
Numerical Simulation of Dynamic Systems X

Numerical Simulation of Dynamic Systems X

Prof. Dr. François E. Cellier
Department of Computer Science

ETH Zurich

March 26, 2013



Numerical Simulation of Dynamic Systems X

Second Derivative Systems II

Non-linear Velocity Models

Non-linear Velocity Models

Given the general second-derivative model:

ẍ = f(x, ẋ, u, t) (1)

We need an algorithm to compute the velocity vector.



Numerical Simulation of Dynamic Systems X

Second Derivative Systems II

Non-linear Velocity Models

Non-linear Velocity Models

Given the general second-derivative model:

ẍ = f(x, ẋ, u, t) (1)

We need an algorithm to compute the velocity vector.

� We can use any ODE solver to compute the velocity vector from the
acceleration vector.



Numerical Simulation of Dynamic Systems X

Second Derivative Systems II

Non-linear Velocity Models

Non-linear Velocity Models

Given the general second-derivative model:

ẍ = f(x, ẋ, u, t) (1)

We need an algorithm to compute the velocity vector.

� We can use any ODE solver to compute the velocity vector from the
acceleration vector.

� As the velocity gets always multiplied by h, it suffices to use a second-order
accurate algorithm.



Numerical Simulation of Dynamic Systems X

Second Derivative Systems II

Non-linear Velocity Models

Non-linear Velocity Models

Given the general second-derivative model:

ẍ = f(x, ẋ, u, t) (1)

We need an algorithm to compute the velocity vector.

� We can use any ODE solver to compute the velocity vector from the
acceleration vector.

� As the velocity gets always multiplied by h, it suffices to use a second-order
accurate algorithm.

� As the Godunov (GE3) algorithm that we wish to employ for computing the
position vector is explicit, we should use an explicit algorithm also for the
velocity vector.



Numerical Simulation of Dynamic Systems X

Second Derivative Systems II

Non-linear Velocity Models

Non-linear Velocity Models

Given the general second-derivative model:

ẍ = f(x, ẋ, u, t) (1)

We need an algorithm to compute the velocity vector.

� We can use any ODE solver to compute the velocity vector from the
acceleration vector.

� As the velocity gets always multiplied by h, it suffices to use a second-order
accurate algorithm.

� As the Godunov (GE3) algorithm that we wish to employ for computing the
position vector is explicit, we should use an explicit algorithm also for the
velocity vector.

� Let us use AB2:

ẋk+1 = ẋk +
h

2
· (3 · ẍk − ẍk−1)



Numerical Simulation of Dynamic Systems X

Second Derivative Systems II

Non-linear Velocity Models

Non-linear Velocity Models II

Let us apply this scheme to the linear second-derivative model:

xk+1 = 2 · xk − xk−1 + h2 · v̇k : GE3 solver

vk+1 = vk +
h

2
· (3 · v̇k − v̇k−1) : AB2 solver

v̇k = A2 · xk + B · vk : model equations



Numerical Simulation of Dynamic Systems X

Second Derivative Systems II

Non-linear Velocity Models

Non-linear Velocity Models II

Let us apply this scheme to the linear second-derivative model:

xk+1 = 2 · xk − xk−1 + h2 · v̇k : GE3 solver

vk+1 = vk +
h

2
· (3 · v̇k − v̇k−1) : AB2 solver

v̇k = A2 · xk + B · vk : model equations

Plugging the model equations into the two sets of solver equations, we obtain:

xk+1 = 2 · xk − xk−1 + (A · h)2 · xk + (B · h) · (h · vk)

(h · vk+1) = (h · vk) +
3

2
· (A · h)2 · xk +

3

2
· (B · h) · (h · vk)

−1

2
· (A · h)2 · xk−1 − 1

2
· (B · h) · (h · vk−1)



Numerical Simulation of Dynamic Systems X

Second Derivative Systems II

Non-linear Velocity Models

Non-linear Velocity Models III

This can be rewritten in a matrix/vector form:

⎛
⎜⎜⎝

xk

h · vk

xk+1

h · vk+1

⎞
⎟⎟⎠ = F ·

⎛
⎜⎜⎝

xk−1

h · vk−1

xk

h · vk

⎞
⎟⎟⎠

where:

F =

⎛
⎜⎜⎜⎜⎝

Z(n) Z(n) I(n) Z(n)

Z(n) Z(n) Z(n) I(n)

−I(n) Z(n)
[
2 · I(n) + (A · h)2

]
B · h

− 1
2
· (A · h)2 − 1

2
· (B · h) 3

2
· (A · h)2

[
I(n) + 3

2
· (B · h)

]

⎞
⎟⎟⎟⎟⎠



Numerical Simulation of Dynamic Systems X

Second Derivative Systems II

Non-linear Velocity Models

Non-linear Velocity Models III

This can be rewritten in a matrix/vector form:

⎛
⎜⎜⎝

xk

h · vk

xk+1

h · vk+1

⎞
⎟⎟⎠ = F ·

⎛
⎜⎜⎝

xk−1

h · vk−1

xk

h · vk

⎞
⎟⎟⎠

where:

F =

⎛
⎜⎜⎜⎜⎝

Z(n) Z(n) I(n) Z(n)

Z(n) Z(n) Z(n) I(n)

−I(n) Z(n)
[
2 · I(n) + (A · h)2

]
B · h

− 1
2
· (A · h)2 − 1

2
· (B · h) 3

2
· (A · h)2

[
I(n) + 3

2
· (B · h)

]

⎞
⎟⎟⎟⎟⎠

When plotting the stability domain of the GE3/AB2 algorithm, the elements of the
B-matrix cannot be chosen independently of those of the A-matrix. They must be
chosen such that the overall system has its eigenvalues located on the unit circle.



Numerical Simulation of Dynamic Systems X

Second Derivative Systems II

Non-linear Velocity Models

Non-linear Velocity Models III

This can be rewritten in a matrix/vector form:

⎛
⎜⎜⎝

xk

h · vk

xk+1

h · vk+1

⎞
⎟⎟⎠ = F ·

⎛
⎜⎜⎝

xk−1

h · vk−1

xk

h · vk

⎞
⎟⎟⎠

where:

F =

⎛
⎜⎜⎜⎜⎝

Z(n) Z(n) I(n) Z(n)

Z(n) Z(n) Z(n) I(n)

−I(n) Z(n)
[
2 · I(n) + (A · h)2

]
B · h

− 1
2
· (A · h)2 − 1

2
· (B · h) 3

2
· (A · h)2

[
I(n) + 3

2
· (B · h)

]

⎞
⎟⎟⎟⎟⎠

When plotting the stability domain of the GE3/AB2 algorithm, the elements of the
B-matrix cannot be chosen independently of those of the A-matrix. They must be
chosen such that the overall system has its eigenvalues located on the unit circle.

Since this is a third-order accurate linear explicit multi-step method similar in scope to
AB3, we decided to plot the stability domain of AB3 on top of the stability domain of
GE3/AB2.



Numerical Simulation of Dynamic Systems X

Second Derivative Systems II

Non-linear Velocity Models

Non-linear Velocity Models IV

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

GE3/AB2

AB3

Stability Domain of GE3/AB2

Re{λ · h}

I
m
{λ

·h
}



Numerical Simulation of Dynamic Systems X

Second Derivative Systems II

Non-linear Velocity Models

Non-linear Velocity Models V

� This time around, we hit the mark. The GE3/AB2 algorithm beats AB3 by
leaps and bounds when simulating marginally stable second-derivative systems,
i.e., second-derivative systems with their dominant eigenvalues located either on
or at least in the vicinity of the imaginary axis.



Numerical Simulation of Dynamic Systems X

Second Derivative Systems II

Non-linear Velocity Models

Non-linear Velocity Models V

� This time around, we hit the mark. The GE3/AB2 algorithm beats AB3 by
leaps and bounds when simulating marginally stable second-derivative systems,
i.e., second-derivative systems with their dominant eigenvalues located either on
or at least in the vicinity of the imaginary axis.

� Although this algorithm is restricted to the simulation of second-derivative
systems, these are so frequent in practice that this could turn out to be a
significant discovery.



Numerical Simulation of Dynamic Systems X

Second Derivative Systems II

Non-linear Velocity Models

Non-linear Velocity Models V

� This time around, we hit the mark. The GE3/AB2 algorithm beats AB3 by
leaps and bounds when simulating marginally stable second-derivative systems,
i.e., second-derivative systems with their dominant eigenvalues located either on
or at least in the vicinity of the imaginary axis.

� Although this algorithm is restricted to the simulation of second-derivative
systems, these are so frequent in practice that this could turn out to be a
significant discovery.

� Especially for the case of real-time simulation of oscillatory mechanical systems,
the GE3/AB2 algorithm could offer a highly efficient and therefore attractive
alternative to traditional ODE solvers.



Numerical Simulation of Dynamic Systems X

Second Derivative Systems II

Other Godunov Methods

Other Godunov Methods

� Classes of both explicit and implicit integration algorithms of different orders of
approximation accuracy for second-derivative systems can be derived using
Newton-Gregory polynomials.



Numerical Simulation of Dynamic Systems X

Second Derivative Systems II

Other Godunov Methods

Other Godunov Methods

� Classes of both explicit and implicit integration algorithms of different orders of
approximation accuracy for second-derivative systems can be derived using
Newton-Gregory polynomials.

� To this end, we develop x(t) into a Newton-Gregory backward polynomial
around tk+1. We then compute the second derivative of the Newton-Gregory
polynomial. Evaluating this second derivative polynomial for s = −1, we obtain
the class of explicit Godunov schemes. Evaluating the second derivative
polynomial for s = 0, we obtain the class of implicit Godunov methods.



Numerical Simulation of Dynamic Systems X

Second Derivative Systems II

Other Godunov Methods

Other Godunov Methods

� Classes of both explicit and implicit integration algorithms of different orders of
approximation accuracy for second-derivative systems can be derived using
Newton-Gregory polynomials.

� To this end, we develop x(t) into a Newton-Gregory backward polynomial
around tk+1. We then compute the second derivative of the Newton-Gregory
polynomial. Evaluating this second derivative polynomial for s = −1, we obtain
the class of explicit Godunov schemes. Evaluating the second derivative
polynomial for s = 0, we obtain the class of implicit Godunov methods.

� We shall denote the explicit Godunov scheme of order n as GEn, and the
implicit Godunov algorithm of the same order as GIn. The enhanced algorithms,
that also compute the velocity vector, are denoted as GEn/ABn−1 and
GIn/BDFn−1, respectively.



Numerical Simulation of Dynamic Systems X

Second Derivative Systems II

Other Godunov Methods

Other Godunov Methods II

The resulting algorithms are:

GE3 : xk+1 = 2 · xk − xk−1 + h2 · ẍk

GE4 : xk+1 =
20

11
· xk −

6

11
· xk−1 − 4

11
· xk−2 +

1

11
· xk−3 +

12

11
· h2 · ẍk

GE5 : xk+1 =
3

2
· xk +

2

5
· xk−1 − 7

5
· xk−2 +

3

5
· xk−3 − 1

10
· xk−4

+
6

5
· h2 · ẍk

GI2 : xk+1 = 2 · xk − xk−1 + h2 · ẍk+1

GI3 : xk+1 =
5

2
· xk − 2 · xk−1 +

1

2
· xk−2 +

1

2
· h2 · ẍk+1

GI4 : xk+1 =
104

35
· xk −

114

35
· xk−1 +

56

35
· xk−2 − 11

35
· xk−3 +

12

35
· h2 · ẍk+1

GI5 : xk+1 =
154

45
· xk −

214

45
· xk−1 +

52

15
· xk−2 − 61

45
· xk−3 +

2

9
· xk−4

+
12

45
· h2 · ẍk+1



Numerical Simulation of Dynamic Systems X

Second Derivative Systems II

Other Godunov Methods

Other Godunov Methods III

The algorithms can be summarized using the following α-vectors and β-matrices:

αGE =

⎛
⎜⎜⎜⎜⎜⎝

0
1
1
12
11
6
5

⎞
⎟⎟⎟⎟⎟⎠

; βGE =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0
2 −1 0 0 0
2 −1 0 0 0
20
11

− 6
11

− 4
11

1
11

0
3
2

2
5

− 7
5

3
5

− 1
10

⎞
⎟⎟⎟⎟⎟⎠

αGI =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
1
1
2
12
35
12
45

⎞
⎟⎟⎟⎟⎟⎟⎠

; βGI =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0
2 −1 0 0 0
5
2

−2 1
2

0 0
104
35

− 114
35

56
35

− 11
35

0
154
45

− 214
45

52
15

− 61
45

2
9

⎞
⎟⎟⎟⎟⎟⎟⎠



Numerical Simulation of Dynamic Systems X

Second Derivative Systems II

Other Godunov Methods

Other Godunov Methods IV

Unfortunately, all of these methods have F-matrices that are even functions in A · h.
Thus, none of these methods can be expected to offer an asymptotic region for
eigenvalues located along the real axis. In fact, all of the above techniques are
unstable everywhere in the vicinity of the origin, with the exception of a section of the
imaginary axis in the vicinity of the origin, where they exhibit marginal stability, as
they should.



Numerical Simulation of Dynamic Systems X

Second Derivative Systems II

Other Godunov Methods

Other Godunov Methods V

Let us plot the damping properties of some of these algorithms up and down along the
imaginary axis:

−3 −2 −1 0 1 2 3
−0.5

0

0.5

1

1.5

2

2.5

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

Linear Damping Properties of GE4

Linear Damping Properties of GE5

ωd

−
D

am
p
in

g
−

D
am

p
in

g

Figure: Damping properties of GE4 and GE5 along the imaginary axis



Numerical Simulation of Dynamic Systems X

Second Derivative Systems II

Other Godunov Methods

Other Godunov Methods VI

We notice that:



Numerical Simulation of Dynamic Systems X

Second Derivative Systems II

Other Godunov Methods

Other Godunov Methods VI

We notice that:

� All GEi algorithms can be used for linear conservation laws only.



Numerical Simulation of Dynamic Systems X

Second Derivative Systems II

Other Godunov Methods

Other Godunov Methods VI

We notice that:

� All GEi algorithms can be used for linear conservation laws only.

� The asymptotic regions of these algorithms up and down the imaginary axis are
shrinking for increasing orders. Whereas GE3 has an asymptotic region
∈ [−2j , +2j ], GE4 has an asymptotic region ∈ (−j , +j), and GE5 has an
asymptotic region ∈ (−0.2j , +0.2j). This is disappointing.



Numerical Simulation of Dynamic Systems X

Second Derivative Systems II

Other Godunov Methods

Other Godunov Methods VI

We notice that:

� All GEi algorithms can be used for linear conservation laws only.

� The asymptotic regions of these algorithms up and down the imaginary axis are
shrinking for increasing orders. Whereas GE3 has an asymptotic region
∈ [−2j , +2j ], GE4 has an asymptotic region ∈ (−j , +j), and GE5 has an
asymptotic region ∈ (−0.2j , +0.2j). This is disappointing.

� Engineers will likely shrug these algorithms off anyway, because there aren’t
many real-life engineering applications that call for the simulation of linear
conservation laws.



Numerical Simulation of Dynamic Systems X

Second Derivative Systems II

Other Godunov Methods

Other Godunov Methods VII

Let us now discuss the implicit Godunov schemes. Their damping properties along the
imaginary axis are:

−4 −3 −2 −1 0 1 2 3 4
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

GI2GI3

GI4

GI5

Linear Damping Properties of GI2 - GI5

ωd

−
D

am
p
in

g

Figure: Damping properties of GI2 . . . GI5 along the imaginary axis



Numerical Simulation of Dynamic Systems X

Second Derivative Systems II

Other Godunov Methods

Other Godunov Methods VIII

� All of these algorithms could be used for the simulation of linear conservation
laws as well, but there is no good reason, why we would ever want to do so.
These algorithms have no advantages over their explicit brethren. They are only
less efficient.



Numerical Simulation of Dynamic Systems X

Second Derivative Systems II

Other Godunov Methods

Other Godunov Methods VIII

� All of these algorithms could be used for the simulation of linear conservation
laws as well, but there is no good reason, why we would ever want to do so.
These algorithms have no advantages over their explicit brethren. They are only
less efficient.

� These methods exhibit positive damping, i.e., they have stable regions. Thus,
we might consider using them for the simulation of damped mechanical systems.



Numerical Simulation of Dynamic Systems X

Second Derivative Systems II

Other Godunov Methods

Other Godunov Methods VIII

� All of these algorithms could be used for the simulation of linear conservation
laws as well, but there is no good reason, why we would ever want to do so.
These algorithms have no advantages over their explicit brethren. They are only
less efficient.

� These methods exhibit positive damping, i.e., they have stable regions. Thus,
we might consider using them for the simulation of damped mechanical systems.

� Unfortunately, we cannot do this either. To understand why, we may look at the
damping order star of e.g. GI5.



Numerical Simulation of Dynamic Systems X

Second Derivative Systems II

Other Godunov Methods

Other Godunov Methods IX

−8 −6 −4 −2 0 2 4 6 8 10
−8

−6

−4

−2

0

2

4

6

neg

neg

pos

pos

negx x

Damping Order Star of GI5

Re{λ · h}

I
m
{λ

·h
}



Numerical Simulation of Dynamic Systems X

Second Derivative Systems II

Other Godunov Methods

Other Godunov Methods X

� The locus of zero damping error approximates the imaginary axis, which is nice.



Numerical Simulation of Dynamic Systems X

Second Derivative Systems II

Other Godunov Methods

Other Godunov Methods X

� The locus of zero damping error approximates the imaginary axis, which is nice.

� Unfortunately, all of the algorithms of the GI class have a pole pair symmetric to
the imaginary axis. Thus, all of these algorithms have a pole on the negative
real axis.



Numerical Simulation of Dynamic Systems X

Second Derivative Systems II

Other Godunov Methods

Other Godunov Methods X

� The locus of zero damping error approximates the imaginary axis, which is nice.

� Unfortunately, all of the algorithms of the GI class have a pole pair symmetric to
the imaginary axis. Thus, all of these algorithms have a pole on the negative
real axis.

� A pole on the negative real axis means that there is a region around that pole
with very strong negative damping, i.e., any eigenvalue that “falls into this
hole” will cause the simulation to blow up.



Numerical Simulation of Dynamic Systems X

Second Derivative Systems II

Other Godunov Methods

Other Godunov Methods X

� The locus of zero damping error approximates the imaginary axis, which is nice.

� Unfortunately, all of the algorithms of the GI class have a pole pair symmetric to
the imaginary axis. Thus, all of these algorithms have a pole on the negative
real axis.

� A pole on the negative real axis means that there is a region around that pole
with very strong negative damping, i.e., any eigenvalue that “falls into this
hole” will cause the simulation to blow up.

� For this reason, poles on the negative real axis are something we must shun
away from.



Numerical Simulation of Dynamic Systems X

Second Derivative Systems II

Other Godunov Methods

Other Godunov Methods X

� The locus of zero damping error approximates the imaginary axis, which is nice.

� Unfortunately, all of the algorithms of the GI class have a pole pair symmetric to
the imaginary axis. Thus, all of these algorithms have a pole on the negative
real axis.

� A pole on the negative real axis means that there is a region around that pole
with very strong negative damping, i.e., any eigenvalue that “falls into this
hole” will cause the simulation to blow up.

� For this reason, poles on the negative real axis are something we must shun
away from.

Let us now extend the idea of the GE3/AB2 algorithm to higher orders of
approximation accuracy.



Numerical Simulation of Dynamic Systems X

Second Derivative Systems II

Other Godunov Methods

Other Godunov Methods XI

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1.5

−1

−0.5

0

0.5

1

1.5
GE4/AB3

AB4

Stability Domain of GE4/AB3

Re{λ · h}

I
m
{λ

·h
}



Numerical Simulation of Dynamic Systems X

Second Derivative Systems II

Other Godunov Methods

Other Godunov Methods XII

� Also GE4/AB3 beats AB4 by leaps and bounds when simulating
second-derivative systems with their dominant eigenvalues located either on or
at least in the vicinity of the imaginary axis.



Numerical Simulation of Dynamic Systems X

Second Derivative Systems II

Other Godunov Methods

Other Godunov Methods XII

� Also GE4/AB3 beats AB4 by leaps and bounds when simulating
second-derivative systems with their dominant eigenvalues located either on or
at least in the vicinity of the imaginary axis.

� The GE5/AB4 algorithm is unfortunately unstable.



Numerical Simulation of Dynamic Systems X

Second Derivative Systems II

Other Godunov Methods

Other Godunov Methods XII

� Also GE4/AB3 beats AB4 by leaps and bounds when simulating
second-derivative systems with their dominant eigenvalues located either on or
at least in the vicinity of the imaginary axis.

� The GE5/AB4 algorithm is unfortunately unstable.

� The GE5/ABM4 algorithm turns out to be unstable as well.



Numerical Simulation of Dynamic Systems X

Second Derivative Systems II

Other Godunov Methods

Other Godunov Methods XIII

� We can also try to enhance the implicit Godunov schemes in the same fashion.



Numerical Simulation of Dynamic Systems X

Second Derivative Systems II

Other Godunov Methods

Other Godunov Methods XIII

� We can also try to enhance the implicit Godunov schemes in the same fashion.

� It makes sense to pair them with BDF algorithms of one order lower.



Numerical Simulation of Dynamic Systems X

Second Derivative Systems II

Other Godunov Methods

Other Godunov Methods XIII

� We can also try to enhance the implicit Godunov schemes in the same fashion.

� It makes sense to pair them with BDF algorithms of one order lower.

� For example, the GI3/BDF2 algorithm can be written as follows:

xk+1 =
5

2
· xk − 2 · xk−1 +

1

2
· xk−2 +

h2

2
· ẍk+1

h · ẋk+1 =
4 · h
3

· ẋk −
h

3
· ẋk−1 +

2 · h2

3
· ẍk+1



Numerical Simulation of Dynamic Systems X

Second Derivative Systems II

Other Godunov Methods

Other Godunov Methods XIII

� We can also try to enhance the implicit Godunov schemes in the same fashion.

� It makes sense to pair them with BDF algorithms of one order lower.

� For example, the GI3/BDF2 algorithm can be written as follows:

xk+1 =
5

2
· xk − 2 · xk−1 +

1

2
· xk−2 +

h2

2
· ẍk+1

h · ẋk+1 =
4 · h
3

· ẋk −
h

3
· ẋk−1 +

2 · h2

3
· ẍk+1

� Some of these algorithms are A-stable, but none are L-stable.



Numerical Simulation of Dynamic Systems X

Second Derivative Systems II

Other Godunov Methods

Other Godunov Methods XIII

� We can also try to enhance the implicit Godunov schemes in the same fashion.

� It makes sense to pair them with BDF algorithms of one order lower.

� For example, the GI3/BDF2 algorithm can be written as follows:

xk+1 =
5

2
· xk − 2 · xk−1 +

1

2
· xk−2 +

h2

2
· ẍk+1

h · ẋk+1 =
4 · h
3

· ẋk −
h

3
· ẋk−1 +

2 · h2

3
· ẍk+1

� Some of these algorithms are A-stable, but none are L-stable.

� Unfortunately, none of these algorithms gives rise to an asymptotic region all
around the origin.



Numerical Simulation of Dynamic Systems X

Second Derivative Systems II

The Newmark Algorithm

The Newmark Algorithm

The idea of developing second-derivative solvers that do not contain a first derivative
in the formula was reasonable when dealing with linear conservation laws. Yet, when
dealing with general second-derivative models, this turned out to be an unnecessary
restriction, as the first derivative term got reinserted into the discrete-time model
through the model equations.



Numerical Simulation of Dynamic Systems X

Second Derivative Systems II

The Newmark Algorithm

The Newmark Algorithm

The idea of developing second-derivative solvers that do not contain a first derivative
in the formula was reasonable when dealing with linear conservation laws. Yet, when
dealing with general second-derivative models, this turned out to be an unnecessary
restriction, as the first derivative term got reinserted into the discrete-time model
through the model equations.

One second-derivative method that lets go of this unnecessary restriction is
Newmark’s algorithm, a general-purpose second-derivative solver that has been known
since 1959. It can be written as follows:

xk+1 = xk + h · ẋk +
h2

2
· [(1 − ϑ1) · ẍk + ϑ1 · ẍk+1]

h · ẋk+1 = h · ẋk + h2 · [(1 − ϑ2) · ẍk + ϑ2 · ẍk+1]



Numerical Simulation of Dynamic Systems X

Second Derivative Systems II

The Newmark Algorithm

The Newmark Algorithm II

� The method is clearly second-order accurate, as the solution for xk+1

approximates the Taylor-Series directly up to the quadratic term, whereas the
solution for ẋk+1 approximates the Taylor-Series up to the linear term. Since the
velocity vector gets always multiplied by the step size, h, the overall method
must be second-order accurate.



Numerical Simulation of Dynamic Systems X

Second Derivative Systems II

The Newmark Algorithm

The Newmark Algorithm II

� The method is clearly second-order accurate, as the solution for xk+1

approximates the Taylor-Series directly up to the quadratic term, whereas the
solution for ẋk+1 approximates the Taylor-Series up to the linear term. Since the
velocity vector gets always multiplied by the step size, h, the overall method
must be second-order accurate.

� It is a ϑ-method with two fudge parameters, ϑ1 and ϑ2. For ϑ1 = ϑ2 = 0, the
method is explicit; for all other combinations of ϑ1 and ϑ2, the method is
implicit.



Numerical Simulation of Dynamic Systems X

Second Derivative Systems II

The Newmark Algorithm

The Newmark Algorithm II

� The method is clearly second-order accurate, as the solution for xk+1

approximates the Taylor-Series directly up to the quadratic term, whereas the
solution for ẋk+1 approximates the Taylor-Series up to the linear term. Since the
velocity vector gets always multiplied by the step size, h, the overall method
must be second-order accurate.

� It is a ϑ-method with two fudge parameters, ϑ1 and ϑ2. For ϑ1 = ϑ2 = 0, the
method is explicit; for all other combinations of ϑ1 and ϑ2, the method is
implicit.

Let us plot the stability domains of the Newmark algorithm for
ϑ1 = ϑ2 = {0.0, 0.25, 0.5, 0.75, 1.0}.



Numerical Simulation of Dynamic Systems X

Second Derivative Systems II

The Newmark Algorithm

The Newmark Algorithm III

−6 −4 −2 0 2 4 6
−5

−4

−3

−2

−1

0

1

2

3

4

0

0.25

0.5

0.75

1

Stability Domains of Newmark Algorithm

Re{λ · h}

I
m
{λ

·h
}



Numerical Simulation of Dynamic Systems X

Second Derivative Systems II

The Newmark Algorithm

The Newmark Algorithm IV

� The stability domains of the algorithms are symmetric to ϑ1 = ϑ2 = 0.5. This is
evident from the symmetry of the formulae themselves.



Numerical Simulation of Dynamic Systems X

Second Derivative Systems II

The Newmark Algorithm

The Newmark Algorithm IV

� The stability domains of the algorithms are symmetric to ϑ1 = ϑ2 = 0.5. This is
evident from the symmetry of the formulae themselves.

� The algorithm with ϑ1 = ϑ2 = 0 is explicit. This can be an interesting algorithm
for real-time simulation of mechanical systems, and the algorithm is often used
for just that purpose. The algorithm exhibits a stable region in the left half
plane that looks like an ascending half moon. The stable region is limited by
Re{λ · h} ≥ −1.0.



Numerical Simulation of Dynamic Systems X

Second Derivative Systems II

The Newmark Algorithm

The Newmark Algorithm IV

� The stability domains of the algorithms are symmetric to ϑ1 = ϑ2 = 0.5. This is
evident from the symmetry of the formulae themselves.

� The algorithm with ϑ1 = ϑ2 = 0 is explicit. This can be an interesting algorithm
for real-time simulation of mechanical systems, and the algorithm is often used
for just that purpose. The algorithm exhibits a stable region in the left half
plane that looks like an ascending half moon. The stable region is limited by
Re{λ · h} ≥ −1.0.

� The algorithms with ϑ1 = ϑ2 ∈ (0, 0.5) are probably not of much interest, as
they are implicit, yet neither F-stable nor A-stable.



Numerical Simulation of Dynamic Systems X

Second Derivative Systems II

The Newmark Algorithm

The Newmark Algorithm IV

� The stability domains of the algorithms are symmetric to ϑ1 = ϑ2 = 0.5. This is
evident from the symmetry of the formulae themselves.

� The algorithm with ϑ1 = ϑ2 = 0 is explicit. This can be an interesting algorithm
for real-time simulation of mechanical systems, and the algorithm is often used
for just that purpose. The algorithm exhibits a stable region in the left half
plane that looks like an ascending half moon. The stable region is limited by
Re{λ · h} ≥ −1.0.

� The algorithms with ϑ1 = ϑ2 ∈ (0, 0.5) are probably not of much interest, as
they are implicit, yet neither F-stable nor A-stable.

� The algorithm with ϑ1 = ϑ2 = 0.5 is F-stable.



Numerical Simulation of Dynamic Systems X

Second Derivative Systems II

The Newmark Algorithm

The Newmark Algorithm IV

� The stability domains of the algorithms are symmetric to ϑ1 = ϑ2 = 0.5. This is
evident from the symmetry of the formulae themselves.

� The algorithm with ϑ1 = ϑ2 = 0 is explicit. This can be an interesting algorithm
for real-time simulation of mechanical systems, and the algorithm is often used
for just that purpose. The algorithm exhibits a stable region in the left half
plane that looks like an ascending half moon. The stable region is limited by
Re{λ · h} ≥ −1.0.

� The algorithms with ϑ1 = ϑ2 ∈ (0, 0.5) are probably not of much interest, as
they are implicit, yet neither F-stable nor A-stable.

� The algorithm with ϑ1 = ϑ2 = 0.5 is F-stable.

� The algorithms with ϑ1 = ϑ2 ∈ (0.5, 1] are A-stable.



Numerical Simulation of Dynamic Systems X

Second Derivative Systems II

The Newmark Algorithm

The Newmark Algorithm IV

� The stability domains of the algorithms are symmetric to ϑ1 = ϑ2 = 0.5. This is
evident from the symmetry of the formulae themselves.

� The algorithm with ϑ1 = ϑ2 = 0 is explicit. This can be an interesting algorithm
for real-time simulation of mechanical systems, and the algorithm is often used
for just that purpose. The algorithm exhibits a stable region in the left half
plane that looks like an ascending half moon. The stable region is limited by
Re{λ · h} ≥ −1.0.

� The algorithms with ϑ1 = ϑ2 ∈ (0, 0.5) are probably not of much interest, as
they are implicit, yet neither F-stable nor A-stable.

� The algorithm with ϑ1 = ϑ2 = 0.5 is F-stable.

� The algorithms with ϑ1 = ϑ2 ∈ (0.5, 1] are A-stable.

� As marginal stability of all algorithms with ϑ1 = ϑ2 > 0.5 reaches all the way to
infinity, none of these algorithms can be L-stable. Their damping at infinity is
exactly zero.



Numerical Simulation of Dynamic Systems X

Second Derivative Systems II

The Newmark Algorithm

The Newmark Algorithm V

Let us look at some damping plots:

−3 −2.5 −2 −1.5 −1 −0.5 0
−6

−5

−4

−3

−2

−1

0

−106 −105 −104 −103 −102 −101 −100 −10−1 −10−2
−5

−4

−3

−2

−1

0

Damping Plot of Newmark Algorithm

Logarithmic Damping Plot of Newmark

−σd

−σd

−
D

am
p
in

g
−

D
am

p
in

g ϑ1 = ϑ2 = 0.5



Numerical Simulation of Dynamic Systems X

Second Derivative Systems II

The Newmark Algorithm

The Newmark Algorithm VI

−3 −2.5 −2 −1.5 −1 −0.5 0
−3

−2.5

−2

−1.5

−1

−0.5

0

−106 −105 −104 −103 −102 −101 −100 −10−1 −10−2
−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

Damping Plot of Newmark Algorithm

Logarithmic Damping Plot of Newmark

−σd

−σd

−
D

am
p
in

g
−

D
am

p
in

g ϑ1 = ϑ2 = 0.75



Numerical Simulation of Dynamic Systems X

Second Derivative Systems II

The Newmark Algorithm

The Newmark Algorithm VII

� Due to the poor damping characteristics far to the left, the Newmark algorithms
aren’t well suited for the simulation of stiff systems.



Numerical Simulation of Dynamic Systems X

Second Derivative Systems II

The Newmark Algorithm

The Newmark Algorithm VII

� Due to the poor damping characteristics far to the left, the Newmark algorithms
aren’t well suited for the simulation of stiff systems.

� The algorithm with ϑ1 = ϑ2 = 0.5 may be a good choice for simulating
conservative mechanical systems.



Numerical Simulation of Dynamic Systems X

Second Derivative Systems II

The Newmark Algorithm

The Newmark Algorithm VII

� Due to the poor damping characteristics far to the left, the Newmark algorithms
aren’t well suited for the simulation of stiff systems.

� The algorithm with ϑ1 = ϑ2 = 0.5 may be a good choice for simulating
conservative mechanical systems.

� The algorithms with ϑ1 = ϑ2 ≥ 0.5 can be used for the simulation of mechanical
systems exhibiting oscillatory behavior, such as earthquakes or elastic systems.



Numerical Simulation of Dynamic Systems X

Second Derivative Systems II

Conclusions

Conclusions

� In the last two presentation, we have talked about linear multi-step algorithms,
specifically designed for the simulation of second derivative systems, i.e., models
that contain the second derivatives of the partial state vector explicitly in their
model equations.



Numerical Simulation of Dynamic Systems X

Second Derivative Systems II

Conclusions

Conclusions

� In the last two presentation, we have talked about linear multi-step algorithms,
specifically designed for the simulation of second derivative systems, i.e., models
that contain the second derivatives of the partial state vector explicitly in their
model equations.

� The results obtained were rather modest.



Numerical Simulation of Dynamic Systems X

Second Derivative Systems II

Conclusions

Conclusions

� In the last two presentation, we have talked about linear multi-step algorithms,
specifically designed for the simulation of second derivative systems, i.e., models
that contain the second derivatives of the partial state vector explicitly in their
model equations.

� The results obtained were rather modest.

� We still don’t have any higher-order algorithms for simulating second-derivative
systems.



Numerical Simulation of Dynamic Systems X

Second Derivative Systems II

Conclusions

Conclusions

� In the last two presentation, we have talked about linear multi-step algorithms,
specifically designed for the simulation of second derivative systems, i.e., models
that contain the second derivatives of the partial state vector explicitly in their
model equations.

� The results obtained were rather modest.

� We still don’t have any higher-order algorithms for simulating second-derivative
systems.

� The class of Newmark algorithms, which is almost as trivial as forward Euler
and has been known for more than half a century already, is still
state-of-the-art, is being used in engineering practice, especially for the real-time
simulation of mechanical systems, and is still being discussed in papers.



Numerical Simulation of Dynamic Systems X

Second Derivative Systems II

Conclusions

Conclusions II

� The reason for this somewhat surprising fact is that the class of
second-derivative systems has been almost entirely ignored by the applied
mathematicians.



Numerical Simulation of Dynamic Systems X

Second Derivative Systems II

Conclusions

Conclusions II

� The reason for this somewhat surprising fact is that the class of
second-derivative systems has been almost entirely ignored by the applied
mathematicians.

� As applied mathematicians have worked long and hard on developing numerical
ODE solvers for state-space descriptions, it has become quite difficult to still
obtain new results. This research area has been ploughed rather well.



Numerical Simulation of Dynamic Systems X

Second Derivative Systems II

Conclusions

Conclusions II

� The reason for this somewhat surprising fact is that the class of
second-derivative systems has been almost entirely ignored by the applied
mathematicians.

� As applied mathematicians have worked long and hard on developing numerical
ODE solvers for state-space descriptions, it has become quite difficult to still
obtain new results. This research area has been ploughed rather well.

� We were able to present some exciting new results in previous presentations,
such as the new BDF algorithms of orders 7 . . . 9, but we had to work very
hard to find those, and we were actually lucky to be able to still make a mark.



Numerical Simulation of Dynamic Systems X

Second Derivative Systems II

Conclusions

Conclusions II

� The reason for this somewhat surprising fact is that the class of
second-derivative systems has been almost entirely ignored by the applied
mathematicians.

� As applied mathematicians have worked long and hard on developing numerical
ODE solvers for state-space descriptions, it has become quite difficult to still
obtain new results. This research area has been ploughed rather well.

� We were able to present some exciting new results in previous presentations,
such as the new BDF algorithms of orders 7 . . . 9, but we had to work very
hard to find those, and we were actually lucky to be able to still make a mark.

� In contrast, the field of numerical ODE solvers for second-derivative systems
is in its infancy. It should be easy to improve the state of the art, and
therefore, this is an excellent ongoing research area for Ph.D. students
interested in advancing simulation technology.



Numerical Simulation of Dynamic Systems X

Second Derivative Systems II

References

References

1. Beamis, Christopher Paul (1990), Solution of Second Order Differential
Equations Using the Godunov Integration Method, MS Thesis, Dept. of
Electrical & Computer Engineering, University of Arizona, Tucson, AZ.

http://www.inf.ethz.ch/personal/fcellier/MS/beamis_ms.pdf
http://www.inf.ethz.ch/personal/fcellier/MS/beamis_ms.pdf

	Second Derivative Systems II
	
	
	
	
	


