Numerical Simulation of Dynamic Systems: Hw9 - Solution

Prof. Dr. François E. Cellier Department of Computer Science ETH Zurich

May 7, 2013

[H7.1] Electrical Circuit, Horizontal and Vertical Sorting

Given the electrical circuit:

- ► The circuit contains a constant voltage source, u_0 , and a dependent current source, i_4 , that depends on the voltage across the capacitor, C, and the resistor, R_3 .
- ▶ Write down the element equations for the seven circuit elements. Since the voltage *u*₃ is common to two circuit elements, these equations contain 13 rather than 14 unknowns. Add the voltage equations for the three meshes and the current equations for three of the four nodes

[H7.1] Electrical Circuit, Horizontal and Vertical Sorting II

- Draw the structure digraph of the DAE system, and apply the Tarjan algorithm to sort the equations both horizontally and vertically. Write down the causal equations, i.e., the resulting ODE system.
- Simulate the ODE system across 50 µsec using RKF4/5 with Gustaffsson step-size control and with zero initial conditions on both the capacitor and the inductor.
- ▶ Plot the voltage u_3 and the current i_C , and the step size h on three separate subplots as functions of time.

[H7.1] Electrical Circuit, Horizontal and Vertical Sorting III

 $u_3 + u_4$

10:

[H7.1] Electrical Circuit, Horizontal and Vertical Sorting IV

```
= 10
         U<sub>O</sub>
         u_1 = R_1 \cdot i_1
     \begin{array}{rcl} u_2 & = & R_2 \cdot i_2 \\ u_3 & = & R_3 \cdot i_3 \end{array}
     i_C = C \cdot \frac{du_3}{dt}
u_L = L \cdot \frac{di_L}{dt}
                         4 · u<sub>3</sub>
8:
         u_0
                  = u_1 + u_3
         u_L
                  = u_1 + u_2
10:
         u_2
                  = u_3 + u_4
11:
         i_0 = i_1 + i_L
         i_1 = i_2 + i_C + i_3
12:
13:
         i_4 = i_2 + i_L
```


[H7.1] Electrical Circuit, Horizontal and Vertical Sorting V

[H7.1] Electrical Circuit, Horizontal and Vertical Sorting VI

[H7.1] Electrical Circuit, Horizontal and Vertical Sorting VII

[H7.1] Electrical Circuit, Horizontal and Vertical Sorting VIII

[H7.1] Electrical Circuit, Horizontal and Vertical Sorting IX

[H7.1] Electrical Circuit, Horizontal and Vertical Sorting X


```
= 10
          u_0
      u_1 = R_1 \cdot i_1
7: u_2 = R_2 \cdot i_2
2: u_3 = R_3 \cdot i_3
        i_C = C \cdot \frac{du_3}{dt}
u_L = L \cdot \frac{dl_L}{dt}
10:
11:
3:
                          4 · U3
4:
                  = u_1 + u_3
          u_0
8:
          u_L
                  = u_1 + u_2
12:
          u_2
                  = u_3 + u_4
13: i_0 = i_1 + i_L

9: i_1 = i_2 + i_C + i_3

5: i_4 = i_2 + i_L
```

[H7.1] Electrical Circuit, Horizontal and Vertical Sorting XI

```
10
        u_0
    u_1 = R_1 \cdot i_1
   u_2 = R_2 \cdot i_2
2: u_3 = R_3 \cdot i_3
       i_C = C \cdot \frac{du_3}{dt}
u_L = L \cdot \frac{di_L}{dt}
10:
11:
3:
                     4 · u3
4:
        u<sub>0</sub>
               = u_1 + u_3
8:
       u_L
               = u_1 + u_2
12:
        U_2
               = u_3 + u_4
13:
        i_0 = i_1 + i_L
       i_1 = i_2 + i_C + i_3

i_4 = i_2 + i_L
9:
```

[H7.1] Electrical Circuit, Horizontal and Vertical Sorting XII

The model and output equations can be coded as follows:

```
function [xdot] = st\_eq2(x, t)
R1 = 100; R2 = 100; R3 = 30;
C = 1e - 6; L = 0.01;
u3 = x(1); iL = x(2);
u0 = 10:
i3 = u3/R3;
i4 = 4 * u3;
u1 = u0 - u3:
i2 = i4 - iL:
i1 = u1/R1;
u^2 = R^2 * i^2:
uL = u1 + u2:
iC = i1 - i2 - i3:
du3 = iC/C:
diL = uL/L;
u4 = u2 - u3;
i0 = i1 + iL:
xdot = zeros(2, 1);
xdot(1) = du3; xdot(2) = diL;
%
return
```

```
function [y] = \text{out\_eq2}(x, t)
R1 = 100; R2 = 100; R3 = 30;
C = 1e - 6; L = 0.01;
u3 = x(1); iL = x(2);
u0 = 10:
i3 = u3/R3;
i4 = 4 * \mu 3:
u1 = u0 - u3:
i2 = i4 - iL:
i1 = u1/R1;
u^2 = R^2 * i^2:
uL = u1 + u2:
iC = i1 - i2 - i3:
du3 = iC/C:
diL = uL/L;
u4 = u2 - u3;
i0 = i1 + iL:
y = zeros(2, 1);
v(1) = u3; v(2) = iC;
return
         4□ > 4同 > 4 = > 4 = > ■ 900
```

```
└─Homework 9 - Solution
└─Tarjan Algorithm
```

[H7.1] Electrical Circuit, Horizontal and Vertical Sorting XIII

The simulation loop (with Gustafsson step-size control) can be coded as follows:

```
while t < tf,
    [x4, x5] = rkf45_step2(x, t, h):
    err = norm(x4 - x5, 'inf') / max([norm(x4), norm(x5), 1.0e - 10]);
    if err > tol,
        h = (0.8 * tol/err) \land (0.2) * h:
        errl = 0:
    else
        t = t + h:
        x = x5:
        y = \text{out\_eq2}(x, t);
        tvec = [tvec, t];
        yvec = [yvec, y];
        if errl > 0,
            h = (0.8 * tol/err) \wedge (0.06) * (errl/err) \wedge (0.08) * h;
        else
            h = (0.8 * tol/err) \land (0.2) * h
        end
        hvec = [hvec, h]:
        errl = err:
    end
end
```

[H7.1] Electrical Circuit, Horizontal and Vertical Sorting XIV

[H7.7] Electrical Circuit, Structural Singularity

Given the circuit shown below containing three sinusoidal current sources:

- Write down the complete set of equations describing this circuit. Draw the structure digraph and begin causalizing the equations. Determine a constraint equation.
- Apply the Pantelides algorithm to reduce the perturbation index to 1. Then apply the tearing algorithm with substitution to bring the perturbation index down to 0.
- Write down the structure incidence matrices of the index-1 DAE and the index-0 ODE systems, and show that they are in BLT form, and in LT form, respectively.

[H7.7] Electrical Circuit, Structural Singularity II

[H7.7] Electrical Circuit, Structural Singularity III

```
I_1 = f_1(t)

I_2 = f_2(t)

I_3 = f_3(t)
3:
             = R \cdot i_{R}
= C \cdot \frac{du_{C}}{dt}
= L_{1} \cdot \frac{du_{1}}{dt}
= L_{2} \cdot \frac{du_{2}}{dt}
4:
         u_R
5:
         ic
6:
         u_{L1}
7:
         u_{L2}
8:
                           u_{L1} + u_C
         u_1
9:
         UI 1
                       = u_R + u_2
10:
         u_{L2}
                       = u_2 + u_C
11:
         ЦЗ
                       = u_R + u_{12}
12:
       I_1 + I_3 = i_{L1} + i_R
      i_{L1} = I_2 + i_C
13:
         i_{L2} = I_2 + i_R
14:
```


[H7.7] Electrical Circuit, Structural Singularity IV

I causalized as much as I could without getting into trouble:

1:	I_1	=	$f_1(t)$
2:	I_2	=	$f_2(t)$
3:	I_3	=	$f_3(t)$
8:	u_R	=	$R \cdot i_R$
12:	ic	=	$C \cdot \frac{du_C}{dt}$
11:	u_{L1}	=	$L_1 \cdot \frac{di_{l1}}{dt}$
10:	u_{L2}	=	$L_2 \cdot \frac{di_{L2}}{dt}$
14:	u_1	=	$u_{L1} + u_{C}$
9:	u_{L1}	=	$u_R + u_2$
?:	u_{L2}	=	$u_2 + u_C$
13:	и з	=	$u_R + u_{L2}$
?:	$I_1 + I_3$	=	$i_{L1} + i_R$
4:	i_{L1}	=	$l_2 + i_C$
?:	i_{L2}	=	$l_2 + i_R$

[H7.7] Electrical Circuit, Structural Singularity V

Any additional causalization leads invariably to a constraint:

a constraint.			
1:	I_1	=	$f_1(t)$
2:	I_2	=	$f_2(t)$
3:	I_3	=	$f_3(t)$
8:	u_R	=	$R \cdot i_R$
12:	i _C	=	$C \cdot \frac{du_C}{dt}$
11:	u_{L1}	=	$L_1 \cdot \frac{di_{l1}}{dt}$
10:	u_{L2}	=	$L_2 \cdot \frac{di_{L2}}{dt}$
14:	u_1	=	$u_{L1} + u_{C}$
9:	u_{L1}	=	$u_R + u_2$
?:	u_{L2}	=	$u_2 + u_C$
13:	из	=	$u_R + u_{L2}$
5:	$I_1 + I_3$	=	$i_{L1} + i_{R}$
4:	i_{L1}	=	$l_2 + i_C$
const.eq.:	i_{L2}	=	$I_2 + i_R$

[H7.7] Electrical Circuit, Structural Singularity VI

We differentiate the constraint equation and let go of the integrator for i_{L1} :

```
1:
                           f_1(t)
                                                                        f_1(t)
2:
            I_2
                      = f_2(t)
                                                         I_2
                                                                       f_2(t)
3:
                      = f_3(t)
                                                                  = f_3(t)
8:
                          R \cdot i_R
                                                  10:
                                                                  = R \cdot i_R
            u_R
                                                        u_R
12:
            i_C
                                                   13:
11:
                                                   12:
            u_{L1}
                                                         UI 1
                                                                  = L_2 \cdot di_{12}
                                                  ?:
10:
                                                         u_{L2}
            u_{L2}
                                                  15:
                                                                  = u_{L1} + u_{C}
                                                         u<sub>1</sub>
14:
                      = u_{L1} + u_{C}
            U1
                                                  11:
9:
                      = u_R + u_2
                                                         u_{L1}
                                                                  = u_R + u_2
            U_{I1}
                                                   ?:
                                                                  = u_2 + u_C
?:
                                                         u_{L2}
            u_{L2}
                      = u_2 + u_C
                                                   14:
                                                                  = u_R + u_{L2}
13:
                                                         U<sub>3</sub>
                 = u_R + u_{I2}
            UЗ
                                                         I_1 + I_3
                                                   5:
                                                                  = i_{L1} + i_R
5:
            I_1 + I_3
                      = i_{I1} + i_{R}
                                                   4:
                                                                  = l_2 + i_C
                                                         i_{l,1}
4:
                      = l_2 + i_C
            i_{L1}
                                                   6:
                                                                  = l_2 + i_R
                                                         i_{L2}
                      = l_2 + i_R
const.eq.:
            i<sub>12</sub>
                                                                  = dI_2 + di_R
                                                   ?:
                                                         di_{L2}
```

[H7.7] Electrical Circuit, Structural Singularity VII

We introduced two new pseudo-derivatives, dl_2 and di_R :

```
1:
                        f_1(t)
2:
                  = f_2(t)
3:
                  = f_3(t)
10:
                        R \cdot i_R
       U_R
                  = C \cdot \frac{du_C}{dt}
= L_1 \cdot \frac{dl_{L1}}{dt}
13:
12:
       u_{L1}
?:
                  = L_2 \cdot di_{L2}
       u_{L2}
15:
                  = u_{L1} + u_C
       u<sub>1</sub>
11:
                  = u_R + u_2
       u_{L1}
?:
       u_{L2}
                  = u_2 + u_C
14:
       Из
                  = u_R + u_{12}
5:
       I_1 + I_3
                  = i_{L1} + i_R
4:
                  = l_2 + i_C
       i_{L1}
      i_{L2}
6:
                  = l_2 + i_R
?:
                  = dI_2 + di_R
       di_{L2}
```

```
f_1(t)
                           f_2(t)
                           \frac{df_2(t)}{dt}
f_3(t)
7:
       dI_2
3:
       I_3
       u_R
15:
       ic
?:
       U<sub>I 1</sub>
?:
                          L_2 \cdot di_{12}
       u_{L2}
17:
                     = u_{L1} + u_C
       U1
?:
                     = u_R + u_2
       U_{I1}
?:
       U_{L2}
                     = u_2 + u_C
16:
       UЗ
                     = u_R + u_{L2}
       I_1 + I_3 = i_{L1} + i_R
5:
                     =\frac{di_{L1}}{dt}+di_R
?:
       dI_1 + dI_3
       i_{L1}
i_{L2}
                     = l_2 + i_C
4:
                    = I_2 + i_R
6:
```

?:

 di_{12}

[H7.7] Electrical Circuit, Structural Singularity VIII

```
Two more pseudo-derivatives, dl_1 and dl_3:
                                                                               I_1
                                                                                                        f_1(t)
                                                                                                       \frac{\frac{df_1(t)}{dt}}{\frac{dt}{f_2(t)}}
\frac{\frac{df_2(t)}{dt}}{\frac{dt}{f_3(t)}}
                                                                               dI_1
  1:
                                    f_1(t)
            I_1
                                                                               b
            I_2
                                   f_2(t)
                                                                      7:
                                                                               dI_2
                                   \frac{df_2(t)}{dt}
f_3(t)
  7:
           dl_2
                                                                      3:
                                                                               I_3
  3:
            13
                                                                                                        \frac{df_3(t)}{dt}
                                                                      10:
                                                                               dI_3
            u_R
                                                                                                       R \cdot i_R
                                                                      8:
                                                                               u_R
  15:
           ic
                                                                      17:
                                                                               ic
  ?:
            UI 1
                                                                      ?:
                                                                               u_{L1}
  ?:
                                   L_2 \cdot di_{12}
            u_{L2}
                                                                      ?:
                                                                                                       L_2 \cdot di_{L2}
                                                                               u_{L2}
  17:
                                  u_{L1} + u_C
            u_1
                                                                      19:
                                                                                                       u_{L1} + u_C
                                                                               u_1
  ?:
            UI 1
                            = u_R + u_2
                                                                      ?:
                                                                                                = u_R + u_2
                                                                               u_{L1}
  ?:
            UL2
                                 u_2 + u_C
                                                                      ?:
                                                                               u_{L2}
                                                                                                = u_2 + u_C
  16:
            UЗ
                            = u_R + u_{L2}
                                                                      18:
                                                                                                = u_R + u_{L2}
                                                                               U_3
  5:
           I_1 + I_3
                                 i_{L1} + i_R
                                                                      5:
                                                                               I_1 + I_3
                                                                                                = i_{L1} + i_R
                            = \frac{di_{L1}}{dt} + di_R
           dI_1 + dI_3
                                                                                                = \frac{di_{L1}}{dt} + di_R
                                                                      ?:
                                                                               dI_1 + dI_3
                            = l_2 + i_C
  4:
           i_{L1}
                                                                      4:
                                                                                                = l_2 + i_C
                                                                               i_{L1}
                            = I_2 + i_R
  6:
            i_{L2}
                                                                      6:
                                                                               i_{L2}
                                                                                         = l_2 + i_R
  ?:
           di_{L2}
                                 dl_2 + di_R
                                                                      ?:
                                                                                                = dl_2 + di_R
                                                                               di_{L2}
```

Homework 9 - Solution

Pantelides Algorithm

[H7.7] Electrical Circuit, Structural Singularity IX

S =ic i_{L2} u_{L1} *u*₁ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10: 11: n 0 12: 13: 15: 16: 17: 0 0 0 18: 0 0 0 0 0 0 0 0 19:

[H7.7] Electrical Circuit, Structural Singularity X

We have an algebraic loop in six equations and six unknowns:

$$\begin{array}{llll} ?: & u_{L1} & = & L_1 \cdot \frac{di_{L1}}{dt} \\ ?: & u_{L2} & = & L_2 \cdot di_{L2} \\ ?: & u_{L1} & = & u_R + u_2 \\ ?: & u_{L2} & = & u_2 + u_C \\ ?: & dl_1 + dl_3 & = & \frac{di_{L1}}{dt} + di_R \\ ?: & di_{L2} & = & dl_2 + di_R \end{array}$$

[H7.7] Electrical Circuit, Structural Singularity XI

We have an algebraic loop in six equations and six unknowns:

res.eq.:
$$di_R = di_{L2} - dl_2$$

1: $\frac{di_{L1}}{dt} = dl_1 + dl_3 - di_R$
2: $u_{L1} = L_1 \cdot \frac{di_{L1}}{dt}$
3: $u_2 = u_{L1} - u_R$
4: $u_{L2} = u_2 + u_C$
5: $di_{L2} = \frac{1}{L_1} \cdot u_{L2}$

$$\begin{split} di_R &= di_{L2} - dI_2 \\ &= \frac{1}{L_2} \cdot u_{L2} - dI_2 \\ &= \frac{1}{L_2} \cdot u_2 + \frac{1}{L_2} \cdot u_C - dI_2 \\ &= \frac{1}{L_2} \cdot u_{L1} - \frac{1}{L_2} \cdot u_R + \frac{1}{L_2} \cdot u_C - dI_2 \\ &= \frac{L_1}{L_2} \cdot \frac{di_{L1}}{dt} - \frac{1}{L_2} \cdot u_R + \frac{1}{L_2} \cdot u_C - dI_2 \\ &= \frac{L_1}{L_2} \cdot dI_1 + \frac{L_1}{L_2} \cdot dI_3 - \frac{L_1}{L_2} \cdot dI_R - \frac{1}{L_2} \cdot u_R + \frac{1}{L_2} \cdot u_C - dI_2 \end{split}$$

$$di_R = \frac{L_1 \cdot (dl_1 + dl_3) - u_R + u_C - L_2 \cdot dl_2}{L_1 + L_2}$$

Pantelides Algorithm

[H7.7] Electrical Circuit, Structural Singularity XII

```
f_1(t)
2: l_2 = f_2(t)

3: l_3 = f_3(t)

4: i_C = i_{L1} - l_2

5: i_R = l_1 + l_3 - i_{L1}
           i_{L2} = l_2 + i_R
                             \frac{df_2(t)}{dt}
           dI_2 =
7:
                               R \cdot i_R
8:
           u_R
                               \frac{df_1(t)}{dt}
\frac{df_3(t)}{df_3(t)}
           dI_1
9:
                      =
 10:
           dI_3
                           \frac{\frac{dt}{L_1 \cdot (dl_1 + dl_3) - u_R + u_C - L_2 \cdot dl_2}}{L_1 + L_2}
           di_R
 11:
 12:
                               dI_1 + dI_3 - di_R
                           L_1 \cdot \frac{di_{l1}}{dt}
 13:
           u_{L1}
 14:
                      = u_{L1} - u_R
           u_2
 15:
           u_{L2}
                      = u_2 + u_C
           di_{L2} = \frac{1}{L_2} \cdot u_{L2}
 16:
         \frac{du_C}{dt} = \frac{1}{C} \cdot i_C
 17:
 18:
           u_3
                      = u_R + u_{L2}
 19:
                      = u_{L1} + u_{C}
           u_1
```

Homework 9 - Solution

Pantelides Algorithm

[H7.7] Electrical Circuit, Structural Singularity XIII

S = di_R dl_2 ic i_{L2} uL2 *u*₁ 10: 11: n 12: 13: 15: 16: 17: 18: 19:

Pantelides Algorithm

[H7.8] Chemical Reactions, Pantelides Algorithm

The following set of DAEs:

$$\frac{dC}{dt} = K_1(C_0 - C) - R$$

$$\frac{dT}{dt} = K_1(T_0 - T) + K_2R - K_3(T - T_C)$$

$$0 = R - K_3 \exp\left(\frac{-K_4}{T}\right)C$$

$$0 = C - u$$

describes a chemical isomerization reaction.

C is the reactant concentration, T is the reactant temperature, and R is the reactant rate per unit volume. C_0 is the feed reactant concentration, and T_0 is the feed reactant temperature. u is the desired concentration, and T_C is the control temperature that we need to produce u.

[H7.8] Chemical Reactions, Pantelides Algorithm II

- We want to turn the problem around (inverse model control) and determine the necessary control temperature T_C as a function of the desired concentration u. Thus, u will be an input to our model, and T_C is the output.
- Draw the structure digraph. You shall notice at once that one of the equations has no connections to it. Thus, it is a constraint equation that needs to be differentiated, while an integrator associated with the constraint equation needs to be thrown out.
- ▶ We now have five equations in five unknowns. Draw the enhanced structure digraph, and start causalizing the equations. You shall notice that a second constraint equation appears. Hence the original DAE system had been an index-3 DAE system. Differentiate that constraint equation as well, and throw out the second integrator. In the process, new pseudo-derivatives are introduced that call for additional differentiations.

[H7.8] Chemical Reactions, Pantelides Algorithm III

- ▶ This time around, you end up with eight equations in eight unknowns. Draw the once more enhanced structure digraph, and causalize the equations. This is an example, in which (by accident) the Pantelides algorithm reduces the perturbation index in one step from 2 to 0, i.e., the final set of equations does not contain an algebraic loop.
- ▶ Draw a block diagram that shows how the output T_C can be computed from the three inputs u, $\frac{du}{dt}$, and $\frac{d^2u}{dt^2}$.

[H7.8] Chemical Reactions, Pantelides Algorithm IV

The original equations are:

?:
$$\frac{dC}{dt} = K_1 \cdot (C_0 - C) - R$$
?:
$$\frac{d}{dt} = K_1 \cdot (T_0 - T) + K_2 \cdot R - K_3 \cdot (T - T_C)$$
?:
$$0 = R - K_3 \cdot \exp\left(\frac{-K_4}{T}\right) \cdot C$$
const.eq.:
$$0 = C - u$$

With the structure digraph:

We recognize immediately a constraint equation.

[H7.8] Chemical Reactions, Pantelides Algorithm V

The enhanced equations are:

?:
$$dC = K_1 \cdot (C_0 - C) - R$$

?: $\frac{dT}{dt} = K_1 \cdot (T_0 - T) + K_2 \cdot R - K_3 \cdot (T - T_C)$
?: $0 = R - K_3 \cdot \exp\left(\frac{-K_4}{T}\right) \cdot C$
?: $0 = C - u$
?: $0 = dC - \frac{du}{dt}$

With the structure digraph:

[H7.8] Chemical Reactions, Pantelides Algorithm VI

We start coloring the structure digraph and recognize soon a second constraint equation:

?:
$$dC = K_1 \cdot (C_0 - C) - R$$

?: $\frac{dT}{dt} = K_1 \cdot (T_0 - T) + K_2 \cdot R - K_3 \cdot (T - T_C)$
?: $0 = R - K_3 \cdot \exp\left(\frac{-K_4}{T}\right) \cdot C$
?: $0 = C - u$
?: $0 = dC - \frac{du}{dt}$

[H7.8] Chemical Reactions, Pantelides Algorithm VII

The once more enhanced equations are:

?:
$$dC = K_1 \cdot (C_0 - C) - R$$

?: $dT = K_1 \cdot (T_0 - T) + K_2 \cdot R - K_3 \cdot (T - T_C)$
?: $0 = R - K_3 \cdot \exp\left(\frac{-K_4}{T}\right) \cdot C$
?: $0 = C - u$
?: $0 = dC - \frac{du}{dt}$
?: $d2C = K_1 \cdot \left(\frac{dC_0}{dt} - dC\right) - dR$
?: $0 = dR - K_3 \cdot \exp\left(\frac{-K_4}{T}\right) \cdot \left[dC + \frac{K_4 \cdot C \cdot dT}{T^2}\right]$
?: $0 = d2C - \frac{d^2u}{dt^2}$

[H7.8] Chemical Reactions, Pantelides Algorithm VIII

Let us color the structure digraph:

We went from index-2 directly down to index-0. This sometimes happens.

[H7.8] Chemical Reactions, Pantelides Algorithm IX

4:
$$dC = K_1 \cdot (C_0 - C) - R$$

8: $dT = K_1 \cdot (T_0 - T) + K_2 \cdot R - K_3 \cdot (T - T_C)$
6: $0 = R - K_3 \cdot \exp\left(\frac{-K_4}{T}\right) \cdot C$
1: $0 = C - u$
2: $0 = dC - \frac{du}{dt}$
5: $d2C = K_1 \cdot \left(\frac{dC_0}{dt} - dC\right) - dR$
7: $0 = dR - K_3 \cdot \exp\left(\frac{-K_4}{T}\right) \cdot \left[dC + \frac{K_4 \cdot C \cdot dT}{T^2}\right]$
3: $0 = d2C - \frac{d^2u}{dt^2}$

[H7.8] Chemical Reactions, Pantelides Algorithm X

1:
$$C = u$$

2: $dC = \frac{du}{dt}$
3: $d2C = \frac{d^2u}{dt^2}$
4: $R = K_1 \cdot (C_0 - C) - dC$
5: $dR = K_1 \cdot (\frac{dC_0}{dt} - dC) - d2C$
6: $T = \frac{-K_4}{\log(\frac{K_3}{K_3 \cdot C})}$
7: $dT = \frac{T^2}{K_3 \cdot K_4 \cdot C} \cdot \left[dR \cdot \exp\left(\frac{K_4}{T}\right) - K_3 \cdot dC \right]$
8: $T_C = \frac{dT - K_1 \cdot (T_0 - T) - K_2 \cdot R + K_3 \cdot T}{K_3}$

[H7.8] Chemical Reactions, Pantelides Algorithm XI

