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Homework 1 - Solution

Discretization of State Equations

[H1.2] Discretization of State Equations

Given the following explicit ODE model:

ẋ = A · x + b · u
y = c′ · x + d · u

where:

A =

⎛
⎜⎜⎝
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0 0 0 1
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⎞
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c′ =
(
1 0 0 0

)

b =

⎛
⎜⎜⎝

0
0
0
1

⎞
⎟⎟⎠

d = 10

Engineers would usually call such a model a linear single-input, single-output (SISO)
continuous-time state–space model.
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Discretization of State Equations

[H1.2] Discretization of State Equations II

We wish to simulate this model using the following integration algorithm:

xk+1 = xk + h · ẋk

which is known as the Forward Euler (FE) integration algorithm. If xk denotes the
state vector at time t∗:

xk = x(t)

∣∣∣∣
t=t∗

then xk+1 represents the state vector one time step later:

xk+1 = x(t)

∣∣∣∣
t=t∗+h
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Discretization of State Equations

[H1.2] Discretization of State Equations III

Obtain an explicit difference equation (ΔE) model by substituting the state equations
into the integrator equations. You obtain a model of the type:

xk+1 = F · xk + g · uk

yk = h′ · xk + i · uk

which engineers would normally call a linear single-input, single-output (SISO)
discrete-time state-space model.

Let h = 0.01 sec, tf = 5 sec, u(t) = 5 · sin(2t), x0 = ones(4, 1), where tf denotes the
final time of the simulation.

Simulate the ΔE model using MATLAB by iterating over the difference equations.
Plot the output variable as a function of time.
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Discretization of State Equations

[H1.2] Discretization of State Equations IV

We merge the model and solver equations:

ẋk = A · xk + b · uk

yk = c′ · xk + d · uk

xk+1 = xk + h · ẋk

By substitution, we obtain:

xk+1 = xk + h · (A · xk + b · uk )

yk = c′ · xk + d · uk

Therefore:

xk+1 = (I(n) + A · h) · xk + (b · h) · uk

yk = c′ · xk + d · uk

is the equivalent discrete-time model.
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Discretization of State Equations

[H1.2] Discretization of State Equations V

I simulated the original continuous-time model using Matlab’s lsim function, and I
simulated the equivalent discrete-time model by iterating on the difference equations.

I then plotted the two solution trajectories on top of each other.
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Figure: Simulation results

To the naked eye, the two solution trajectories are indistinguishable from each other.
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Homework 1 - Solution

Van-der-Pol Oscillator and Time Reversal

[H1.4] Van-der-Pol Oscillator and Time Reversal

Given the following non-linear system:

ẍ − µ(1 − x2)ẋ + x = 0

This system exhibits an oscillatory behavior. It is commonly referred to as the
Van-der-Pol oscillator. We wish to simulate this system with µ = 2.0 and
x0 = ẋ0 = 0.1.

Draw a block diagram of this system. The output variable is x . The system is
autonomous, i.e., it doesn’t have an input variable.

Derive a state-space description of this system. To this end, choose the outputs of the
two integrators as your two state variables.
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Van-der-Pol Oscillator and Time Reversal

[H1.4] Van-der-Pol Oscillator and Time Reversal II

Simulate the system across 2 sec of simulated time. Since the system is non-linear,
you cannot use MATLAB’s lsim function. Use function ode45 instead.

At time t = 2.0 sec, apply the time reversal algorithm, and simulate the system
further across another 2 sec of simulated time. This is best accomplished by adjusting
the model such that it contains a factor c in front of each state equation. c = +1
during the first 2 sec of simulated time, and c = −1 thereafter. You can interpret c as
an input variable to the model. Make sure that t = 2.0 sec defines an output point.

As you simulate the system backward through time for the same time period that you
previously used to simulate the system forward through time, the final values of your
two state variables ought to be identical to the initial values except for numerical
inaccuracies of the simulation. Verify that this is indeed the case. How large is the
accumulated error of the final values? The accumulated simulation error is defined as
the norm of the difference between final and initial values.

Plot x(t) and ẋ(t) on the same graph.
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Van-der-Pol Oscillator and Time Reversal

[H1.4] Van-der-Pol Oscillator and Time Reversal III

Repeat the previous experiment, this time simulating the system forward during 20 sec
of simulated time, then backward through another 20 sec of simulated time.

What do you conclude?
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Van-der-Pol Oscillator and Time Reversal

[H1.4] Van-der-Pol Oscillator and Time Reversal IV

The first part of the problem with time reversal at time 2 sec could be simulated
without any problem. The time reversal worked without a snitch. The accumulated
simulation error turns out to be:

err = ‖xf − x0‖ = 5.003 · 10−6

The remaining error was probably caused by an inaccuracy in the switching time, but
the accuracy obtained is certainly quite acceptable for most engineering purposes.

The second part of the problem caused problems. The simulation died shortly after
the time reversal. This is the first non-linear model that we simulate, and already we
seem to be in difficulties!

What happened?
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Van-der-Pol Oscillator and Time Reversal

[H1.4] Van-der-Pol Oscillator and Time Reversal V

The original problem exhibits a stable limit cycle in the phase plane, i.e., in the plane
spanned by x2(x1). Every trajectory ends up on the limit cycle.
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Figure: Trajectory behavior of Van-der-Pol oscillator
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Van-der-Pol Oscillator and Time Reversal

[H1.4] Van-der-Pol Oscillator and Time Reversal VI

The time-reversed problem thus exhibits a finite analytical domain of stability that
coincides with the limit cycle of the original problem. Every trajectory starting within
that region of the phase plane ends up at the origin, whereas every trajectory
beginning outside that region escapes to infinity.

When we simulate over 2 sec with initial conditions of x1 = x2 = 0.1, we are still far
away from the limit cycle at switching time. Hence the time-reversed trajectory
returns on its old path back to where it had come from.

On the other hand, when we simulate the original problem during 20 sec of simulated
time, we end up very close to the limit cycle. After switching, small changes in the
initial conditions will have huge effects on the simulation outcome. Even fairly small
inaccuracies during one step may carry us across the border into the unstable region,
from where the trajectory will quickly escape. This is exactly what happened.
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Van-der-Pol Oscillator and Time Reversal

[H1.4] Van-der-Pol Oscillator and Time Reversal VII

Thus, I needed to reduce the relative error to:

reltol = 10−9

to make sure that the integration steps remain sufficiently small so that the border
won’t be crossed. Now the simulation no longer died.
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Van-der-Pol Oscillator and Time Reversal

[H1.4] Van-der-Pol Oscillator and Time Reversal VIII

Unfortunately, the results are still incorrect, as the trajectory does not follow its
original path back to where it came from.
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Figure: Simulation results
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Van-der-Pol Oscillator and Time Reversal

[H1.4] Van-der-Pol Oscillator and Time Reversal IX

The reason for this disappointing result has to do with the very large sensitivity of the
time-reversed problem to initial conditions that are close to the limit cycle. Thus,
small numerical errors committed during the first steps of the time-reversed simulation
have a huge effect on the further development of the trajectory. This problem is
unsolvable within the constraints of the given machine resolution.
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