
Numerical Simulation of Dynamic Systems XXI

Numerical Simulation of Dynamic Systems XXI

Prof. Dr. François E. Cellier
Department of Computer Science

ETH Zurich

May 7, 2013



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

Introduction

Introduction

All of the simulation methods that we encountered until now operate, in one form or
another, on polynomial extrapolations using Taylor series expansions.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

Introduction

Introduction

All of the simulation methods that we encountered until now operate, in one form or
another, on polynomial extrapolations using Taylor series expansions.

A fundamental property of polynomials is that they don’t exhibit discontinuities.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

Introduction

Introduction

All of the simulation methods that we encountered until now operate, in one form or
another, on polynomial extrapolations using Taylor series expansions.

A fundamental property of polynomials is that they don’t exhibit discontinuities.

Consequently, a model that contains discontinuities cannot be simulated across these
discontinuities using polynomial extrapolations.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

Introduction

Introduction

All of the simulation methods that we encountered until now operate, in one form or
another, on polynomial extrapolations using Taylor series expansions.

A fundamental property of polynomials is that they don’t exhibit discontinuities.

Consequently, a model that contains discontinuities cannot be simulated across these
discontinuities using polynomial extrapolations.

A large majority of engineering systems exhibit many discontinuities that need to be
included in their models.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

Introduction

Introduction

All of the simulation methods that we encountered until now operate, in one form or
another, on polynomial extrapolations using Taylor series expansions.

A fundamental property of polynomials is that they don’t exhibit discontinuities.

Consequently, a model that contains discontinuities cannot be simulated across these
discontinuities using polynomial extrapolations.

A large majority of engineering systems exhibit many discontinuities that need to be
included in their models.

The numerical integration methods for dynamic systems that we developed until now
can thus not be used for the simulation of hybrid systems. We shall need something
better.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

Introduction

Abusing the Step-size Control

What happens if we simply close our eyes and integrate across a discontinuity of
the model using any one of the numerical ODE solvers with step-size control
introduced earlier?



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

Introduction

Abusing the Step-size Control

What happens if we simply close our eyes and integrate across a discontinuity of
the model using any one of the numerical ODE solvers with step-size control
introduced earlier?

The algorithm doesn’t know that there exists a discontinuity. What it does notice is a
rapid change in the trajectory.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

Introduction

Abusing the Step-size Control

What happens if we simply close our eyes and integrate across a discontinuity of
the model using any one of the numerical ODE solvers with step-size control
introduced earlier?

The algorithm doesn’t know that there exists a discontinuity. What it does notice is a
rapid change in the trajectory.

The algorithm concludes that a new eigenvalue appeared far out to the left in the
complex plane.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

Introduction

Abusing the Step-size Control

What happens if we simply close our eyes and integrate across a discontinuity of
the model using any one of the numerical ODE solvers with step-size control
introduced earlier?

The algorithm doesn’t know that there exists a discontinuity. What it does notice is a
rapid change in the trajectory.

The algorithm concludes that a new eigenvalue appeared far out to the left in the
complex plane.

Consequently, the algorithm reduces the step size in order to capture this eigenvalue in
its accuracy domain.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

Introduction

Abusing the Step-size Control

What happens if we simply close our eyes and integrate across a discontinuity of
the model using any one of the numerical ODE solvers with step-size control
introduced earlier?

The algorithm doesn’t know that there exists a discontinuity. What it does notice is a
rapid change in the trajectory.

The algorithm concludes that a new eigenvalue appeared far out to the left in the
complex plane.

Consequently, the algorithm reduces the step size in order to capture this eigenvalue in
its accuracy domain.

However, the new “eigenvalue” is a joker. It doesn’t allow itself to be captured.
Irrespective of how much the step size is being reduced, the eigenvalue remains
outside the accuracy domain.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

Introduction

Abusing the Step-size Control II

When does the iteration on the rejected step end?



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

Introduction

Abusing the Step-size Control II

When does the iteration on the rejected step end?

The step-size reduction continues until one of two things happens:



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

Introduction

Abusing the Step-size Control II

When does the iteration on the rejected step end?

The step-size reduction continues until one of two things happens:

� The step size is reduced to the smallest allowed value specified in the step-size
control algorithm.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

Introduction

Abusing the Step-size Control II

When does the iteration on the rejected step end?

The step-size reduction continues until one of two things happens:

� The step size is reduced to the smallest allowed value specified in the step-size
control algorithm.

� The step-size control algorithm decides that the integration accuracy is
acceptable. This will eventually happen, as by reducing the step size, the
non-linear terms in the Taylor series expansion lose their importance. With a
sufficiently small step size, every algorithm behaves like either Forward or
Backward Euler.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

Introduction

Abusing the Step-size Control II

When does the iteration on the rejected step end?

The step-size reduction continues until one of two things happens:

� The step size is reduced to the smallest allowed value specified in the step-size
control algorithm.

� The step-size control algorithm decides that the integration accuracy is
acceptable. This will eventually happen, as by reducing the step size, the
non-linear terms in the Taylor series expansion lose their importance. With a
sufficiently small step size, every algorithm behaves like either Forward or
Backward Euler.

Once the discontinuity lies in the past, the evasive eigenvalue disappears as
miraculously as it had shown up before.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

Introduction

Abusing the Step-size Control II

When does the iteration on the rejected step end?

The step-size reduction continues until one of two things happens:

� The step size is reduced to the smallest allowed value specified in the step-size
control algorithm.

� The step-size control algorithm decides that the integration accuracy is
acceptable. This will eventually happen, as by reducing the step size, the
non-linear terms in the Taylor series expansion lose their importance. With a
sufficiently small step size, every algorithm behaves like either Forward or
Backward Euler.

Once the discontinuity lies in the past, the evasive eigenvalue disappears as
miraculously as it had shown up before.

The step-size control algorithm slowly increases the step size again, until it reaches its
optimal value . . . or until it encounters the next discontinuity, whichever happens first.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

Introduction

Abusing the Step-size Control III

time

log(h)

discontinuities

Abuse of the step-size control algorithm for the localization of discontinuities often
works quite well, and it is for this reason that many of the more primitive
environments for the modeling and simulation of dynamic systems don’t offer any
special provisions for handling discontinuities in the model.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

Introduction

Abusing the Step-size Control III

time

log(h)

discontinuities

Abuse of the step-size control algorithm for the localization of discontinuities often
works quite well, and it is for this reason that many of the more primitive
environments for the modeling and simulation of dynamic systems don’t offer any
special provisions for handling discontinuities in the model.

However, this approach is neither efficient nor robust. Sometimes, it fails miserably.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

Basic Difficulties

Speed Control in Train Engines

vLine

+

-

vTh

v

i

i

R

LLoad

Line

Load

Load

Load

Swiss trains are running on AC voltage at
16 2

3
Hz.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

Basic Difficulties

Speed Control in Train Engines

vLine

+

-

vTh

v

i

i

R

LLoad

Line

Load

Load

Load

Swiss trains are running on AC voltage at
16 2

3
Hz.

Electrical thyristor (controlled rectifier)
circuits are being used for speed control.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

Basic Difficulties

Speed Control in Train Engines

vLine

+

-

vTh

v

i

i

R

LLoad

Line

Load

Load

Load

Swiss trains are running on AC voltage at
16 2

3
Hz.

Electrical thyristor (controlled rectifier)
circuits are being used for speed control.

The most simple speed control circuit is
shown to the left. The resistor with an
inductor in series represents the load (the
train). The thyristor blocks negative
current (operating as a diode) and also
blocks an additional part of every period.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

Basic Difficulties

Speed Control in Train Engines

vLine

+

-

vTh

v

i

i

R

LLoad

Line

Load

Load

Load

Swiss trains are running on AC voltage at
16 2

3
Hz.

Electrical thyristor (controlled rectifier)
circuits are being used for speed control.

The most simple speed control circuit is
shown to the left. The resistor with an
inductor in series represents the load (the
train). The thyristor blocks negative
current (operating as a diode) and also
blocks an additional part of every period.

The percentage of the period that is not
being blocked is controlled by the firing
angle of the thyristor.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

Basic Difficulties

Speed Control in Train Engines II

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
−1000

−500

0

500

1000

1500

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
−200

0

200

400

600

800

Thyristor-controlled Train Engine

time[sec]

time[sec]

v L
o
a
d
[V

]
i L

o
a
d
[A

]



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

Basic Difficulties

Speed Control in Train Engines II

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
−1000

−500

0

500

1000

1500

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
−200

0

200

400

600

800

Thyristor-controlled Train Engine

time[sec]

time[sec]

v L
o
a
d
[V

]
i L

o
a
d
[A

]

� The simulation trajectories
exhibit discontinuities.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

Basic Difficulties

Speed Control in Train Engines II

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
−1000

−500

0

500

1000

1500

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
−200

0

200

400

600

800

Thyristor-controlled Train Engine

time[sec]

time[sec]

v L
o
a
d
[V

]
i L

o
a
d
[A

]

� The simulation trajectories
exhibit discontinuities.

� The electric power
P = vLoad · iLoad depends
on the firing angle.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

Basic Difficulties

Speed Control in Train Engines II

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
−1000

−500

0

500

1000

1500

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
−200

0

200

400

600

800

Thyristor-controlled Train Engine

time[sec]

time[sec]

v L
o
a
d
[V

]
i L

o
a
d
[A

]

� The simulation trajectories
exhibit discontinuities.

� The electric power
P = vLoad · iLoad depends
on the firing angle.

� For this simulation, we used
a firing angle of 30o. The
speed of the train gets
reduced with larger firing
angles.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

Basic Difficulties

Speed Control in Train Engines III

0 10 20 30 40 50 60 70 80
−1

−0.5

0

0.5

1

1.5
x 108 Power Spectrum of Thyristor-controlled Engine

Frequency[Hz]

P
ow

er
S
p
ec

tr
u
m



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

Basic Difficulties

Speed Control in Train Engines III

0 10 20 30 40 50 60 70 80
−1

−0.5

0

0.5

1

1.5
x 108 Power Spectrum of Thyristor-controlled Engine

Frequency[Hz]

P
ow

er
S
p
ec

tr
u
m

� There is much power contained in the third harmonic at 50Hz.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

Basic Difficulties

Speed Control in Train Engines III

0 10 20 30 40 50 60 70 80
−1

−0.5

0

0.5

1

1.5
x 108 Power Spectrum of Thyristor-controlled Engine

Frequency[Hz]

P
ow

er
S
p
ec

tr
u
m

� There is much power contained in the third harmonic at 50Hz.

� In the past, when trains with three thyristor-controlled locomotives slowly
climbed up the St. Gotthard mountain, the electric counters of the houses
near to the rails were reset to zero, to everyone’s content ... except for the
local power company of the Canton of Uri.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

Basic Difficulties

Speed Control in Train Engines IV

vTh

v

iLine

i

R

Load

Load

Load

Gate

vLine

+

-

LLoad

During some years, another type of
thyristor-based speed control circuit was
used in the trains of the line
Zurich-Meilen-Rapperswil.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

Basic Difficulties

Speed Control in Train Engines IV

vTh

v

iLine

i

R

Load

Load

Load

Gate

vLine

+

-

LLoad

During some years, another type of
thyristor-based speed control circuit was
used in the trains of the line
Zurich-Meilen-Rapperswil.

The thyristors were controlled in such a
way that a number of periods were let
through, whereas others were blocked.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

Basic Difficulties

Speed Control in Train Engines IV

vTh

v

iLine

i

R

Load

Load

Load

Gate

vLine

+

-

LLoad

During some years, another type of
thyristor-based speed control circuit was
used in the trains of the line
Zurich-Meilen-Rapperswil.

The thyristors were controlled in such a
way that a number of periods were let
through, whereas others were blocked.

This control strategy is called burst control
strategy.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

Basic Difficulties

Speed Control in Train Engines IV

vTh

v

iLine

i

R

Load

Load

Load

Gate

vLine

+

-

LLoad

During some years, another type of
thyristor-based speed control circuit was
used in the trains of the line
Zurich-Meilen-Rapperswil.

The thyristors were controlled in such a
way that a number of periods were let
through, whereas others were blocked.

This control strategy is called burst control
strategy.

The trains made use of packets of eight
periods.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

Basic Difficulties

Speed Control in Train Engines V

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1500

−1000

−500

0

500

1000

1500

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1000

−500

0

500

1000

Burst-controlled Train Engine

time[sec]

time[sec]

v L
o
a
d
[V

]
i L

o
a
d
[A

]



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

Basic Difficulties

Speed Control in Train Engines V

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1500

−1000

−500

0

500

1000

1500

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1000

−500

0

500

1000

Burst-controlled Train Engine

time[sec]

time[sec]

v L
o
a
d
[V

]
i L

o
a
d
[A

]

� The simulation trajectories
exhibit less serious
discontinuities than those
observed using the previous
thyristor-controlled circuit.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

Basic Difficulties

Speed Control in Train Engines V

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1500

−1000

−500

0

500

1000

1500

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1000

−500

0

500

1000

Burst-controlled Train Engine

time[sec]

time[sec]

v L
o
a
d
[V

]
i L

o
a
d
[A

]

� The simulation trajectories
exhibit less serious
discontinuities than those
observed using the previous
thyristor-controlled circuit.

� Consequently, this control
strategy doesn’t interfere
with the electric grid
operated at 50Hz.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

Basic Difficulties

Speed Control in Train Engines V

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1500

−1000

−500

0

500

1000

1500

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1000

−500

0

500

1000

Burst-controlled Train Engine

time[sec]

time[sec]

v L
o
a
d
[V

]
i L

o
a
d
[A

]

� The simulation trajectories
exhibit less serious
discontinuities than those
observed using the previous
thyristor-controlled circuit.

� Consequently, this control
strategy doesn’t interfere
with the electric grid
operated at 50Hz.

� However, this type of
control only offers eight
distinct velocities.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

Basic Difficulties

Speed Control in Train Engines V

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1500

−1000

−500

0

500

1000

1500

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1000

−500

0

500

1000

Burst-controlled Train Engine

time[sec]

time[sec]

v L
o
a
d
[V

]
i L

o
a
d
[A

]

� The simulation trajectories
exhibit less serious
discontinuities than those
observed using the previous
thyristor-controlled circuit.

� Consequently, this control
strategy doesn’t interfere
with the electric grid
operated at 50Hz.

� However, this type of
control only offers eight
distinct velocities.

� When the trains departed from the stations, the passengers noticed the
abrupt velocity changes and received a free massage of their stomach muscles.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

Basic Difficulties

Speed Control in Train Engines VI

� The signal here is not 16 2
3
Hz-periodic, but rather 2 1

12
Hz-periodic.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

Basic Difficulties

Speed Control in Train Engines VI

� The signal here is not 16 2
3
Hz-periodic, but rather 2 1

12
Hz-periodic.

� There is power in the higher harmonics at 4 1
6
Hz and at 6 1

4
Hz, but nothing at

50Hz. Hence there is no problem with cross-talk on the electric commercial grid.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

Basic Difficulties

Speed Control in Train Engines VI

� The signal here is not 16 2
3
Hz-periodic, but rather 2 1

12
Hz-periodic.

� There is power in the higher harmonics at 4 1
6
Hz and at 6 1

4
Hz, but nothing at

50Hz. Hence there is no problem with cross-talk on the electric commercial grid.

� To avoid the problem with the discrete velocities, the burst would have to be
made longer, e.g. including 16 or even 32 periods. However, this is not possible
either, as the periodicity of the signal would then shrink further. The lowest
periodicity that is allowed for security reasons is 2Hz, because otherwise, the
trains would not react fast enough, e.g. when passing a closed semaphore.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

Basic Difficulties

Speed Control in Train Engines VII

To avoid the problems encountered before, more advanced control circuits were
developed that made use of a four-quadrant rectifier with commutation.

A

uL
+

-

+
-

uz

uF

iL

iLoad

LL

Ls

LSp

L

Cs

CSp

Y
Az

iL

iLoad



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

Basic Difficulties

Speed Control in Train Engines VIII

� The line current, iL, is controlled in such a way that it always remains in the
vicinity of

Y (t) =
15 · 106

uL
sin ωt



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

Basic Difficulties

Speed Control in Train Engines VIII

� The line current, iL, is controlled in such a way that it always remains in the
vicinity of

Y (t) =
15 · 106

uL
sin ωt

� For Az = 0.0, the line current, iL, grows rapidly until it crosses (Y + BT ) in the
positive direction.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

Basic Difficulties

Speed Control in Train Engines VIII

� The line current, iL, is controlled in such a way that it always remains in the
vicinity of

Y (t) =
15 · 106

uL
sin ωt

� For Az = 0.0, the line current, iL, grows rapidly until it crosses (Y + BT ) in the
positive direction.

� At that moment, Az assumes a value of Az = 1.0, and iL decays quickly again
until it reaches (Y − BT ), where Az takes a value of AZ = 0.0 as before.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

Basic Difficulties

Speed Control in Train Engines VIII

� The line current, iL, is controlled in such a way that it always remains in the
vicinity of

Y (t) =
15 · 106

uL
sin ωt

� For Az = 0.0, the line current, iL, grows rapidly until it crosses (Y + BT ) in the
positive direction.

� At that moment, Az assumes a value of Az = 1.0, and iL decays quickly again
until it reaches (Y − BT ), where Az takes a value of AZ = 0.0 as before.

�
BT = 200.0 Amps

is the allowed tolerance around Y (t), within which iL is supposed to operate.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

Basic Difficulties

Speed Control in Train Engines IX

We expect to obtain the following trajectories from the simulation:

0 0.5 1 1.5 2 2.5 3
0

200

400

600

800

1000

1200

0 0.5 1 1.5 2 2.5 3
1140

1150

1160

1170

1180

1190

1200

1210

SCR-controlled Train Engine

time[sec]

time[sec]

u
F
[V

]
u
z
[V

]



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

Basic Difficulties

Speed Control in Train Engines IX

We expect to obtain the following trajectories from the simulation:

0 0.5 1 1.5 2 2.5 3
0

200

400

600

800

1000

1200

0 0.5 1 1.5 2 2.5 3
1140

1150

1160

1170

1180

1190

1200

1210

SCR-controlled Train Engine

time[sec]

time[sec]

u
F
[V

]
u
z
[V

]

� The trajectories exhibit very
serious discontinuities. For
this reason, the simulation
requires a highly efficient
and accurate step-size
control.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

Basic Difficulties

Speed Control in Train Engines IX

We expect to obtain the following trajectories from the simulation:

0 0.5 1 1.5 2 2.5 3
0

200

400

600

800

1000

1200

0 0.5 1 1.5 2 2.5 3
1140

1150

1160

1170

1180

1190

1200

1210

SCR-controlled Train Engine

time[sec]

time[sec]

u
F
[V

]
u
z
[V

]

� The trajectories exhibit very
serious discontinuities. For
this reason, the simulation
requires a highly efficient
and accurate step-size
control.

� These signals contain much
power at high frequencies in
their power spectrum. Yet,
these contributions are at
frequencies much higher
than 50Hz.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

Basic Difficulties

Speed Control in Train Engines IX

We expect to obtain the following trajectories from the simulation:

0 0.5 1 1.5 2 2.5 3
0

200

400

600

800

1000

1200

0 0.5 1 1.5 2 2.5 3
1140

1150

1160

1170

1180

1190

1200

1210

SCR-controlled Train Engine

time[sec]

time[sec]

u
F
[V

]
u
z
[V

]

� The trajectories exhibit very
serious discontinuities. For
this reason, the simulation
requires a highly efficient
and accurate step-size
control.

� These signals contain much
power at high frequencies in
their power spectrum. Yet,
these contributions are at
frequencies much higher
than 50Hz.

� Thus, we don’t experience
problems with cross-talk.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

Basic Difficulties

Speed Control in Train Engines X

The circuit was originally simulated in CSMP-III using RK4 with abuse of step-size
control to handle the discontinuities. The trajectories found were:



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

Basic Difficulties

Speed Control in Train Engines X

The circuit was originally simulated in CSMP-III using RK4 with abuse of step-size
control to handle the discontinuities. The trajectories found were:

During some time interval, the the simulation trajectories obtained were incorrect.
During those periods, the simulation was creeping along using the smallest
integration step size permitted by the software.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

Basic Difficulties

Speed Control in Train Engines XI

What happened?



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

Basic Difficulties

Speed Control in Train Engines XI

What happened?

� We used an explicit RK4 algorithm with abuse of step-size control for handling
the discontinuities.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

Basic Difficulties

Speed Control in Train Engines XI

What happened?

� We used an explicit RK4 algorithm with abuse of step-size control for handling
the discontinuities.

� It was an algorithm in four stages.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

Basic Difficulties

Speed Control in Train Engines XI

What happened?

� We used an explicit RK4 algorithm with abuse of step-size control for handling
the discontinuities.

� It was an algorithm in four stages.

� The effects of a commutation are so serious in this model that it sometimes
happens that more than one commutation takes place within a single
integration step.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

Basic Difficulties

Speed Control in Train Engines XI

What happened?

� We used an explicit RK4 algorithm with abuse of step-size control for handling
the discontinuities.

� It was an algorithm in four stages.

� The effects of a commutation are so serious in this model that it sometimes
happens that more than one commutation takes place within a single
integration step.

� If the number of commutations within a step was even, we ended up at the end
of the step on the same side of the fence and had to try jumping over the fence
once again during the next step.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

Basic Difficulties

Speed Control in Train Engines XI

What happened?

� We used an explicit RK4 algorithm with abuse of step-size control for handling
the discontinuities.

� It was an algorithm in four stages.

� The effects of a commutation are so serious in this model that it sometimes
happens that more than one commutation takes place within a single
integration step.

� If the number of commutations within a step was even, we ended up at the end
of the step on the same side of the fence and had to try jumping over the fence
once again during the next step.

� The simulation proceeded during much time with the smallest allowed step size,
unable to cross the fence.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

Basic Difficulties

Speed Control in Train Engines XI

What happened?

� We used an explicit RK4 algorithm with abuse of step-size control for handling
the discontinuities.

� It was an algorithm in four stages.

� The effects of a commutation are so serious in this model that it sometimes
happens that more than one commutation takes place within a single
integration step.

� If the number of commutations within a step was even, we ended up at the end
of the step on the same side of the fence and had to try jumping over the fence
once again during the next step.

� The simulation proceeded during much time with the smallest allowed step size,
unable to cross the fence.

Abuse of integration step-size control for the handling of discontinuities is not a
good idea. The resulting algorithms aren’t robust. Sometimes, the technique works
quite well, but at other times, it fails miserably.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

Time Events

Time Events

Our problems arose from the fact that we didn’t instruct the ODE solver that there
were discontinuities. The ODE solver is incapable of reading and interpreting models.
It can only execute them.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

Time Events

Time Events

Our problems arose from the fact that we didn’t instruct the ODE solver that there
were discontinuities. The ODE solver is incapable of reading and interpreting models.
It can only execute them.

What we need is a syntactical element in the model description language that enables
us to explicitly inform the integrator of occurrences of discontinuities.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

Time Events

Time Events

Our problems arose from the fact that we didn’t instruct the ODE solver that there
were discontinuities. The ODE solver is incapable of reading and interpreting models.
It can only execute them.

What we need is a syntactical element in the model description language that enables
us to explicitly inform the integrator of occurrences of discontinuities.

From now on, we shall call discontinuities discrete events. What we need are explicit
mechanisms for the description and handling of events.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

Time Events

Time Events

Our problems arose from the fact that we didn’t instruct the ODE solver that there
were discontinuities. The ODE solver is incapable of reading and interpreting models.
It can only execute them.

What we need is a syntactical element in the model description language that enables
us to explicitly inform the integrator of occurrences of discontinuities.

From now on, we shall call discontinuities discrete events. What we need are explicit
mechanisms for the description and handling of events.

In some cases, the time of occurrence of an event is known in advance. In this case,
we talk about time events.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

Time Events

Time Events II

Let us consider once more the train speed control by a single thyristor. The time when
the thyristor closes is known beforehand. The thyristor closes for the first time α
degrees after the beginning of the period.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

Time Events

Time Events II

Let us consider once more the train speed control by a single thyristor. The time when
the thyristor closes is known beforehand. The thyristor closes for the first time α
degrees after the beginning of the period.

We can calculate:

Δtperiod =
1

2πf

Δtevent =
α

360
· Δtperiod



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

Time Events

Time Events II

Let us consider once more the train speed control by a single thyristor. The time when
the thyristor closes is known beforehand. The thyristor closes for the first time α
degrees after the beginning of the period.

We can calculate:

Δtperiod =
1

2πf

Δtevent =
α

360
· Δtperiod

The first occurrence of this event can be planned ahead. Thus, this is a time event.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

Time Events

Time Events II

Let us consider once more the train speed control by a single thyristor. The time when
the thyristor closes is known beforehand. The thyristor closes for the first time α
degrees after the beginning of the period.

We can calculate:

Δtperiod =
1

2πf

Δtevent =
α

360
· Δtperiod

The first occurrence of this event can be planned ahead. Thus, this is a time event.

One of the actions associated with the closing event is the planning (scheduling) of
the next occurrence of the same event at time t + Δtperiod, where t denotes the
current time.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

Time Events

Time Events III

One way to advise the simulation of forthcoming time events is by offering in the
language a schedule statement that can be used to schedule future time events.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

Time Events

Time Events III

One way to advise the simulation of forthcoming time events is by offering in the
language a schedule statement that can be used to schedule future time events.

For example, we might include in the initial section of the program the following
statements:

Gate = open;
schedule CloseGateEvent at Δtevent ;

and in the code of the CloseGateEvent function:

Gate = closed ;
schedule CloseGateEvent at t + Δtperiod ;



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

Time Events

Time Events III

One way to advise the simulation of forthcoming time events is by offering in the
language a schedule statement that can be used to schedule future time events.

For example, we might include in the initial section of the program the following
statements:

Gate = open;
schedule CloseGateEvent at Δtevent ;

and in the code of the CloseGateEvent function:

Gate = closed ;
schedule CloseGateEvent at t + Δtperiod ;

The event, during which the thyristor opens again, is a different type of event. We
shall talk about that class of events later.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

Time Events

Time Events IV

It should be mentioned that the discontinuity associated with the event is not part of
the continuous-time model. All simulation trajectories in between events are perfectly
continuous. Only the conditions under which events are to occur are known during the
continuous simulation.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

Time Events

Time Events IV

It should be mentioned that the discontinuity associated with the event is not part of
the continuous-time model. All simulation trajectories in between events are perfectly
continuous. Only the conditions under which events are to occur are known during the
continuous simulation.

For this reason, the ODE solver won’t encounter any problems. It never attempts to
simulate across a discontinuity in the model.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

Time Events

Time Events IV

It should be mentioned that the discontinuity associated with the event is not part of
the continuous-time model. All simulation trajectories in between events are perfectly
continuous. Only the conditions under which events are to occur are known during the
continuous simulation.

For this reason, the ODE solver won’t encounter any problems. It never attempts to
simulate across a discontinuity in the model.

The localization of a time event is trivial. All we need in order to localize time events
accurately is an ODE solver that provides dense output. We proceed in exactly the
same manner that we use to localize a communication instant, at which we wish to
report the values of the output variables.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

Time Events

Time Events IV

It should be mentioned that the discontinuity associated with the event is not part of
the continuous-time model. All simulation trajectories in between events are perfectly
continuous. Only the conditions under which events are to occur are known during the
continuous simulation.

For this reason, the ODE solver won’t encounter any problems. It never attempts to
simulate across a discontinuity in the model.

The localization of a time event is trivial. All we need in order to localize time events
accurately is an ODE solver that provides dense output. We proceed in exactly the
same manner that we use to localize a communication instant, at which we wish to
report the values of the output variables.

If the integration algorithm reduces the step in order to hit the communication
instants (common for single-step algorithms), we shall do the same in order to arrive
at the time of the next time event.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

Time Events

Time Events IV

It should be mentioned that the discontinuity associated with the event is not part of
the continuous-time model. All simulation trajectories in between events are perfectly
continuous. Only the conditions under which events are to occur are known during the
continuous simulation.

For this reason, the ODE solver won’t encounter any problems. It never attempts to
simulate across a discontinuity in the model.

The localization of a time event is trivial. All we need in order to localize time events
accurately is an ODE solver that provides dense output. We proceed in exactly the
same manner that we use to localize a communication instant, at which we wish to
report the values of the output variables.

If the integration algorithm reduces the step in order to hit the communication
instants (common for single-step algorithms), we shall do the same in order to arrive
at the time of the next time event.

On the other hand, if the integration algorithm uses interpolation for the purpose of
calculating the values of the output variables at communication instants (common for
multi-step algorithms), we shall do the same for localizing time events.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

Time Events

Time Events V

Once an event has been localized, the actions associated with the event are being
executed.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

Time Events

Time Events V

Once an event has been localized, the actions associated with the event are being
executed.

Afterwards, we are dealing with a new continuous-time simulation with new initial
conditions.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

Time Events

Time Events V

Once an event has been localized, the actions associated with the event are being
executed.

Afterwards, we are dealing with a new continuous-time simulation with new initial
conditions.

The time events are stored in an event calendar, a linear linked list, in such a way that
the next time event is always stored at the beginning of the list.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

Time Events

Time Events V

Once an event has been localized, the actions associated with the event are being
executed.

Afterwards, we are dealing with a new continuous-time simulation with new initial
conditions.

The time events are stored in an event calendar, a linear linked list, in such a way that
the next time event is always stored at the beginning of the list.

The continuous simulation only needs to know the instant of time when the next time
event is scheduled to occur.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

Time Events

Time Events V

Once an event has been localized, the actions associated with the event are being
executed.

Afterwards, we are dealing with a new continuous-time simulation with new initial
conditions.

The time events are stored in an event calendar, a linear linked list, in such a way that
the next time event is always stored at the beginning of the list.

The continuous simulation only needs to know the instant of time when the next time
event is scheduled to occur.

The continuous simulation proceeds until the time of occurrence of the next event. At
that moment, the continuous simulation terminates, the actions associated with the
event (i.e., the discontinuity) are being processed, and a new continuous simulation
starts with new initial conditions.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

Time Events

Time Events VI

Consequently, the continuous simulations are now executed in segments. The
individual continuous-time simulation segments are interrupted for handling discrete
events that occur.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

Time Events

Time Events VI

Consequently, the continuous simulations are now executed in segments. The
individual continuous-time simulation segments are interrupted for handling discrete
events that occur.

A model that specifies explicitly the discrete events is called hybrid model.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

Time Events

Time Events VI

Consequently, the continuous simulations are now executed in segments. The
individual continuous-time simulation segments are interrupted for handling discrete
events that occur.

A model that specifies explicitly the discrete events is called hybrid model.

The simulation of a hybrid model is called hybrid simulation.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

Simulation of Sampled-data Systems

Simulation of Sampled-data Systems

Digital control systems can be modeled by means of hybrid models. They can then be
simulated using a hybrid simulation engine.

Stabilizing,
Linearizing
and Decoupling
Controller

ZOH ZOH

ZOHZOH

ZOHZOH

ZOH ZOH

T1 T1

T2T2

T4T4

T3 T3

Robot+

+

+

+

-

-

-

-

Trajectory
Planner

Actuator control

End effector path to be followed

Path
Planner

Unit operations

Task
Planner

Tasks to be performed



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

Simulation of Sampled-data Systems

Simulation of Sampled-data Systems

Digital control systems can be modeled by means of hybrid models. They can then be
simulated using a hybrid simulation engine.

Stabilizing,
Linearizing
and Decoupling
Controller

ZOH ZOH

ZOHZOH

ZOHZOH

ZOH ZOH

T1 T1

T2T2

T4T4

T3 T3

Robot+

+

+

+

-

-

-

-

Trajectory
Planner

Actuator control

End effector path to be followed

Path
Planner

Unit operations

Task
Planner

Tasks to be performed

� There are four closed loops
employing different sampling
rates T1 ≤ T2 ≤ T3 � T4.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

Simulation of Sampled-data Systems

Simulation of Sampled-data Systems

Digital control systems can be modeled by means of hybrid models. They can then be
simulated using a hybrid simulation engine.

Stabilizing,
Linearizing
and Decoupling
Controller

ZOH ZOH

ZOHZOH

ZOHZOH

ZOH ZOH

T1 T1

T2T2

T4T4

T3 T3

Robot+

+

+

+

-

-

-

-

Trajectory
Planner

Actuator control

End effector path to be followed

Path
Planner

Unit operations

Task
Planner

Tasks to be performed

� There are four closed loops
employing different sampling
rates T1 ≤ T2 ≤ T3 � T4.

� Every sampler represents an
infinite series of
self-scheduling time events.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

Simulation of Sampled-data Systems

Simulation of Sampled-data Systems

Digital control systems can be modeled by means of hybrid models. They can then be
simulated using a hybrid simulation engine.

Stabilizing,
Linearizing
and Decoupling
Controller

ZOH ZOH

ZOHZOH

ZOHZOH

ZOH ZOH

T1 T1

T2T2

T4T4

T3 T3

Robot+

+

+

+

-

-

-

-

Trajectory
Planner

Actuator control

End effector path to be followed

Path
Planner

Unit operations

Task
Planner

Tasks to be performed

� There are four closed loops
employing different sampling
rates T1 ≤ T2 ≤ T3 � T4.

� Every sampler represents an
infinite series of
self-scheduling time events.

� The event calendar
maintains the four types of
events and decides at every
moment, which is the next
event that needs to be
executed.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

State Events

State Events

Often the time of occurrence of an event is not known in advance. What is known is
only the condition under which the event is to take place.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

State Events

State Events

Often the time of occurrence of an event is not known in advance. What is known is
only the condition under which the event is to take place.

Such events are called state events.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

State Events

State Events

Often the time of occurrence of an event is not known in advance. What is known is
only the condition under which the event is to take place.

Such events are called state events.

State events cannot be planned.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

State Events

State Events

Often the time of occurrence of an event is not known in advance. What is known is
only the condition under which the event is to take place.

Such events are called state events.

State events cannot be planned.

In the thyristor control example, the gate opening event is a state event. We don’t
know ahead of time, when it happens. We only know under what conditions it
happens, i.e., when the load current passes through zero.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

State Events

State Events

Often the time of occurrence of an event is not known in advance. What is known is
only the condition under which the event is to take place.

Such events are called state events.

State events cannot be planned.

In the thyristor control example, the gate opening event is a state event. We don’t
know ahead of time, when it happens. We only know under what conditions it
happens, i.e., when the load current passes through zero.

To this end, we might include in the section where the simulation equations are being
described the following statement:

schedule OpenGateEvent when iLoad < 0;

and the code of the OpenGateEvent function consists of:

Gate = open;



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

State Events

State Events II

� State events are specified using event conditions, usually formulated in the form
of zero-crossing functions.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

State Events

State Events II

� State events are specified using event conditions, usually formulated in the form
of zero-crossing functions.

� Such a function is called event detection function.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

State Events

State Events II

� State events are specified using event conditions, usually formulated in the form
of zero-crossing functions.

� Such a function is called event detection function.

� There can be multiple event detection functions active simultaneously.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

State Events

State Events II

� State events are specified using event conditions, usually formulated in the form
of zero-crossing functions.

� Such a function is called event detection function.

� There can be multiple event detection functions active simultaneously.

� During the continuous simulation, all active event detection functions must be
constantly monitored to check whether any of the zero crossings has taken place.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

State Events

State Events II

� State events are specified using event conditions, usually formulated in the form
of zero-crossing functions.

� Such a function is called event detection function.

� There can be multiple event detection functions active simultaneously.

� During the continuous simulation, all active event detection functions must be
constantly monitored to check whether any of the zero crossings has taken place.

� Once one of the event detection functions has found a zero crossing, an event
localization algorithm is triggered that iterates on the exact time of the zero
crossing.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

State Events

State Events II

� State events are specified using event conditions, usually formulated in the form
of zero-crossing functions.

� Such a function is called event detection function.

� There can be multiple event detection functions active simultaneously.

� During the continuous simulation, all active event detection functions must be
constantly monitored to check whether any of the zero crossings has taken place.

� Once one of the event detection functions has found a zero crossing, an event
localization algorithm is triggered that iterates on the exact time of the zero
crossing.

� In the mathematical literature, the event localization algorithm is often also
referred to as root finding algorithm.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

State Events

Multiple Zero Crossings

If more than one event detection function is triggered during a single integration step,
we need an algorithm to determine, which of the zero crossing happens first.

0 0.5 1 1.5 2 2.5 3 3.5 4
−2

−1

0

1

2

3

0 0.5 1 1.5 2 2.5 3 3.5 4
−2

−1

0

1

2

3

Iteration of State Events by Regula Falsi

Time [sec]

Time [sec]

Z
er

o
-c

ro
ss

in
g

F
u
n
ct

io
n
s
Z
er

o
-c

ro
ss

in
g

F
u
n
ct

io
n
s

f1

f1

f2

f2

f3

f3

tk

tk

tk+1

tk+1



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

State Events

Multiple Zero Crossings

If more than one event detection function is triggered during a single integration step,
we need an algorithm to determine, which of the zero crossing happens first.

0 0.5 1 1.5 2 2.5 3 3.5 4
−2

−1

0

1

2

3

0 0.5 1 1.5 2 2.5 3 3.5 4
−2

−1

0

1

2

3

Iteration of State Events by Regula Falsi

Time [sec]

Time [sec]

Z
er

o
-c

ro
ss

in
g

F
u
n
ct

io
n
s
Z
er

o
-c

ro
ss

in
g

F
u
n
ct

io
n
s

f1

f1

f2

f2

f3

f3

tk

tk

tk+1

tk+1

� Using the Regula Falsi method, the end points of
every triggered zero-crossing function are
connected.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

State Events

Multiple Zero Crossings

If more than one event detection function is triggered during a single integration step,
we need an algorithm to determine, which of the zero crossing happens first.

0 0.5 1 1.5 2 2.5 3 3.5 4
−2

−1

0

1

2

3

0 0.5 1 1.5 2 2.5 3 3.5 4
−2

−1

0

1

2

3

Iteration of State Events by Regula Falsi

Time [sec]

Time [sec]

Z
er

o
-c

ro
ss

in
g

F
u
n
ct

io
n
s
Z
er

o
-c

ro
ss

in
g

F
u
n
ct

io
n
s

f1

f1

f2

f2

f3

f3

tk

tk

tk+1

tk+1

� Using the Regula Falsi method, the end points of
every triggered zero-crossing function are
connected.

� The next evaluation time instant is calculated
using the formula:

tnext = min
∀i

[
fi (tk+1) · tk − fi (tk ) · tk+1

fi (tk+1) − fi (tk )

]



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

State Events

Multiple Zero Crossings

If more than one event detection function is triggered during a single integration step,
we need an algorithm to determine, which of the zero crossing happens first.

0 0.5 1 1.5 2 2.5 3 3.5 4
−2

−1

0

1

2

3

0 0.5 1 1.5 2 2.5 3 3.5 4
−2

−1

0

1

2

3

Iteration of State Events by Regula Falsi

Time [sec]

Time [sec]

Z
er

o
-c

ro
ss

in
g

F
u
n
ct

io
n
s
Z
er

o
-c

ro
ss

in
g

F
u
n
ct

io
n
s

f1

f1

f2

f2

f3

f3

tk

tk

tk+1

tk+1

� Using the Regula Falsi method, the end points of
every triggered zero-crossing function are
connected.

� The next evaluation time instant is calculated
using the formula:

tnext = min
∀i

[
fi (tk+1) · tk − fi (tk ) · tk+1

fi (tk+1) − fi (tk )

]

� If there is no zero crossing in the interval
t ∈ [tk , tnext], we set tk = tnext and repeat the
algorithm.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

State Events

Multiple Zero Crossings

If more than one event detection function is triggered during a single integration step,
we need an algorithm to determine, which of the zero crossing happens first.

0 0.5 1 1.5 2 2.5 3 3.5 4
−2

−1

0

1

2

3

0 0.5 1 1.5 2 2.5 3 3.5 4
−2

−1

0

1

2

3

Iteration of State Events by Regula Falsi

Time [sec]

Time [sec]

Z
er

o
-c

ro
ss

in
g

F
u
n
ct

io
n
s
Z
er

o
-c

ro
ss

in
g

F
u
n
ct

io
n
s

f1

f1

f2

f2

f3

f3

tk

tk

tk+1

tk+1

� Using the Regula Falsi method, the end points of
every triggered zero-crossing function are
connected.

� The next evaluation time instant is calculated
using the formula:

tnext = min
∀i

[
fi (tk+1) · tk − fi (tk ) · tk+1

fi (tk+1) − fi (tk )

]

� If there is no zero crossing in the interval
t ∈ [tk , tnext], we set tk = tnext and repeat the
algorithm.

� On the other hand, if there are multiple zero
crossings in the interval t ∈ [tk , tnext], we set
tk+1 = tnext and repeat the algorithm.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

State Events

Multiple Zero Crossings

If more than one event detection function is triggered during a single integration step,
we need an algorithm to determine, which of the zero crossing happens first.

0 0.5 1 1.5 2 2.5 3 3.5 4
−2

−1

0

1

2

3

0 0.5 1 1.5 2 2.5 3 3.5 4
−2

−1

0

1

2

3

Iteration of State Events by Regula Falsi

Time [sec]

Time [sec]

Z
er

o
-c

ro
ss

in
g

F
u
n
ct

io
n
s
Z
er

o
-c

ro
ss

in
g

F
u
n
ct

io
n
s

f1

f1

f2

f2

f3

f3

tk

tk

tk+1

tk+1

� Using the Regula Falsi method, the end points of
every triggered zero-crossing function are
connected.

� The next evaluation time instant is calculated
using the formula:

tnext = min
∀i

[
fi (tk+1) · tk − fi (tk ) · tk+1

fi (tk+1) − fi (tk )

]

� If there is no zero crossing in the interval
t ∈ [tk , tnext], we set tk = tnext and repeat the
algorithm.

� On the other hand, if there are multiple zero
crossings in the interval t ∈ [tk , tnext], we set
tk+1 = tnext and repeat the algorithm.

� If there is exactly one zero crossing in the
interval t ∈ [tk , tnext], we simplified the problem
to that of localizing a single zero crossing.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

State Events

Multiple Zero Crossings II

� The event isolation using the Regula
Falsi method converges always; the
time interval gets reduced in every
iteration step, but we cannot say
beforehand, how many iterations are
needed to obtain convergence.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

State Events

Multiple Zero Crossings II

� The event isolation using the Regula
Falsi method converges always; the
time interval gets reduced in every
iteration step, but we cannot say
beforehand, how many iterations are
needed to obtain convergence.

� There exists another method that
also converges always, but that
offers the advantage that the time
interval is reduced in every iteration
step by 38.2%.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

State Events

Multiple Zero Crossings II

� The event isolation using the Regula
Falsi method converges always; the
time interval gets reduced in every
iteration step, but we cannot say
beforehand, how many iterations are
needed to obtain convergence.

� There exists another method that
also converges always, but that
offers the advantage that the time
interval is reduced in every iteration
step by 38.2%.

� This technique is called the golden
section method.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

State Events

Multiple Zero Crossings II

� The event isolation using the Regula
Falsi method converges always; the
time interval gets reduced in every
iteration step, but we cannot say
beforehand, how many iterations are
needed to obtain convergence.

� There exists another method that
also converges always, but that
offers the advantage that the time
interval is reduced in every iteration
step by 38.2%.

� This technique is called the golden
section method.

1

x

x

1-x

Figure: Golden Section.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

State Events

Multiple Zero Crossings II

� The event isolation using the Regula
Falsi method converges always; the
time interval gets reduced in every
iteration step, but we cannot say
beforehand, how many iterations are
needed to obtain convergence.

� There exists another method that
also converges always, but that
offers the advantage that the time
interval is reduced in every iteration
step by 38.2%.

� This technique is called the golden
section method.

1

x

x

1-x

Figure: Golden Section.

x

1
=

1 − x

x
⇒ x = 0.618



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

State Events

Multiple Zero Crossings III

How can the golden section method be used for event isolation?

0 0.5 1 1.5 2 2.5 3 3.5 4
−2

−1

0

1

2

3

0 0.5 1 1.5 2 2.5 3 3.5 4
−2

−1

0

1

2

3

Iteration of State Events by Golden Section

time [sec]

Z
er

o
-c

ro
ss

in
g

F
u
n
ct

io
n
s

Z
er

o
-c

ro
ss

in
g

F
u
n
ct

io
n
s

f1

f1

f2

f2

f3

f3

tk

tk

tk+1

tk+1tk + (1 − x)h tk + xh



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

State Events

Multiple Zero Crossings III

How can the golden section method be used for event isolation?

0 0.5 1 1.5 2 2.5 3 3.5 4
−2

−1

0

1

2

3

0 0.5 1 1.5 2 2.5 3 3.5 4
−2

−1

0

1

2

3

Iteration of State Events by Golden Section

time [sec]

Z
er

o
-c

ro
ss

in
g

F
u
n
ct

io
n
s

Z
er

o
-c

ro
ss

in
g

F
u
n
ct

io
n
s

f1

f1

f2

f2

f3

f3

tk

tk

tk+1

tk+1tk + (1 − x)h tk + xh

� In the golden section method, two intermediate
points are calculated in the time interval
t ∈ [tk , tk+1] cutting the interval using golden
section.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

State Events

Multiple Zero Crossings III

How can the golden section method be used for event isolation?

0 0.5 1 1.5 2 2.5 3 3.5 4
−2

−1

0

1

2

3

0 0.5 1 1.5 2 2.5 3 3.5 4
−2

−1

0

1

2

3

Iteration of State Events by Golden Section

time [sec]

Z
er

o
-c

ro
ss

in
g

F
u
n
ct

io
n
s

Z
er

o
-c

ro
ss

in
g

F
u
n
ct

io
n
s

f1

f1

f2

f2

f3

f3

tk

tk

tk+1

tk+1tk + (1 − x)h tk + xh

� In the golden section method, two intermediate
points are calculated in the time interval
t ∈ [tk , tk+1] cutting the interval using golden
section.

� If there is no zero crossing in the interval
t ∈ [tk , tk + (1 − x) · h], we set
tk = tk + (1 − x) · h and repeat the algorithm
with one new intermediate point.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

State Events

Multiple Zero Crossings III

How can the golden section method be used for event isolation?

0 0.5 1 1.5 2 2.5 3 3.5 4
−2

−1

0

1

2

3

0 0.5 1 1.5 2 2.5 3 3.5 4
−2

−1

0

1

2

3

Iteration of State Events by Golden Section

time [sec]

Z
er

o
-c

ro
ss

in
g

F
u
n
ct

io
n
s

Z
er

o
-c

ro
ss

in
g

F
u
n
ct

io
n
s

f1

f1

f2

f2

f3

f3

tk

tk

tk+1

tk+1tk + (1 − x)h tk + xh

� In the golden section method, two intermediate
points are calculated in the time interval
t ∈ [tk , tk+1] cutting the interval using golden
section.

� If there is no zero crossing in the interval
t ∈ [tk , tk + (1 − x) · h], we set
tk = tk + (1 − x) · h and repeat the algorithm
with one new intermediate point.

� On the other hand, if there are multiple zero
crossings in the interval
t ∈ [tk , tk + (1 − x) · h], we set
tk+1 = tk + x · h and repeat the algorithm with
one new intermediate point.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

State Events

Multiple Zero Crossings III

How can the golden section method be used for event isolation?

0 0.5 1 1.5 2 2.5 3 3.5 4
−2

−1

0

1

2

3

0 0.5 1 1.5 2 2.5 3 3.5 4
−2

−1

0

1

2

3

Iteration of State Events by Golden Section

time [sec]

Z
er

o
-c

ro
ss

in
g

F
u
n
ct

io
n
s

Z
er

o
-c

ro
ss

in
g

F
u
n
ct

io
n
s

f1

f1

f2

f2

f3

f3

tk

tk

tk+1

tk+1tk + (1 − x)h tk + xh

� In the golden section method, two intermediate
points are calculated in the time interval
t ∈ [tk , tk+1] cutting the interval using golden
section.

� If there is no zero crossing in the interval
t ∈ [tk , tk + (1 − x) · h], we set
tk = tk + (1 − x) · h and repeat the algorithm
with one new intermediate point.

� On the other hand, if there are multiple zero
crossings in the interval
t ∈ [tk , tk + (1 − x) · h], we set
tk+1 = tk + x · h and repeat the algorithm with
one new intermediate point.

� If there is exactly one zero crossing in the
interval t ∈ [tk , tk + (1 − x) · h], we simplified
the problem to that of localizing a single zero
crossing.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

State Events

Multiple Zero Crossings IV

� We have meanwhile solved the problem of event isolation.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

State Events

Multiple Zero Crossings IV

� We have meanwhile solved the problem of event isolation.

� If more than one zero crossing occurs within a single integration step, we reduce
the interval t ∈ [tk , tk+1] using either one of the two proposed methods: Regula
Falsi or golden section, until there remains exactly one zero crossing of a single
event detection function within the time interval.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

State Events

Multiple Zero Crossings IV

� We have meanwhile solved the problem of event isolation.

� If more than one zero crossing occurs within a single integration step, we reduce
the interval t ∈ [tk , tk+1] using either one of the two proposed methods: Regula
Falsi or golden section, until there remains exactly one zero crossing of a single
event detection function within the time interval.

� It can of course happen that two separate zero crossings occur at exactly the
same time instant. In that case, the event isolation algorithm continues until
the time interval has been sufficiently reduced so that we can consider the event
localized, i.e., the event isolation algorithm is then also used for event
localization.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

State Events

Multiple Zero Crossings IV

� We have meanwhile solved the problem of event isolation.

� If more than one zero crossing occurs within a single integration step, we reduce
the interval t ∈ [tk , tk+1] using either one of the two proposed methods: Regula
Falsi or golden section, until there remains exactly one zero crossing of a single
event detection function within the time interval.

� It can of course happen that two separate zero crossings occur at exactly the
same time instant. In that case, the event isolation algorithm continues until
the time interval has been sufficiently reduced so that we can consider the event
localized, i.e., the event isolation algorithm is then also used for event
localization.

� Thus, the original problem has thus been simplified to the problem of localizing
a single event that has already been identified to occur within a given fixed time
interval.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

State Events

Event Localization
Single-step Algorithms

� Evidently, the event
isolation techniques
discussed previously can
also be used for event
localization.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

State Events

Event Localization
Single-step Algorithms

� Evidently, the event
isolation techniques
discussed previously can
also be used for event
localization.

� They may, however, be
unnecessarily inefficient due
to their linear convergence
speed.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

State Events

Event Localization
Single-step Algorithms

� Evidently, the event
isolation techniques
discussed previously can
also be used for event
localization.

� They may, however, be
unnecessarily inefficient due
to their linear convergence
speed.

� We could suspect that
Newton iteration might
work better due to the
quadratic convergence
speed of this method.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

State Events

Event Localization
Single-step Algorithms

� Evidently, the event
isolation techniques
discussed previously can
also be used for event
localization.

� They may, however, be
unnecessarily inefficient due
to their linear convergence
speed.

� We could suspect that
Newton iteration might
work better due to the
quadratic convergence
speed of this method.

0 0.5 1 1.5 2 2.5 3 3.5 4
−2

−1

0

1

2

0 0.5 1 1.5 2 2.5 3 3.5 4
−2

−1

0

1

2

Localization of State Events by Newton Iteration

time [sec]

time [sec]
Z
er

o
-c

ro
ss

in
g

F
u
n
ct

io
n

Z
er

o
-c

ro
ss

in
g

F
u
n
ct

io
n

f

f

tk

tk

tk+1

tk+1



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

State Events

Event Localization II
Single-step Algorithms

� Unfortunately, Newton iteration does not always converge. In the given
example, if we start from the right, we obtain quick convergence, whereas if we
start from the left, already the next iteration step carries us outside the interval.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

State Events

Event Localization II
Single-step Algorithms

� Unfortunately, Newton iteration does not always converge. In the given
example, if we start from the right, we obtain quick convergence, whereas if we
start from the left, already the next iteration step carries us outside the interval.

� As we already know that the zero crossing occurs within a defined time interval,
we are not interested in ever leaving the interval in search of the zero crossing.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

State Events

Event Localization II
Single-step Algorithms

� Unfortunately, Newton iteration does not always converge. In the given
example, if we start from the right, we obtain quick convergence, whereas if we
start from the left, already the next iteration step carries us outside the interval.

� As we already know that the zero crossing occurs within a defined time interval,
we are not interested in ever leaving the interval in search of the zero crossing.

� If the next Newton iteration step carries us outside the interval when starting on
both ends of the interval, it may be advisable to reduce the width of the interval
a bit more using one of the two event isolation algorithms introduced earlier
before switching to Newton iteration for increasing the convergence speed.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

State Events

Event Localization II
Single-step Algorithms

� Unfortunately, Newton iteration does not always converge. In the given
example, if we start from the right, we obtain quick convergence, whereas if we
start from the left, already the next iteration step carries us outside the interval.

� As we already know that the zero crossing occurs within a defined time interval,
we are not interested in ever leaving the interval in search of the zero crossing.

� If the next Newton iteration step carries us outside the interval when starting on
both ends of the interval, it may be advisable to reduce the width of the interval
a bit more using one of the two event isolation algorithms introduced earlier
before switching to Newton iteration for increasing the convergence speed.

� Once the time interval has been sufficiently reduced, Newton iteration will
converge, and will do so more rapidly than either Regula Falsi or golden section.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

State Events

Event Localization III
Single-step Algorithms

� Another algorithm that is possibly even more efficient for event localization than
Newton iteration is polynomial interpolation.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

State Events

Event Localization III
Single-step Algorithms

� Another algorithm that is possibly even more efficient for event localization than
Newton iteration is polynomial interpolation.

� As every event detection function can be expressed as a function of state
variables, we know not only the values of the event detection functions at both
ends of the time interval, but also their time derivatives.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

State Events

Event Localization III
Single-step Algorithms

� Another algorithm that is possibly even more efficient for event localization than
Newton iteration is polynomial interpolation.

� As every event detection function can be expressed as a function of state
variables, we know not only the values of the event detection functions at both
ends of the time interval, but also their time derivatives.

� Consequently, we may propose an interpolation polynomial:

p(t) = a · t3 + b · t2 + c · t + d

with the time derivative:

ṗ(t) = 3a · t2 + 2b · t + c



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

State Events

Event Localization III
Single-step Algorithms

� Another algorithm that is possibly even more efficient for event localization than
Newton iteration is polynomial interpolation.

� As every event detection function can be expressed as a function of state
variables, we know not only the values of the event detection functions at both
ends of the time interval, but also their time derivatives.

� Consequently, we may propose an interpolation polynomial:

p(t) = a · t3 + b · t2 + c · t + d

with the time derivative:

ṗ(t) = 3a · t2 + 2b · t + c

� We know that:

p(tk ) = a · t3
k + b · t2

k + c · tk + d = fk

p(tk+1) = a · t3
k+1 + b · t2

k+1 + c · tk+1 + d = fk+1

ṗ(tk ) = 3a · t2
k + 2b · tk + c = ḟk = hk

ṗ(tk+1) = 3a · t2
k+1 + 2b · tk+1 + c = ḟk+1 = hk+1



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

State Events

Event Localization IV
Single-step Algorithms

� We conclude: ⎛
⎜⎜⎝

fk
fk+1
hk

hk+1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎝

t3
k t2

k tk 1

t3
k+1 t2

k+1 tk+1 1

3t2
k 2tk 1 0

3t2
k+1 2tk+1 1 0

⎞
⎟⎟⎟⎠ ·

⎛
⎜⎜⎝

a
b
c
d

⎞
⎟⎟⎠



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

State Events

Event Localization IV
Single-step Algorithms

� We conclude: ⎛
⎜⎜⎝

fk
fk+1
hk

hk+1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎝

t3
k t2

k tk 1

t3
k+1 t2

k+1 tk+1 1

3t2
k 2tk 1 0

3t2
k+1 2tk+1 1 0

⎞
⎟⎟⎟⎠ ·

⎛
⎜⎜⎝

a
b
c
d

⎞
⎟⎟⎠

� From the linear system of equations, we can easily determine the values of the
four coefficients of the interpolation polynomial.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

State Events

Event Localization IV
Single-step Algorithms

� We conclude: ⎛
⎜⎜⎝

fk
fk+1
hk

hk+1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎝

t3
k t2

k tk 1

t3
k+1 t2

k+1 tk+1 1

3t2
k 2tk 1 0

3t2
k+1 2tk+1 1 0

⎞
⎟⎟⎟⎠ ·

⎛
⎜⎜⎝

a
b
c
d

⎞
⎟⎟⎠

� From the linear system of equations, we can easily determine the values of the
four coefficients of the interpolation polynomial.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−2

0

2

4

6
Localization of State Events by Cubic Interpolation

time [sec]

Z
er

o
-c

ro
ss

in
g

F
u
n
ct

io
n

f

tk tk+1



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

State Events

Event Localization V
Single-step Algorithms

� The Cubic interpolation algorithm is characterized by a cubic convergence speed.
For this reason, the algorithm converges even faster than Newton iteration.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

State Events

Event Localization V
Single-step Algorithms

� The Cubic interpolation algorithm is characterized by a cubic convergence speed.
For this reason, the algorithm converges even faster than Newton iteration.

� It makes use of all of the information (the two function values and the two
derivative values) available, and consequently, it is optimally suited for the task
at hand.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

State Events

Event Localization V
Single-step Algorithms

� The Cubic interpolation algorithm is characterized by a cubic convergence speed.
For this reason, the algorithm converges even faster than Newton iteration.

� It makes use of all of the information (the two function values and the two
derivative values) available, and consequently, it is optimally suited for the task
at hand.

� Furthermore, the algorithm encounters at least one solution inside the time
interval. Consequently, the convergence can be guaranteed just as in the case of
the Regula Falsi and golden section methods.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

State Events

Event Localization
Multi-step Algorithms

� If we are using a multi-step algorithm for the simulation, the event localization
algorithm can be improved even further, because we have access to the
Nordsieck vector.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

State Events

Event Localization
Multi-step Algorithms

� If we are using a multi-step algorithm for the simulation, the event localization
algorithm can be improved even further, because we have access to the
Nordsieck vector.

� We can write:

F(ĥ) =Fi (tnext) = Fi (tk+1) + ĥ
dFi (tk+1)

dt
+

ĥ2

2

d2Fi (tk+1)

dt2
+

ĥ3

6

d3Fi (tk+1)

dt3
+ · · · = 0.0



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

State Events

Event Localization
Multi-step Algorithms

� If we are using a multi-step algorithm for the simulation, the event localization
algorithm can be improved even further, because we have access to the
Nordsieck vector.

� We can write:

F(ĥ) =Fi (tnext) = Fi (tk+1) + ĥ
dFi (tk+1)

dt
+

ĥ2

2

d2Fi (tk+1)

dt2
+

ĥ3

6

d3Fi (tk+1)

dt3
+ · · · = 0.0

� This is a function of the unknown ĥ that can be solved for the unknown by
Newton iteration.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

State Events

Event Localization
Multi-step Algorithms

� If we are using a multi-step algorithm for the simulation, the event localization
algorithm can be improved even further, because we have access to the
Nordsieck vector.

� We can write:

F(ĥ) =Fi (tnext) = Fi (tk+1) + ĥ
dFi (tk+1)

dt
+

ĥ2

2

d2Fi (tk+1)

dt2
+

ĥ3

6

d3Fi (tk+1)

dt3
+ · · · = 0.0

� This is a function of the unknown ĥ that can be solved for the unknown by
Newton iteration.

� We begin with ĥ0 = 0.5 · (tk − tk+1) and iterate:

ĥ�+1 = ĥ� − F(ĥ�)

H(ĥ�)

where:

H(ĥ) =
dF(ĥ)

dĥ
=

dFi (tk+1)

dt
+ ĥ

d2Fi (tk+1)

dt2
+

ĥ2

2

d3Fi (tk+1)

dt3
+ . . .



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

State Events

Event Localization II
Multi-step Algorithms

� As we have access to the Nordsieck vector, this iteration converges in a single
iteration step with the same precision as the integration itself. We couldn’t hope
for anything more.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

State Events

Event Localization II
Multi-step Algorithms

� As we have access to the Nordsieck vector, this iteration converges in a single
iteration step with the same precision as the integration itself. We couldn’t hope
for anything more.

� We only have access to the Nordsieck vector for state variables. Thus, if the
event detection function doesn’t coincide with one of the state variables, it may
be worth our while to augment the differential equation system with:

ẋn+i =
dFi (x)

dt



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

State Events

Event Localization II
Multi-step Algorithms

� As we have access to the Nordsieck vector, this iteration converges in a single
iteration step with the same precision as the integration itself. We couldn’t hope
for anything more.

� We only have access to the Nordsieck vector for state variables. Thus, if the
event detection function doesn’t coincide with one of the state variables, it may
be worth our while to augment the differential equation system with:

ẋn+i =
dFi (x)

dt

� In this way, we shall need to integrate one additional state equation, but the
technique simplifies and accelerates the localization of events.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

State Events

Event Localization II
Multi-step Algorithms

� As we have access to the Nordsieck vector, this iteration converges in a single
iteration step with the same precision as the integration itself. We couldn’t hope
for anything more.

� We only have access to the Nordsieck vector for state variables. Thus, if the
event detection function doesn’t coincide with one of the state variables, it may
be worth our while to augment the differential equation system with:

ẋn+i =
dFi (x)

dt

� In this way, we shall need to integrate one additional state equation, but the
technique simplifies and accelerates the localization of events.

� Since event localization may occupy much of the overall simulation time when
dealing with a system with frequent discontinuities, such as in the case of the
last version of the train speed control, augmenting the model in this fashion
may turn out to be economical.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

State Events

Non-essential State Events

Sometimes it is a good idea to augment the set of event detection functions by an
additional function that is the derivative of another.

0 0.5 1 1.5 2 2.5 3 3.5 4
−8

−6

−4

−2

0

2

4

6

0 0.5 1 1.5 2 2.5 3 3.5 4
−8

−6

−4

−2

0

2

4

6

Non-essential State Events

time [sec]

time [sec]

Z
er

o
-c

ro
ss

in
g

F
u
n
ct

io
n
s
Z
er

o
-c

ro
ss

in
g

F
u
n
ct

io
n
s

f1

f1

f2

tk

tk

tk+1

tk+1



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

State Events

Non-essential State Events

Sometimes it is a good idea to augment the set of event detection functions by an
additional function that is the derivative of another.

0 0.5 1 1.5 2 2.5 3 3.5 4
−8

−6

−4

−2

0

2

4

6

0 0.5 1 1.5 2 2.5 3 3.5 4
−8

−6

−4

−2

0

2

4

6

Non-essential State Events

time [sec]

time [sec]

Z
er

o
-c

ro
ss

in
g

F
u
n
ct

io
n
s
Z
er

o
-c

ro
ss

in
g

F
u
n
ct

io
n
s

f1

f1

f2

tk

tk

tk+1

tk+1

� Initially, we detect the zero crossing
of function f2.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

State Events

Non-essential State Events

Sometimes it is a good idea to augment the set of event detection functions by an
additional function that is the derivative of another.

0 0.5 1 1.5 2 2.5 3 3.5 4
−8

−6

−4

−2

0

2

4

6

0 0.5 1 1.5 2 2.5 3 3.5 4
−8

−6

−4

−2

0

2

4

6

Non-essential State Events

time [sec]

time [sec]

Z
er

o
-c

ro
ss

in
g

F
u
n
ct

io
n
s
Z
er

o
-c

ro
ss

in
g

F
u
n
ct

io
n
s

f1

f1

f2

tk

tk

tk+1

tk+1

� Initially, we detect the zero crossing
of function f2.

� While iterating on this zero crossing,
a second and earlier zero crossing of
function f1 is detected.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

State Events

Non-essential State Events

Sometimes it is a good idea to augment the set of event detection functions by an
additional function that is the derivative of another.

0 0.5 1 1.5 2 2.5 3 3.5 4
−8

−6

−4

−2

0

2

4

6

0 0.5 1 1.5 2 2.5 3 3.5 4
−8

−6

−4

−2

0

2

4

6

Non-essential State Events

time [sec]

time [sec]

Z
er

o
-c

ro
ss

in
g

F
u
n
ct

io
n
s
Z
er

o
-c

ro
ss

in
g

F
u
n
ct

io
n
s

f1

f1

f2

tk

tk

tk+1

tk+1

� Initially, we detect the zero crossing
of function f2.

� While iterating on this zero crossing,
a second and earlier zero crossing of
function f1 is detected.

� The event associated with function
f2 is called non-essential, because no
action is associated with this event.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

State Events

Non-essential State Events

Sometimes it is a good idea to augment the set of event detection functions by an
additional function that is the derivative of another.

0 0.5 1 1.5 2 2.5 3 3.5 4
−8

−6

−4

−2

0

2

4

6

0 0.5 1 1.5 2 2.5 3 3.5 4
−8

−6

−4

−2

0

2

4

6

Non-essential State Events

time [sec]

time [sec]

Z
er

o
-c

ro
ss

in
g

F
u
n
ct

io
n
s
Z
er

o
-c

ro
ss

in
g

F
u
n
ct

io
n
s

f1

f1

f2

tk

tk

tk+1

tk+1

� Initially, we detect the zero crossing
of function f2.

� While iterating on this zero crossing,
a second and earlier zero crossing of
function f1 is detected.

� The event associated with function
f2 is called non-essential, because no
action is associated with this event.

� However, without the additional
event detection function, f2, we
would have missed the two essential
zero crossings of function f1.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

Conclusions

Conclusions

� In this presentation, we have discussed why models containing discontinuities
require special provisions both on the side of the modeling language (the
discontinuities should be declared in the model either directly or indirectly) and
also on the side of the simulation engine (we should not simulate across
discontinuities).



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

Conclusions

Conclusions

� In this presentation, we have discussed why models containing discontinuities
require special provisions both on the side of the modeling language (the
discontinuities should be declared in the model either directly or indirectly) and
also on the side of the simulation engine (we should not simulate across
discontinuities).

� It was shown that the step-size control algorithm may allow a model with
discontinuities to be simulated successfully even without offering root-solving
algorithms to the simulation engine, but we also demonstrated that this
approach can fail.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

Conclusions

Conclusions

� In this presentation, we have discussed why models containing discontinuities
require special provisions both on the side of the modeling language (the
discontinuities should be declared in the model either directly or indirectly) and
also on the side of the simulation engine (we should not simulate across
discontinuities).

� It was shown that the step-size control algorithm may allow a model with
discontinuities to be simulated successfully even without offering root-solving
algorithms to the simulation engine, but we also demonstrated that this
approach can fail.

� We then introduced the two types of events, the time events and the state
events.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

Conclusions

Conclusions

� In this presentation, we have discussed why models containing discontinuities
require special provisions both on the side of the modeling language (the
discontinuities should be declared in the model either directly or indirectly) and
also on the side of the simulation engine (we should not simulate across
discontinuities).

� It was shown that the step-size control algorithm may allow a model with
discontinuities to be simulated successfully even without offering root-solving
algorithms to the simulation engine, but we also demonstrated that this
approach can fail.

� We then introduced the two types of events, the time events and the state
events.

� In the final part of the presentation, we focused on the root-solving algorithms
themselves. We decomposed the overall problem into an event isolation
algorithm and an event localization algorithm.



Numerical Simulation of Dynamic Systems XXI

Simulation of Discontinuous Systems

References

References

1. Cellier, F.E. (1986), “Combined Continuous/Discrete Simulation - Applications,
Techniques and Tools,” Proc. Winter Simulation Conference, Washington, DC,
pp.24-33.

2. Cellier, F.E., H. Elmqvist, M. Otter, and J.H. Taylor (1993), “Guidelines for
Modeling and Simulation of Hybrid Systems,” Proc. IFAC World Congress,
Sydney, Australia, vol.8, pp.391-397.

3. Cellier, F.E. (1979), Combined Continuous/Discrete System Simulation by Use
of Digital Computers: Techniques and Tools, Ph.D. Dissertation, ETH Zurich,
Switzerland.

http://www.inf.ethz.ch/personal/fcellier/Pubs/Sim/wsc_86.pdf
http://www.inf.ethz.ch/personal/fcellier/Pubs/Sim/wsc_86.pdf
http://www.inf.ethz.ch/personal/fcellier/Pubs/OO/ifac_93.pdf
http://www.inf.ethz.ch/personal/fcellier/Pubs/OO/ifac_93.pdf
http://www.inf.ethz.ch/personal/fcellier/PhD/cellier_phd.pdf
http://www.inf.ethz.ch/personal/fcellier/PhD/cellier_phd.pdf

	Simulation of Discontinuous Systems
	
	
	
	
	
	
	


