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Homework 11 - Solution

Runge-Kutta-Fehlberg with Root Solver

[H9.1] Runge-Kutta-Fehlberg with Root Solver

In homework problem [H7.1], we have implemented a Runge-Kutta-Fehlberg algorithm
with Gustaffsson step-size control.

In this new homework, we wish to augment that code with a root solver for handling
state events and an event calendar for handling time events.

To this end, you are to code a Matlab function:

function [y, xc, xd, tout] = rkf45rt(xc0, xd0, t, tol)

where xc0 is a column vector containing the initial values of the continuous state
variables; xd0 is a column vector containing the initial values of the discrete state
variables; t is a row vector of communication instants in time; and tol is the desired
absolute error bound on the states and also on the zero-crossing functions.

The function returns y , a matrix of output values, where each row denotes one output
variable, and each column denotes one time instant, at which the output variables
were recorded; xc is the matrix of continuous state variables; xd is the matrix of
discrete state variables; and tout is the vector of time instants, at which the states
and outputs were recorded.
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[H9.1] Runge-Kutta-Fehlberg with Root Solver II

tout is the same as t, but augmented by event times. Each event time gets logged
twice, once just before the event, and once just after the event.

Function rkf 45rt calls upon a number of internal functions:

� A single step of the Runge-Kutta-Fehlberg algorithm is being computed by the
function:

function [xc4, xc5] = rkf45rt step(xc, xd, t, h)

which looks essentially like the routine you coded earlier. xd is treated like a
parameter vector, since the discrete state variables don’t change their values
except at event times.
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[H9.1] Runge-Kutta-Fehlberg with Root Solver III

� We check on zero-crossings using the function:

function [iter ] = zc iter(f , tol)

where f is a matrix with two column vectors. The first column vector contains
the values of the zero-crossing functions at the beginning of the interval, and
the second column vector contains the values of the zero-crossing functions at
the end of the interval. tol is the largest distance from zero, for which the
iteration will terminate.

The variable iter returns 0, if no zero crossing occurred in the interval; it returns
+1, if either multiple zero crossings took place inside the interval, or if a single
zero crossing took place that hasn’t converged yet; it returns −i , if one zero
crossing took place and has converged. The index i is the index of the
zero-crossing function that triggered the state event.
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[H9.1] Runge-Kutta-Fehlberg with Root Solver IV

� If iter = 1, we wish to perform one iteration step of regula falsi. To this end, we
code the function:

function [tnew ] = reg falsi(t, f )

where t is a row vector of length two containing the time values corresponding
to the beginning and the end of the interval, respectively, and f is the same
matrix used also by function zc iter .

The variable tnew returns the time instant inside the interval, at which the
model is to be evaluated next.

The reg falsi routine needs to take care of intervals containing a single triggered
zero-crossing function or multiple triggered zero-crossing functions.
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[H9.1] Runge-Kutta-Fehlberg with Root Solver V

The event calendar is maintained in a global variable, called evt cal .

evt cal is a matrix with two columns. Each row specifies one time event. The left
entry denotes the event time, whereas the right entry denotes the event type, a
positive integer.

The events are time-ordered. The next event is always stored in the top row of the
evt cal matrix.

Since this class concerns itself with continuous systems simulation and not with
discrete event simulation, we shall implement the event calendar in a simple
straight-forward manner as a matrix, rather than as a linear forward and backward
linked list.

The event calendar is maintained by three functions: push evt, pull evt, and
query evt.
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[H9.1] Runge-Kutta-Fehlberg with Root Solver VI

� The function:

function push evt(t, evt nbr)

inserts a time event in the event calendar in the appropriate position.

� The function:

function [tnext, evt nbr ] = pull evt()

extracts the next time event from the event calendar.

� The function:

function [tnext, evt nbr ] = query evt()

returns the event information of the next time event without removing the event
from the event calendar.
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[H9.1] Runge-Kutta-Fehlberg with Root Solver VII

The model itself is stored in four different functions that the user will need to code for
each discontinuous model that he or she wishes to simulate.

� The function:

function [xcdot] = cst eq(xc, xd, t)

assumes the same role that the function st eq had assumed earlier. It computes
the continuous state derivatives at time t. Since the discrete states xd are
constant during each continuous simulation segment, this vector assumes the
role of a parameter vector.

� The function:

function [y] = out eq(xc, xd, t)

assumes the same role as earlier.

� The new function:

function [f ] = zcf(xc, xd, t)

returns the current values of the zero-crossing functions as a column vector.
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[H9.1] Runge-Kutta-Fehlberg with Root Solver VIII

� The new function:

function [xdnew ] = dst eq(xc, xd, t, evt nbr)

returns the new discrete state vector after an event has taken place.

The routine handles both time events and state events. It is called with a
positive event number for time events, and with a negative event number for
state events.

In the case of time events, the event number distinguishes between different
types of events, whereas in the case of state events, it identifies the
zero-crossing function that triggered the event.

In the case of a time event, the rkf 45rt function logs the current states, then
removes the time event from the event calendar, then calls function dst eq, and
finally logs the new states once again.

Consequently, the dst eq function does not need to remove the current time
event from the event calendar, but it needs to schedule future time events that
are a consequence of the current event action.
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[H9.1] Runge-Kutta-Fehlberg with Root Solver IX

� The main program calculates the values of both the continuous and the discrete
initial states, and it places the initial time events on the event calendar.

� It then calls routine rkf 45rt to perform the simulation.

� It finally plots the simulation results.
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[H9.1] Runge-Kutta-Fehlberg with Root Solver X

The code is self-documentary. Since its parts have been explained in much detail
already, there is no need to offer more explanations here.
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[H9.7] Thyristor

We wish to implement the thyristor-controlled train engine model, or at least a circuit
very similar to the one shown in class.

The thyristor element is shown below:

u

i

fire

The thyristor is a diode with a modified firing logic. The diode can only close when
the external Boolean variable fire has a value of true. The opening logic is the same
as for the regular diode.

Since the thyristor is a diode, we can use the same parameterized curve description
that we used for the regular diode. Only the switching condition is modified.
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[H9.7] Thyristor II

The modified thyristor-controlled train engine model is shown below:

RLoad

vLine
750V
16     Hz2 3

+

-

vTh

v

i

i

LLoad
10mH

Line

Load

Load

RSh
10

1

A shunt resistor was added to avoid having to deal with a variable structure model.
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[H9.7] Thyristor III

Convert all if-statements of the thyristor model to their algebraic equivalents.

Write down all of the equations governing the thyristor-controlled rectifier circuit.

Draw the structure digraph of the resulting equation system and show that the switch
equations indeed appear inside an algebraic loop.

Choose a suitable tearing structure, and solve the equations both horizontally and
vertically using the variable substitution technique.
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[H9.7] Thyristor IV

Using the integration algorithms of homework problem [H9.1], simulate the model in
Matlab across 0.2 seconds of simulated time.

Choose a suitable tearing structure, and solve the equations both horizontally and
vertically using the variable substitution technique.

The external control variable of the thyristor, fire, is to be assigned a value of true
from the angle of 30o until the angle of 45o, and from the angle of 210o until the
angle of 225o during each period of the line voltage, vLine . During all other times, it is
set to false.

Plot the load voltage, vLoad , as well as the load current, iLoad , as functions of time.
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[H9.7] Thyristor V

The model contains two types of time events that control the activation (firing) and
deactivation of the thyristor control signal.

Both an activation event (after 30o) and a deactivation event (after 45o) are
scheduled in the initial section of the main program. Subsequent time events of the
same types are scheduled always 180o into the future as part of the event handling.

The event handling sets a discrete (Boolean) state variable, m1, to either true or false.

In Matlab, Booleans are represented by integers, whereby true ⇒ 1 and false ⇒ 0.
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[H9.7] Thyristor VI

The model contains one zero-crossing function, f = s.

The corresponding event handling code toggles the value of another discrete
(Boolean) state variable, ms .

In Matlab, Boolean operators have been defined for the pseudo-Boolean variables in
the form of functions. Thus, toggling a Boolean variable can be written as:

ms = not(ms);
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[H9.7] Thyristor VII

The state-space model references a third discrete (Boolean) state variable, m0.

m0 is a Boolean function of m1, ms , and its own past value pre(m0). Because of the
dependence of m0 on its own past, also m0 is a discrete state variable.

m0 needs to be updated at the end of every discrete event.
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[H9.7] Thyristor VIII

RLoad

vLine
750V
16     Hz2 3

+

-

vTh

v

i

i

LLoad
10mH

Line

Load

Load

RSh
10

1

1: vLine = V0 · sin( 2πt
tp

)

2: vRLoad = RLoad · iLoad

3: vRSh = LLoad · diL
dt

4: vRSh = RSh · iRSh

5: vLoad = vRLoad + vRSh

6: vLine = vTh + vLoad

7: iLoad = iL + iRSh

8: vTh = m0 · s
9: iLoad = (1 − m0) · s

m0 is a discrete state variable. It is true, when the thyristor is off .
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1: vLine = V0 · sin( 2πt
tp

)

2: vRLoad = RLoad · iLoad

3: vRSh = LLoad · diL
dt

4: vRSh = RSh · iRSh

5: vLoad = vRLoad + vRSh

6: vLine = vTh + vLoad

7: iLoad = iL + iRSh

8: vTh = m0 · s
9: iLoad = (1 − m0) · s

Eq.(1)

Eq.(2)

Eq.(3)

Eq.(4)

Eq.(5)

Eq.(6)

Eq.(7)

Eq.(8)

Eq.(9)

vLine

vRLoad

vRSh

iRSh

diL/dt

vTh

vLoad

s

iLoad
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[H9.7] Thyristor X

We causalize as much as we can:

Eq.(1)

Eq.( )

Eq.(9)

Eq.( )

Eq.( )

Eq.( )

Eq.( )

Eq.( )

Eq.( )

vLine

vRLoad

vRSh

iRSh

diL/dt

vTh

vLoad

s

iLoad

1: vLine = V0 · sin( 2πt
tp

)

?: vRLoad = RLoad · iLoad

9: vRSh = LLoad · diL
dt

?: vRSh = RSh · iRSh

?: vLoad = vRLoad + vRSh

?: vLine = vTh + vLoad

?: iLoad = iL + iRSh

?: vTh = m0 · s
?: iLoad = (1 − m0) · s

We end up with an algebraic loop in seven equations and seven unknowns. The switch
equation (variable s) is part of the loop.
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[H9.7] Thyristor XI

We choose s as our first tearing variable:

Eq.(1)

Eq.( )

Eq.(9)

Eq.( )

Eq.( )

Eq.(3)

Eq.( )

Eq.(2)

Res.Eq.1

vLine

vRLoad

vRSh

iRSh

diL/dt

vTh

vLoad

s

iLoad

1: vLine = V0 · sin( 2πt
tp

)

?: vRLoad = RLoad · iLoad

9: vRSh = LLoad · diL
dt

?: vRSh = RSh · iRSh

?: vLoad = vRLoad + vRSh

3: vLine = vTh + vLoad

?: iLoad = iL + iRSh

2: vTh = m0 · s
res.eq.1: iLoad = (1 − m0) · s

We end up with a second algebraic loop in four equations and four unknowns.
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[H9.7] Thyristor XII

We choose a second residual equation, and now, we can causalize the remaining
equations:

Eq.(1)

Res.Eq.2

Eq.(9)

Eq.(5)

Eq.(4)

Eq.(3)

Eq.(6)

Eq.(2)

Res.Eq.1

vLine

vRLoad

vRSh

iRSh

diL/dt

vTh

vLoad

s

iLoad

1: vLine = V0 · sin( 2πt
tp

)

2: vTh = m0 · s
3: vLoad = vLine − vTh

4: vRSh = vLoad − vRLoad

5: iRSh = 1
RSh

· vRSh

6: iLoad = iL + iRSh

res.eq.2: vRLoad = RLoad · iLoad

res.eq.1: s = 1
1−m0

· iLoad

9: diL
dt

= 1
LLoad

· vRSh
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[H9.7] Thyristor XIII

Substitution gives us two linear equations in the two unknown tearing variables, s and
vRLoad :

[RSh · (1 − m0) + m0] · s + vRLoad = RSh · iL + vLine

(m0 · RLoad ) · s + (RLoad + RSh) · vRLoad = (RLoad · RSh) · iL + RLoad · vLine

or:

(
RSh · (1 − m0) + m0 1

m0 · RLoad RLoad + RSh

)
·
(

s
vRLoad

)
=

(
RSh 1

RLoad · RSh RLoad

)
·
(

iL
vLine

)

We are now ready to code.
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function [xcdot] = cst eq(xc, xd, t)
%
% State − space model of [H9.7]
%
RLoad = 1;
RSh = 10;
LLoad = 0.01;
V0 = 750;
p = 16 + 2/3;
tp = 1/p;
%
iL = xc(1);
m0 = xd(1);
m1 = xd(2);
ms = xd(3);
%

vLine = V0∗sin(2 ∗ pi ∗ t/tp);
inpt = [iL; vLine];
a11 = RSh ∗ (1 − m0) + m0;
a12 = 1;
a21 = m0 ∗ RLoad ;
a22 = RLoad + RSh;
A = [a11, a12; a21, a22];
b11 = RSh;
b12 = 1;
b21 = RLoad ∗ RSh;
b22 = RLoad ;
B = [b11, b12; b21, b22];
tear = A\B ∗ inpt;
s = tear(1);
vRLoad = tear(2);
vTh = m0 ∗ s;
vLoad = vLine − vTh;
vRSh = vLoad − vRLoad ;
iRSh = vRSh/RSh;
iLoad = iL + iRSh;
diL = vRSh/LLoad ;
%
xcdot = diL;
%

return
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function [y] = out eq(xc, xd, t)
%
% Output model of [H9.7]
%
RLoad = 1;
RSh = 10;
LLoad = 0.01;
V0 = 750;
p = 16 + 2/3;
tp = 1/p;
%
iL = xc(1);
m0 = xd(1);
m1 = xd(2);
ms = xd(3);
%

vLine = V0∗sin(2 ∗ pi ∗ t/tp);
inpt = [iL; vLine];
a11 = RSh ∗ (1 − m0) + m0;
a12 = 1;
a21 = m0 ∗ RLoad ;
a22 = RLoad + RSh;
A = [a11, a12; a21, a22];
b11 = RSh;
b12 = 1;
b21 = RLoad ∗ RSh;
b22 = RLoad ;
B = [b11, b12; b21, b22];
tear = A\B ∗ inpt;
s = tear(1);
vRLoad = tear(2);
vTh = m0 ∗ s;
vLoad = vLine − vTh;
vRSh = vLoad − vRLoad ;
iRSh = vRSh/RSh;
iLoad = iL + iRSh;
diL = vRSh/LLoad ;
%
y = zeros(2, 1);
y(1) = vLoad ;
y(2) = iLoad ;
%

return
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function [f ] = zcf(xc, xd, t)
%
% Zero − crossing function of [H9.7]
%
RLoad = 1;
RSh = 10;
LLoad = 0.01;
V0 = 750;
p = 16 + 2/3;
tp = 1/p;
%
iL = xc(1);
m0 = xd(1);
m1 = xd(2);
ms = xd(3);
%

vLine = V0∗sin(2 ∗ pi ∗ t/tp);
inpt = [iL; vLine];
a11 = RSh ∗ (1 − m0) + m0;
a12 = 1;
a21 = m0 ∗ RLoad ;
a22 = RLoad + RSh;
A = [a11, a12; a21, a22];
b11 = RSh;
b12 = 1;
b21 = RLoad ∗ RSh;
b22 = RLoad ;
B = [b11, b12; b21, b22];
tear = A\B ∗ inpt;
s = tear(1);
vRLoad = tear(2);
vTh = m0 ∗ s;
vLoad = vLine − vTh;
vRSh = vLoad − vRLoad ;
iRSh = vRSh/RSh;
iLoad = iL + iRSh;
diL = vRSh/LLoad ;
%
f = s;
%

return
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[H9.7] Thyristor XVII

We still need to discuss the thyristor logic. Let us check how the Modelica Standard
Library (MSL) tackles the problem:

The MSL uses a leaky diode.
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[H9.7] Thyristor XVIII
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[H9.7] Thyristor XIX

Using our ideal diode:

off = s < 0 or pre(off ) and not fire;
vTh = if off then s else 0;
iLoad = if off then 0 else s;

or in terms of our variables:

ms = s < 0;
m0 = ms or pre(m0) and not m1;
vTh = if m0 then s else 0;
iLoad = if m0 then 0 else s;

and using Matlab’s pseudo-Boolean variables and functions:

m0new = or(ms ,and(m0,not(m1)));
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[H9.7] Thyristor XX

function [xdnew ] = dst eq(xc, xd, t, evt nbr)
%
% Discrete event model of [H9.7]
%
p = 16 + 2/3;
tp = 1/p;
%
iL = xc(1);
m0 = xd(1);
m1 = xd(2);
ms = xd(3);
%
if evt nbr == 1,

%
% The thyristor control is switched on
% and the next event of the same type is scheduled
%
m1 = 1;
push evt(t + tp/2, 1);

end
%
if evt nbr == 2,

%
% The thyristor control is switched off
% and the next event of the same type is scheduled
%
m1 = 0;
push evt(t + tp/2, 2);

end

if evt nbr == −1,
%
% A state event has occurred
% We need to toggle the diode switch
%
ms = not(ms);

end
%
% We need to compute the new value of m0
%
m0 = or(ms,and(m0,not(m1)));
%
xdnew = zeros(3, 1);
xdnew(1) = m0;
xdnew(2) = m1;
xdnew(3) = ms;
%

return
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[H9.7] Thyristor XXI
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