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Numerical Simulation of Dynamic Systems: Hw8 - Problem

Homework 8 - Problem

Wave Equation

[H6.3] Wave Equation

The wave equation has been written as:

∂2u

∂t2
= c2 · ∂2u

∂x2

Let us rewrite u(x , t) as ũ(v , w), where:

v = x + c · t
w = x − c · t

What happens?
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Poiseuille Flow Through a Pipe

[H6.9a] Poiseuille Flow Through a Pipe

The following equations describe the stationary flow of an incompressible fluid through
a pipe:

dv̂

dρ
=

−√
2Γ

(τM + 1)2
· ρ · τ2

d

dρ

(
ρ

T
· dτ

dρ

)
=

−Γ

(τM + 1)3
· ρ3 · τ2

where:

ρ =
r

R

τ =
T (r)

TW

are two normalized coordinates. r is the distance from the center of the pipe, and R is
the radius of the pipe. T (r) is the temperature of the fluid at a distance r from the
center, and TW is the temperature of the pipe wall. TW is assumed constant.
v̂ = k1 ∗ v is the normalized flow velocity, where k1 is a constant that depends on the
viscosity, the thermal conductivity, and the average temperature of the fluid.
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Poiseuille Flow Through a Pipe

[H6.9a] Poiseuille Flow Through a Pipe II

The boundary conditions are:

dv̂

dρ
(ρ = 0.0) = 0.0

dτ

dρ
(ρ = 0.0) = 0.0

v̂(ρ = 1.0) = 0.0

τ(ρ = 1.0) = 1.0

Thus, this is a boundary value problem.

The equations contain two yet unknown parameters. Γ is a constant that depends on
the fluid. Let us assume that Γ = 10.0. τM is the value of the normalized temperature
at the center of the pipe. We shall introduce the momentary value of that
temperature into the equation, and adjust that value as the simulation proceeds.
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Poiseuille Flow Through a Pipe

[H6.9a] Poiseuille Flow Through a Pipe III

We wish to simulate this problem across ρ in the range ρ = [0.0, 1.0] with unknown
initial conditions v̂(ρ = 0.0) = v̂M and τ(ρ = 0.0) = τM .

We begin by introducing an additional variable:

w =
ρ

T
· dτ

dρ

We thus obtain three first-order ODEs in the variables v̂ , w , and τ .

You can verify easily that all three derivatives are negative everywhere in the pipe
except at the center. All three ODEs are analytically unstable when simulating from
ρ = 0 to ρ = 1.

It thus makes sense to substitute:

σ = 1 − ρ

and simulate from ρ = 1 to ρ = 0, i.e., from σ = 0 to σ = 1.
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Poiseuille Flow Through a Pipe

[H6.9a] Poiseuille Flow Through a Pipe IV

We end up with three differential equations of the form:

dv̂

dσ
= fv̂ (τ, σ)

dw

dσ
= fw (τ, σ)

dτ

dσ
= fτ (τ,w , σ)

You may need to do something about the third equation for ρ = 0 to avoid a division
by zero.

The boundary conditions are:

v̂(σ = 0) = 0

τ(σ = 0) = 1

w(σ = 1) = 0
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Poiseuille Flow Through a Pipe

[H6.9a] Poiseuille Flow Through a Pipe V

Simulate the system using any guess for the unknown initial value of w using Matlab’s
built-in non-stiff ODE solver, ode45, and repeat the simulation multiple times using
fixed-point iteration on this value, until the final value of w(σ = 1) = 0 is hit.

This method of solving boundary value problems is sometimes referred to as the
artillery method.

Plot the three variables, v̂ , w , and τ as functions of ρ on three subplots of a single
graph.
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Poiseuille Flow Through a Pipe

[H6.9b] Poiseuille Flow Through a Pipe

We now wish to solve this same problem in a different way using invariant embedding.

We rewrite the three ODEs in DAE form:

dv̂

dσ
− fv̂ (τ, σ) = 0

dw

dσ
− fw (τ, σ) = 0

dτ

dσ
− fτ (τ, w, σ) = 0

and embed the problem in a set of PDEs:

∂v̂

∂σ
− fv̂ (τ, σ) = ± ∂v̂

∂t

∂w

∂σ
− fw (τ, σ) = ± ∂w

∂t

∂τ

∂σ
− fτ (τ, w, σ) = ± ∂τ

∂t

For now, we don’t know yet, which signs to use on the artificially introduced time
derivatives.
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[H6.9b] Poiseuille Flow Through a Pipe II

� We discretize the PDEs using the method of lines with 50 intervals. We shall
use second-order accurate approximations for the three spatial derivatives.

� We apply the correct boundary conditions and suitable initial conditions.

� We shall simulate the system using Matlab’s built-in stiff ODE solver, ode15s.

� We would like to simulate an analytically stable problem. To this end, we still
need to choose the most suitable sign values for the three artificial time
derivatives.

� Try out all eight combinations and look at the distributions of the eigenvalues of
the (analytical) Jacobian for t = 0. You will find that only one of the eight
combinations places the eigenvalues in the left-half complex plane.

Plot the eigenvalue distribution for the chosen set of sign values. What do you
conclude about the nature of the embedded PDE problem? Is it parabolic or
hyperbolic?
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[H6.9b] Poiseuille Flow Through a Pipe III

We wish to simulate the resulting problem using the F-stable trapezoidal rule. To this
end, we can simply set the maximal order of the stiff ODE solver to two, as BDF2 is
the trapezoidal rule.

Simulate across 3.5 seconds and plot the three variables, v̂ , w , and τ as functions of ρ
on three subplots of a single graph.

Repeat the simulation, this time simulating across 10 seconds and plot the three
variables, v̂ , w , and τ as functions of ρ on three subplots of a single graph.

What do you conclude?
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Poiseuille Flow Through a Pipe

[H6.9c] Poiseuille Flow Through a Pipe

As we ran into numerical difficulties with our previous attempts, we shall now try to
fix our problems by applying upwind discretization to all three PDEs.

Plot the eigenvalue distribution of the problem using upwind discretization in space.

Repeat the simulation, simulating across 10 seconds and plot the three variables, v̂ ,
w , and τ as functions of ρ on three subplots of a single graph.

What do you conclude?


