation written as a system of first order equations, then the matrix is already
companion form. Consequently, the unstable reduction is not necessary. This is the
only situation in which companion matrix methods should be considered.
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We conclude this section with an interesting aside on computing e” where
H =(h;;) is lower Hessenberg (h; =0, j >i+1). Notice that companion matrices are
Jower Hessenberg. Our interest in computing e’ stems from the fact that any real
matrix A is orthogonally similar to a lower Hessenberg matrix. Hence, if

A=QHQT, Q70=I
then
eA = QBHQ T'

Unlike the reduction to companion form, this factorization can be stably computed

using the EISPACK routine ORTHES [113].
Now, let fi denote the kth column of e, It is easy to verify that

ka='_§ lhfkfi (k=2),
by equating the kth columns in the matrix identity He™ =e™H. If none of the

superdiagonal entries hx-; . are zero, then once f, is known, the other f, follow
immediately from

fe1= L [ka" z hikfi]-
hk—l.k i=k
Similar recursive procedures have been suggested in connection with computing e€
[104]. Since f, equals x(1) where x(¢) solves Hx =%, x(0)=(0,- - -, 0, 1)7, it could be
found using one of the o.d.e. methods in the previous section.

There are ways to recover in the above algorithm should any of the A, be
zero. However, numerically the problem is when we have a small, but non-negligible
he-1.. In this case rounding errors involving a factor of 1/hx_1 ., will occur precluding
the possibility of an accurate computation of e,

In summary, methods for computing e® which involve the reduction of A to
companion or Hessenberg form are not attractive. However, there are other matrix
factorizations which can be more satisfactorily exploited in the course of evaluating ¢
and these will be discussed in the next section.

6. Matrix decomposition methods. The methods which are likely to be most
efficient for problems involving large matrices and repeated evaluation of e™ are
those which are based on factorizations or decompositions of the matrix A. If A
Yappens to be symmetric, then all these methods reduce to a simple very effective
dgorithm.

All the matrix decompositions are based on similarity transformations of the form

A=SBS™.
As we have mentioned, the power series definition of ¢“* implies
e =5e®s7",
The idea is to find an S for which e is easy to compute. The difficulty is that S may be
dose to singular which means that cond (§) is large.

MEeTHOD 14. EIGENVECTORS. The naive approach is to take S to be the matrix
*hose columns are eigenvectors of A, that is, S = V where

V=[vi - va]



