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and
AU,'=/\,'U,‘, j=1,---,n.
These n equations can be written
AV =VD,
where D =diag (Aq, * * -, An). The exponential of D is trivial to compute assuming we

have a satisfactory method for computing the exponential of a scalar:
e =diag (e™, - - -, e™).

Since V is nonsingular we have e“* = VePV 7!,
In terms of the differential equation X = Ax, the same eigenvector approach takes
the following form. The initial condition is a combination of the eigenvectors,

x(0)= i Uy,

=1

and the solution x(¢) is given by

n
x(t)= Y a;e’v,
j=0s

Of course, the coefficients «; are obtained by solving a set of linear equations
Va = x(0).

‘The difficulty with this approach is not confluent eigenvalues per se. For example,
the method works very well when A is the identity matrix, which has an eigenvalue of
the highest possible multiplicity. It also works well for any other symmetric matrix
because the eigenvectors can be chosen orthogonal. If reliable subroutines such as
TRED?2 and TQL2 in EISPACK [113] are used, then the computed v; will be
orthogoral to the full accuracy of the computer and the resulting algorithm for e** has
all the attributes we desire—except that it is limited to symmetric matrices.

The theoretical difficulty occurs when A does not have a complete set of linearly
independent eigenvectors and is thus defective. In this case there is no invertible
matrix of eigenvectors V and the algorithm breaks down. An example of a defective

A defective matrix has confluent eigenvalues but a matrix which has confluent eigen-
values need not be defective.

In practice, difficulties occur when A is “nearly” defective. One way to make this
precise is to use the condition number, cond (V)=||V|||V "], of the matrix of eigen-
vectors. If A is nearly (exactly) defective, then cond (V) is large (infinite). Any errofs
in A, including roundoff errors in its computation and roundoff errors from thé
eigenvalue computation, may be magnified in the final result by cond (V)
Consequently, when cond (V) is large, the computed e“ will most likely be inac

curate. For example, if
1+¢ 1
A= ]
0 1-¢
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then

1 -1
V=
[O 25]’

D =diag(1+¢,1-¢),
and

cond (V)= o(é).

If ¢ =10"° and IBM 370 short floating point arithmetic is used to compute the
exponential from the formula e*=VePV™! we obtain

[2.718307 2..750000}
0 2.718254 )

Since the exact exponential to six decimals is

{2.718309 2.718282]
0 2.718255)

we see that the computed exponential has errors of order 10° times the machine
precision as conjectured. '

One might feel that for this example e® might be particularly sensitive to
perturbations in A. However, when we apply Theorem 3 in § 2 to this example, we
find

(A+E) __ A”

le e
A
lle”
independent of ¢. Certainly, e is not overly sensitive to changes in A and so Method
14 must be regarded as unstable.
Before we proceed to the next method it is interesting to note the connection
between the use of eigenvectors and Method 9, Lagrange interpolation. When the
eigenvalues are distinct the eigenvector approach can be expressed

= 4HE” e ZHEH,

e =V diag (e")V ' = 'Zl eMuyl,
. =
where y,” is the jth row of V™', The Lagrange formula is
etA= Z e,\,.tAh
/=1

where

r (A=Ald)
A= 228
! x]:l;ll (Aj—Ak)
*i

Because these two expressions hold for all ¢, the individual terms in the sum must be
the same and so

Ap=vy/.
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This indicates that the A; are, in fact, rank one matrices obtained from the eigen-
vectors. Thus, the O(n*) work involved in the computation of the A; is totally
unnecessary.

METHOD 15. TRIANGULAR SYSTEMS OF EIGENVECTORS. An improvement in
both the efficiency and the reliability of the conventional eigenvector approach can be
obtained when the eigenvectors are computed by the QR algorithm [14]. Assume
temporarily that although A is not symmetric, all its eigenvalues happen to be real,
The idea is to use EISPACK subroutines ORTHES and HQR2 to compute the
eigenvalues and eigenvectors [113]. These subroutines produce an orthogonal matrix
Q and a triangular matrix T so that

QTAQ=T.

Since Q™' = Q7 this is a similarity transformation and the desired eigenvalues occur
on the diagonal of T. HQR2 next attempts to find the eigenvectors of T. This results in
a matrix R and a diagonal matrix D, which is simply the diagonal part of T, so that

TR =RD.

Finally, the eigenvectors of A are obtained by a simple matrix multiplication V = QR.

The key observation is that R is upper triangular. In other words, the
ORTHES/HQR?2 path in EISPACK computes the matrix of eigenvectors by first
computing its “QR” factorization. HQR?2 can be easily modified to remove the final
multiplication of Q and R. The availability of these two matrices has two advantages.
First, the time required to find V™! or to solve systems involving V is reduced.
However, since this is a small fraction of the total time required, the improvement in
efficiency is not very significant. A more important advantage is that cond (V)=
cond (R) (in the 2-norm) and that the estimation of cond (R) can be done reliably and
efficiently.

The effect of admitting complex eigenvalues is that R is not quite triangular, but
has 2-by-2 blocks on its diagonal for each complex conjugate pair. Such a matrix is
called quasi-triangular and we avoid complex arithmetic with minor inconvenience.

In summary, we suspect the following algorithm to be reliable:

(1) Given A, use ORTHES and a modified HQR?2 to find orthogonal Q, diagonal

D, and quasi-triangular R so that

AQR =QRD.
(2) Given xo, compute yo by solving
Ryo . O TXQ.

Also estimate cond (R) and hence the accuracy of yo.

(3) If cond (R) is too large, indicate that this algorithm cannot solve the problem
and exit.

(4) Given t, compute x(t) by

x(t)=Ve®Py,.

(If we want to compute the full exponential, then in Step 2 we solve RY = QT for Y
and then use e* = Ve®Y in Step 4.) It is important to note that the first three steps
are independent of ¢, and that the fourth step, which requires relatively little work, caf
be repeated for many values of ¢.

We know there are examples where the exit is taken in Step 3 even though the
underlying problem is not poorly conditioned implying that the algorithm is unstable:
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Nevertheless, the algorithm is reliable insofar as cond (R) effables us to assess the
errors in the computed solution when that solution is found. It would be interesting to
code this algorithm and compare it with Ward’s scaling and squaring program for
Method 3. In addition to comparing timings, the crucial question would be how often
the exit in Step 3 is taken and how often Ward’s program returns an unacceptably
large error bound. )

METHOD 16. JORDAN CANONICAL FORM. In principle, the problem posed by
defective eigensystems can be solved by resorting to the Jordan canonical form (JCF).
If

A=P[/i® - -®J]P"
is the JCF of A, then
e =Ple" @ - @Y ]P

The exponentials of the Jordan blocks J; can be given in closed form. For example, if

A1 0 0
0 A, 1 0
Ji= 0 0 A 1
0 0 0 A
then
1 ¢ #2210 23
AT L S #/2!
0 0 1 t
00 O 1

The difficulty is that the JCF cannot be computed using floating point arithmetic.
A single rounding error may cause some multiple eigenvalue to become distinct or
vice versa altering the eatire structure of J and P. A related fact is that there is no a
priori bound on cond (P). For further discussion of the difficulties of computing the
JCF, see the papers by Golub and Wilkinson [110] and Kagstrom and Ruhe [111].
MEeTHOD 17. scHUR. The Schur decomposition

A=QTQ"

with orthogonal Q and triangular T exists if A has real eigenvalues. If A has complex
eigenvalues, then it is necessary to allow 2-by-2 blocks on the diagonal of T or to
make Q and T complex (and replace Q7 with Q*). The Schur decomposition can be
computed reliably and quite efficiently by ORTHES and a short-ended version of
HQR2. The required modifications are discussed in the EISPACK guide [113].

Once the Schur decomposition is available,

elA = QEITOT‘

The only delicate part is the computation of e‘” where T is a triangular or quasi-
triangular matrix. Note that the eigenvectors of A are not required.

Computing functions or triangular matrices is the subject of a recent paper by
Parfett [112]. If T is upper triangular with diagonal elements Ay, - - -, A,, then it is
tlear that e'” is upper triangular with diagonal elements ¢*', - - -, ¢*~", Parlett shows
bow to compute the off-diagonal elements of e‘” recursively from divided differences
of the ¢*'. The example in § 1 illustrates the 2-by-2 case.
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Again, the difficulty is magnification of roundoff error caused by fiearly confluent
eigenvalues A;. As a step towards handling this problem, Parlett describes a general-
ization of his algorithm applicable to block upper triangular matrices. The diagona]
blocks are determined by clusters of nearby eigenvalues. The confluence problems dg
not disappear, but they are confined to the diagonal blocks where special techniques
can be applied.

METHOD 18. BLOCK DIAGONAL. All methods which involve decompositions of
the form

A=8BS™!

involve two conflicting objectives:

(1) Make B close to diagonal so that e® is easy to compute.

(2) Make S well conditioned so that errors are not magnified.
The Jordan canonical form places all the emphasis on the first objective, while the
Schur decomposition places most of the emphasis on the second. (We would regard
the decomposition with § = and B = A as placing even more emphasis on the second
objective.)

The block diagonal method is a compromise between these two extremes. The
idea is to use a nonorthogonal, but well conditioned, S to produce a B which is
triangular and block diagonal as illistrated in Fig. 2.

— ~—

N

N

_ N

F1G. 2. Triangular block diagonal form.

Each block in B involves a cluster of nearly confluent eigenvalues. The number in
each cluster (the size of each block) is to be made as small as possible while maintain®
ing some prescribed upper bound for cond (S), such as cond (§)<100. The choice of
the bound 100 implies roughly that at most 2 significant decimal figures will be lost
because of rounding errors when e™ is obtained from e via ¢ = Se®S™". A largef
bound would mean the loss of more figures while a smaller bound would mean mor¢
computer time—both for the factorization itself and for the evaluation of e'®

In practice, we would expect almost all the blocks to be 1-by-1 or 2-by-2 and the
resulting computation of e¢‘® to be very fast. The bound on cond (§) will mean that lf_"
occasionally necessary to have larger blocks in B, but it will insure against excessive
loss of accuracy from confluent eigenvalues.
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G. W. Stewart has pointed out that the grouping of the eigenvalues into clusters
and the resulting block structure of B is not merely for increased speed. There can be
an important improvement in accuracy. Stewart suggests expressing each block B; in
the form

B; =yl +E;

where v; is the average value of the eigenvalues in the jth cluster. If the grouping has
been done properly, the matrices E; should then be nearly nilpotent in the sense that
E,?‘ will rapidly approach zero as k increases. Since E; is triangular, this will certainly
be true if the diagonal part of E; is small, that is, if all the eigenvalues in the cluster are
close together. But it will also be true in another important case. If

Ei“:[f _bﬂ

where ¢ is the computer rounding unit, then

can be regarded as negligible. The Ve perturbations are typical when a double,
defective eigenvalue is computed with, say, HQRZ2.
The fact that E; is nearly nilpotent means that e'®i can be found rapidly and
iccurately from
e:BI. =t B,

computing e'5' by a few terms of the Taylor series.

Several researchers, including Parlett, Ruhe, and Stewart, are currently develo-
ping computer programs based on some of these ideas. The most difficult detail is the
proper choice of the eigenvalue clustering. It is also important for program efficiency
to avoid complex arithmetic as much as possible. When fully developed, these pro-
grams will be fairly long and complicated but they may come close to meeting our
other criteria for satisfactory methods.

Most of the computational cost lies in obtaining the basic Schur decomposition.
Although this cost varies somewhat from matrix to matrix because of the iterative
nature of the QR algorithm, a good average figure is 15 »n° flops, including the further
reduction to block diagonal form. Again we emphasize that the reduction is in-
dependent of . Once the decomposition is obtained, the calculation of e requires
about 2 n* flops for each . If we require only x(r)=e“x, for various ¢, the equation
Sy = xo should be solved once at a cost of n°/3 flops, and then each x(¢) can be
obtained with #? flops.

These are rough estimates. There will be differences between programs based on
the Schur decomposition and those which work with the block diagonal form, but the
timings should be similar because Parlett’s algorithm for the exponential is very fast.

7. Splitting methods. A most aggravating, yet interesting, property of the matrix
¢xponential is that the familiar additive law fails unless we have commutivity:

e e'€ =" BC=CB.

Nevertheless, the exponentials of B and C are related to that of B + C, for example,
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by the Trotter product formula [30]:

e?*C = lim (e

m-+

B/m eC/M)m.

METHOD 19. SPLITTING. Our colleagues M. Gunzburger and D. Gottleib sug-
gested that the Trotter result be used to approximate e by splitting A into B+ C and
then using the approximation

e =(e

B/meC/rn)m‘

This approach to computing e“ is of potential interest when the exponentials of B and
C can be accurately and efficiently computed. For example, if B=(A+AT)/2 and
C=(A-AT)/2 then e® and € can be effectively computed by the methods of § 5,
For this choice we show in Appendix 2 that

A _/,B/m C/m\m <”[AT!A]” w(A)
(7.1 e = (e m e mym| SRR e,

where w(A) is the log norm of A as defined in § 2. In the following algorithm, this
inequality is used to determine the parameter m.

(a) Set B=(A+AT)/2 and C=(A—-AT)/2. Compute the factorization B =

Q diag (u)Q" (QTQ =1I) using TRED2 and TQL2 [113]. Variations of

these programs can be used to compute the factorization C = UDU T where

UTU =1 and D is the direct sum of zero matrices and real 2-by-2 blocks of

corresponding to eigenvalues +ia.

(b) Determine m =2’ such that the upper bound in (7.1) is less than some
prescribed tolerance. Recall that w(A) is the most positive eigenvalue of B
and that this quantity is known as a result of step (a).

(c) Compute X = Q diag (¢*/™)QT and Y =Ue”"U". In the latter compu-
tation, one uses the fact that

[ 0 a/m}_[ cos (a/m) sin(a/m)]
eXp —a/m O —sin (a/m) cos{a/m)

(d) Compute the approximation, (XY)?, to e* by repeated squaring.

If we assume S n° flops for each of the eigenvalue decompositions in (a), then the
overall process outlined above requires about (13 +/) n’ flops. It is difficult to assess
the relative efficiency of this splitting method because it depends strongly on the
scalars[[AT, A]lland 1 (A) and these quantities have not arisen in connection with any
of our previous eighteen methods. On the basis of truncation error bounds, howe\(ef-
it would seem that this technique would be much less efficient than Method 3 (scaling
and squaring) unless u(A) were negative and |[[A7, A]| much less than ||A|.

Accuracy depends on the rounding errors which arise in (d) as a result of thc.
repeated squaring. The remarks about repeated squaring in Method 3 apply also her®;
there may be severe cancellation but whether or not this only occurs in sensitive
problems is unknown.
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For a general splitting A = B + C, we can determine m from the inequality

(72) ”eA - (eB/m eC/m)m” < “[B, C]” el]B||+||C]|’
2m
which we establish in Appendix 2.
To illustrate, suppose A has companion form

Co €1 Cn-i
If
- 0 In—l]
B"[o 0
and C=e,c” where cT=(co,* -+, cn-1)and &S =(0,0,-- -, 0, 1), then
n—1 B k 1
B/m __ 22
¢ Eo{m] k!
and
Cpmy/m _
L R 1e,,cT.
Cn—-1

Notice that the computation of these scaled exponentials require only O(n?) flops.
Since |B]|=1, [Cl| =llcll, and [[B, C| = 2lcl, (7.2) becomes

¢ 1+!chch“.

m

“eA_(eB/m eC/m)mué

The parameter m can be determined from this inequality.

8. Conclusions. A section called “conclusions’ must deal with the obvious ques-
tion: Which method is best? Answering that question is very risky. We don’t know
enough about the sensitivity of the original problem, or about the detailed per-
formance of careful implementations of various methods to make any firm
tonclusions. Furthermore, by the time this paper appears in the open literature, any
given conclusion might well have to be modified.

We have considered five general classes of methods. What we have called poly-
nomial methods are not really in the competition for “‘best”. Some of them require the
tharacteristic polynomial and so are appropriate only for certain special problems and
Others have the same stability difficulties as matrix decomposition methods but are
tuch less efficient. The approaches we have outlined under splitting methods are
Lirgezly speculative and untried and probably only of interest in special settings. This

ves three classes in the running.

The only generally competitive series method is Method 3, scaling and squaring.

ard’s program implementing this method is certainly among the best currently
Wailable. The program may fail, but at least it tells you when it does. We don’t know
't whether or not such failures usually resuit from the inherent sensitivity of the
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problem or from the instability of the algorithm. The method basically computes ¢*
for a single matrix A. To compute e* for p arbltrary values of ¢ requires about p times
as much work. The amount of work is O(n>), even for the vector problem e“x,. The
coefficient of n° increases as ||A|| increases.

Specializations of o.d.e. methods for the e® problem have not yet been im-
plemented. The best method would appear to involve a variable order, variable step
difference scheme. We suspect it would be stable and rehable but expensive. Its best
showing on efficiency would be for the vector problem ¢“*x, with many values of ¢
since the amount of work is only O(n?). It would also work quite well for vector
problems involving a large sparse A since no ‘“nonsparse’” approximation to the
exponential would be explicitly required.

The best programs using matrix decomposition methods are just now being
written. They start with the Schur decomposition and include some sort of eigenvalue
clustering. There are variants which involve further reduction to a block form. In all
cases the initial decomposition costs O(n>) steps and is independent of ¢ and Al
After that, the work involved in using the decomposition to compute e“x, for
different  and x, is only a small multiple of n>.

Thus, we see perhaps three or four candidates for “best”” method. The choice will
depend upon the details of implementation and upon the particular problem being
solved.

Appendix 1. Inverse error analysis of Padé matrix approximation.
LemMma 1. If |H||< 1, then log (I + H) exists and

=1 IH |
llog (I +H)|| = 1=
Proof. If |[H||< 1 then log [+ H) =Y 7., (—1)““(H /k) and so
- °° 1= < «_ _HI
llog (I + H)l|= H p =|H|l Z 1H|* = T—IH]

LemMA 2. If |Al|=3 and p >0, then |D,q(A) Y= (q +p)/p.
Proof. From the definition of Dy,(A)in § 3, Dpe(A)=1+F where

_a (p+a-piq! (-A)
=t(p+@)q-Nt /!
Using the fact that

(p+q-))q! <[ q }"

(p+q)g@—N" Llp+gq
we find
v [9 yalle_a_ =9
IF1s 5 [~Llal] 55— Tjaie-vs-L-

and so [|Dpq(A) =l + F) = 1/(1 = |IF) = (g +p)/p-
LEMMA 3. If |A| =3, q=p, and p =1, then R,q(A)=¢**" where

plq!
(p+q)(p+q+1)!

IFl=s8jlaje
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Proof. From the remainder theorem for Padé approximants [71],

A ("'Dq +q+1 -1 ! (1-u)A
R (A)=e ‘-Z-p——_’_—q)?Ap T Dpa(A) J;) e u®(1—u) du,
and s0 e "?R,,(A)=1I + H where
(G 1 Yo
p+q+ —-u <] — aq
H= (p+a ),A D, (A) j u?(1—u) du.

By taking norms, using Lemma 2, and noting that (p +q)/p e” =4 we obtain

1=

1 vaei DG (1
(p+q)'“A"p a ‘-ep—-qL e u’(1-u) du

plq!
(p+p+q+1)

With the assumption [JA||=} it is possible to show that for all admissable p and g,
|H|=% and so from Lemma 1,

s4fajrrert

Pkt HHH p+q+1 P'CI'
lhog (7 + )= HHH—SHA” (p+a)i(p+q+1)

Setting F =log (I + H), we see that ¢ *R,,(A)= I+H =e" The lemma now follows

because A and F commute implying R,,q(A)—- e*ef e”""F
LEMMA 4. If Al =4 then Roq(A)=e™"F where

plq!

< p+q+1
N P T

Proof. The case p =g, p =1 is covered by Lemma 1. If p+g =0, then F =—-A and
the above mequahty holds. Finally, consider the case ¢ >p, g =1. From Lemma 3,
Rp(—=A)=e ~A+F where F satisfies the above bound The lemma now follows because
I~Fl=IF| and Rpq(A)=[Ra (- A)]' =[] =T
THEOREM A.1. If ||Al[/2' =3, then [R,o(A/2)}* = e*"E where
pra=3 plq!
(P+aq)(p+q+1)t

El_ AN st (1
:T%‘lﬁ(i) (p+q)![z;q+q+1)!=(2>

Proof. From Lemma 4, R,q(A/2')=e*"" where

HA!IT*"” plq!

FIsS 5] ot

The theorem follows by noting that if E = 2'F, then
A ? i+ i +
[Rm(?)] =[P 2 g AE,

A+E

COoROLLARY 1. If ||All/2' =3, then [T (A/7’)] where

k-3 1

1EI _ /1Al
NAH‘S(A> E’i‘Igg) el
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COROLLARY 2. If |A[|/2/ =3, then [Roq(A/2))]? = ¢**E, where

Hss(w)u. (q!)Z S(l>24—3 (q!)z
laf— "\ 2! @a)(2q+1)1 7 \2 Cg)2q+1)

Appendix 2. Accuracy of splitting techniques. In this appendix we derive the
inequalities (7.1) and (7.2). We assume throughout that A is an n-by-n matrix anq
that

A=B+C.
It is convenient to define the matrices
Sp=e?'m
m b

and

B
T,=e%mem

y

where m is a positive integer. Our goal is to bound ||S7. — Trll. To this end we shail
have to exploit the following properties of the log norm u(A) defined in § 2:

@ le®l=e*™  (z0)
(i) w(A)=|A]
(iii) w(B+C)=u(B)+|C].

These and other results concerning log norms are discussed in ieferences (35]-[42].
LEmMMA 1. If @ Zmax {u(A), u(B)+u(C)} then

ISm=TRll=me ™S, ~ T,|.

Proof. Following Reed and Simon [11] we have
m—1
Sm=Tm=3 S5Sm—=Tm)Ta -
k=0

Using log norm property (i) it is easy to show that both [|S,.|| and || T.|| are bounded
above by ¢®’™ and thus

m—1
”S: - T:” = kgo ”Sm”knsm - Tm”HTm”m_l-k

m-—1
§-”Sm - Tm” kzo e@k/m e@(m-l~k)/m,

from which the lemma immediately follows.
In Lemmas 2 and 3 we shall make use of the notation

t=t,

=F(t,)—F(to),

t=tg

F@)

where F'(t) is a matrix whose entries are functions of ¢.
LEMMA 2.
1

Tm—Sm=J-

- 1
e!B/m[e(l r)A/m,__C:, REZA
0 m
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Proof. We have Ty =S, = ¢ B/m g(1=04/m geC/m 1=1 1d thus

' d B/ ( / C/
Tm—Sm =J tB/m 1-0A/m C/m } .
; {—dt (e e e™m dt

The lemma follows since

E_ etB/me“_’)A/me‘C/m]=e'B/m[€“—”A/m,‘I—CJerclm.
m

dt[
LemMma 3. If X and Y are matrices then

Ie™, Y= e* X, Y.

Proof. We have [e*, Y]=e™Ye" ™% |'Z} and thus

x ' d X

= L X (1=1).
(X Y] L {dt[e ve'=%} 4
Since d/dtf[e XY e X =¥ [X, Y] e" " we get

e, YIS [ le*IEX. YT dr

1
é”[x’ Y]" J;) g"“x)’eu(X)(l—r) dt

from which the lemma immediately follows.
THEOREM A.2. If ®2max {u(A), w(B)+u(C)}, then

I5 - Tl 55— ¢ 8, 1l

Proof. If 0=t=1 then an application of Lemma 3 with X=(1-1)A/m and
Y=C/m yields

Ife =24, C/mll= =X ((1 = 1)A/m, C/m]]

eor-0mL=Dyp ).

iA

By coupling this inequality with Lemma 2 we can bound || T, — Sm|l:

1
T =Sl e lfe 4/, C/m e

IIA

s o(-n/m(l—1) ) cw
J‘ 716 )f/m (1-t)/m [B C]” w( )rmdt
0 m

1 o/ml[B. Cll

—e .

m

A

(39

The theorem follows by combining this result with Lemma 1.
COROLLARY 1. [f B=(A+A™)/2 and C=(A—-A*)/2 then

m_ e L
ISm—Trll=—e “ltax, All.
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Proof. Since w(A)=wu(B) and u(C)=0, we can set © =y (A). The corollary g
established by noting that [B, C]=3[A*, A].
COROLLARY 2.

m m 1 In + 1 |+
IS7 = Trll= 5“8, Clls 5= ™5, C|.

Proof. max {u(A), u(B)+u(C) = u(B)+|C|=|IBll+]C].
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