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Introduction

State-space Models

Models of dynamic systems with concentrated parameters are commonly represented
using sets of first-order ordinary differential equations (ODEs). We call these models
state-space models.

ẋ(t) = f(x(t), u(t), t)

where x is the state vector, u is the input vector, and t denotes the time, the
independent variable across which we wish to simulate.

We also require initial conditions for the state variables:

x(t = t0) = x0



Numerical Simulation of Dynamic Systems II

Principles of Numerical Integration

Introduction

Taylor Series Expansion

The model can be simulated using a Taylor series expansion. If we know the state
vector at a certain instant of time, t∗, the state vector can be calculated at some later
time instant, t∗ + h by means of a Taylor series expansion:

xi (t
∗ + h) = xi (t

∗) +
dxi (t

∗)

dt
· h +

d2xi (t
∗)

dt2
· h2

2!
+ . . .

The state-space model is used to compute the first derivative in the Taylor series:

xi (t
∗ + h) = xi (t

∗) + fi (t
∗) · h +

dfi (t
∗)

dt
· h2

2!
+ . . .

The different numerical integration methods differ in their numerical approximations
of the derivatives of f .
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The Approximation Accuracy

The Truncation Error

Evidently, it is impossible to consider all terms of the Taylor series expansion. All
numerical integration methods only approximate a certain number of terms of the
Taylor series. This number can be either fixed or variable.

We talk about the approximation order of the numerical method. An algorithm that
approximates the terms of the Taylor series up to the third derivative:

xi (t
∗ + h) = xi (t

∗) + fi (t
∗) · h +

dfi (t
∗)

dt
· h2

2!
+

d2fi (t
∗)

dt2
· h3

3!
+ o(h4)

is thus an algorithm of third-order.

The truncation error of the method grows proportionally with the fourth power of the
integration step size, h.
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The Roundoff Error

There exists a second type of error that results from the finite mantissa of the
computer. The effects of this type of error can easily be illustrated graphically:
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Figure: Effects of the roundoff error in single precision
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The Approximation Accuracy

The Roundoff Error II
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Figure: Effects of the roundoff error in double precision
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The Approximation Accuracy

The Roundoff Error III
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Figure: Effects of the roundoff error in 1.5-fold precision
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The Euler Integration Formulae

The Explicit Euler Integration

The most simple numerical ODE solver is based on the explicit so-called “Forward
Euler” (FE) formula, a first-order integration method:

x(t∗ + h) ≈ x(t∗) + ẋ(t∗) · h
⇒ x(t∗ + h) ≈ x(t∗) + f(x(t∗), t∗) · h

Approximated 
Value
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Time

V

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

15

10

5

0

Figure: Numerical integration using the “FE” method
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The Euler Integration Formulae

The Explicit Euler Integration II

When using explicit integration methods, the simulation doesn’t require any iteration
within an integration step, unless the model contains algebraic loops:

step 1a: ẋ(t0) = f(x(t0), t0)
step 1b: x(t0 + h) = x(t0) + h · ẋ(t0)

step 2a: ẋ(t0 + h) = f(x(t0 + h), t0 + h)
step 2b: x(t0 + 2h) = x(t0 + h) + h · ẋ(t0 + h)

step 3a: ẋ(t0 + 2h) = f(x(t0 + 2h), t0 + 2h)
step 3b: x(t0 + 3h) = x(t0 + 2h) + h · ẋ(t0 + 2h)

etc.
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The Euler Integration Formulae

The Implicit Euler Integration

Another numerical integration method of first order is the “Backward Euler” (BE)
method:

x(t∗ + h) ≈ x(t∗) + f(x(t∗ + h), t∗ + h) · h

Approximated 
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Figure: Numerical integration using the “BE” method
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The Numerical Stability Domain

A linear autonomous time-invariant system can be represented using the model:

ẋ = A · x ; x(t = t0) = x0

with the analytical solution:
x(t) = exp(A · t) · x0

The solution is analytically stable if:

Re{Eig(A)} = Re{λ} < 0.0
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Figure: The region of analytical stability
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The Numerical Stability Domain

The Numerical Stability Domain II

When we use the FE algorithm:

x(t∗ + h) = x(t∗) + f(x(t∗), t∗) · h
⇒ x(t∗ + h) = x(t∗) + A · h · x(t∗)

⇒ x(k + 1) = [I(n) + A · h] · x(k)

Therefore:
xk+1 = F · xk

with:
F = I(n) + A · h
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Figure: The numerical stability domain of the FE algorithm
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The Numerical Stability Domain

Simulation With the FE Algorithm

When simulating the linear scalar system:

ẋ = a · x ; x(t = t0) = x0

using the FE algorithm, we obtain:
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Figure: Simulation of a linear scalar system using the FE algorithm
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The Numerical Stability Domain

Computation of the Largest Numerically Stable Integration
Step Size for FE

Given a linear system of second order with two complex eigenvalues, λ1 and λ2:
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The Numerical Stability Domain

The Numerical Stability Domain III

When we use the BE algorithm:

x(t∗ + h) = x(t∗) + A · h · x(t∗ + h)

⇒ [I(n) − A · h] · x(t∗ + h) = x(t∗)

⇒ x(k + 1) = [I(n) − A · h]−1 · x(k)

Therefore:
F = [I(n) − A · h]−1
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Figure: The numerical stability domain of the BE algorithm
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The Numerical Stability Domain

Simulation With the BE Algorithm

When simulating the linear scalar system:

ẋ = a · x ; x(t = t0) = x0

using the BE algorithm, we obtain:
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Figure: Simulation of a linear scalar system using the BE algorithm
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Numerical Stability Domain Computation

Numerical Stability Domain Computation

How is the numerical stability domain computed?

We start out with a second-order system with a conjugate complex pair of eigenvalues
anywhere on the unit circle. The system with the A-matrix:

A =

(
0 1
−1 2 cos(α)

)

has a pair of conjugate complex eigenvalues located on the unit circle. α denotes the
angle of one of the two eigenvalues counted in the mathematically positive (i.e.,
counterclockwise) sense away from the positive real axis.

In Matlab:

function [A] = aa (alpha)
radalpha = alpha ∗ pi/180;
x = cos(radalpha);
A = [ 0 , 1 ; −1 , 2 ∗ x ];

return
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Numerical Stability Domain Computation

Numerical Stability Domain Computation II

We now compute the F-matrix:

function [F ] = ff(A, h, algor)
Ah = A ∗ h;
[n, n] = size(Ah);
I = eye(n);
%
% algor = 1 : Forward Euler
%
if algor == 1,

F = I + Ah;
end
%
% algor = 2 : Backward Euler
%
if algor == 2,

F = inv(I − Ah);
end

return
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Numerical Stability Domain Computation

Numerical Stability Domain Computation III

We now compute the largest possible value of h, for which all eigenvalues of F are
inside the unit circle:

function [hmax] = hh(alpha, algor, hlower, hupper)
A = aa(alpha);
maxerr = 1.0e-6;
err = 100;
while err > maxerr,

h = (hlower + hupper)/2;
F = ff(A, h, algor);
lmax = max(abs(eig(F )));
err = lmax − 1;
if err > 0,

hupper = h;
else

hlower = h;
end,
err = abs(err);

end
hmax = h;

return

The hh-function, as shown above, works only for algorithms with stability domains
similar to that of the FE algorithm. The logic of the if-statement must be reversed for
algorithms of the BE type.
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Numerical Stability Domain Computation

Numerical Stability Domain Computation IV

Finally, we need to sweep over a selected range of α values, and plot hmax as a
function of α in polar coordinates.

There certainly exist more efficient curve tracking algorithms than the one outlined
above, but for the time being, this algorithm will suffice.
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Newton Iteration

Fixed-point Iteration

When using implicit numerical integration algorithms, we need to iterate on the
solution during each step.

One possible approach to iterating on the solution is to start with a prediction
followed by many corrections.

prediction: ẋk = f(xk, tk)
xP
k+1 = xk + h · ẋk

1st correction: ẋP
k+1 = f(xP

k+1, tk+1)

xC1
k+1 = xk + h · ẋP

k+1

2nd correction: ẋC1
k+1 = f(xC1

k+1, tk+1)

xC2
k+1 = xk + h · ẋC1

k+1

3rd correction: ẋC2
k+1 = f(xC2

k+1, tk+1)

xC3
k+1 = xk + h · ẋC2

k+1

etc.

This type of iteration method is called fixed-point iteration.
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Newton Iteration

Fixed-point Iteration II

When we apply fixed-point iteration to the linear system, we obtain:

FP = I(n) + A · h
FC1 = I(n) + A · h + (A · h)2

FC2 = I(n) + A · h + (A · h)2 + (A · h)3

FC3 = I(n) + A · h + (A · h)2 + (A · h)3 + (A · h)4

After an infinitely large number of iterations:

F = I(n) + A · h + (A · h)2 + (A · h)3 + . . .

Therefore:
(A · h) · F = A · h + (A · h)2 + (A · h)3 + (A · h)4 + . . .

Subtracting one from the other:

[I(n) − A · h] · F = I(n)

we obtain:
F = [I(n) − A · h]−1

Seemingly we obtain the same F matrix as in the case of the BE algorithm.
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Newton Iteration

Fixed-point Iteration III

Let us draw the numerical stability domain of this algorithm:
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Figure: Numerical stability domain of predictor-corrector FE-BE
technique
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Newton Iteration

Fixed-point Iteration III

Let us draw the numerical stability domain of this algorithm:
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Figure: Numerical stability domain of predictor-corrector FE-BE
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This evidently didn’t work very well.
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Newton Iteration

Fixed-point Iteration IV

What Went Wrong?

The approach didn’t work, because the infinite series:

F = I(n) + A · h + (A · h)2 + (A · h)3 + . . .

only converges, if all of the eigenvalues of A · h lie inside the unit circle. If this is not
the case, the subtraction is invalid.

Inside the unit circle, the numerical stability domain of the predictor-corrector method
is identical to that of the BE algorithm, but outside the unit circle, the method is
unstable everywhere.

For this reason, the fixed-point iteration method is useless.
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Newton Iteration

Newton Iteration

Newton iteration can be used to determine the zero-crossings of a function:

x

F (x)

α

α

x� x�+1

x�+2

Figure: Newton iteration on a single zero-crossing function

tan α =
∂F�

∂x
=

F�

x� − x�+1
⇒ x�+1 = x� − F�

∂F�/∂x
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Newton Iteration

Newton Iteration II

The BE algorithm applied to a scalar differential equation can be formulated as follows:

xk+1 = xk + h · f (xk+1, tk+1)

Therefore:
F(xk+1) = xk + h · f (xk+1, tk+1) − xk+1 = 0.0

Now, Newton iteration can be applied:

x�+1
k+1 = x�

k+1 − xk + h · f (x�
k+1, tk+1) − x�

k+1

h · ∂f (x�
k+1, tk+1)/∂x − 1.0
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Newton Iteration

Newton Iteration III

In the case of a state vector, we can write:

x�+1 = x� − (H�)
−1 · F�

where:

H =
∂F
∂x

=

⎛
⎜⎜⎜⎝

∂F1/∂x1 ∂F1/∂x2 . . . ∂F1/∂xn

∂F2/∂x1 ∂F2/∂x2 . . . ∂F2/∂xn

.

..
.
..

. . .
.
..

∂Fn/∂x1 ∂Fn/∂x2 . . . ∂Fn/∂xn

⎞
⎟⎟⎟⎠

is the Hessian matrix of the Newton iteration.
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Newton Iteration

Newton Iteration IV

We can apply the Hessian matrix to the BE algorithm:

x�+1
k+1 = x�

k+1 − [h · J �
k+1 − I(n)]−1 · [xk + h · f(x�

k+1 , tk+1) − x�
k+1]

where:

J =
∂f

∂x
=

⎛
⎜⎜⎜⎝

∂f1/∂x1 ∂f1/∂x2 . . . ∂f1/∂xn

∂f2/∂x1 ∂f2/∂x2 . . . ∂f2/∂xn

..

.
..
.

. . .
..
.

∂fn/∂x1 ∂fn/∂x2 . . . ∂fn/∂xn

⎞
⎟⎟⎟⎠

is the Jacobian matrix of the dynamic system.
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Newton Iteration

Newton Iteration V

If the system is linear:
J = A

Therefore:

x�+1
k+1 = x�

k+1 − [A · h − I(n)]−1 · [(A · h − I(n)) · x�
k+1 + xk]

⇒ x�+1
k+1 = [I(n) − A · h]−1 · xk

Newton iteration does not ever change the numerical stability domain of an ODE
solver. This is true not only for the BE algorithm, but rather for all numerical ODE
solvers.
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Conclusions
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algorithm must always be taken into consideration.
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Conclusions

Conclusions

� In the analysis of numerical ODE solvers, the numerical stability of the
algorithm must always be taken into consideration.

� The numerical stability of most ODE solvers can be represented by a numerical

stability domain drawn in the complex λ · h plane.

� The numerical stability of ODE solvers is usually analyzed for linear autonomous
time-invariant systems only.

� There exists also a theory of non-linear stability, but this theory is quite
involved, and it is usually not necessary to use it, because the numerical stability
of a linearized system is the same as that of the original non-linear system.
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Conclusions II

� In the analysis of numerical ODE solvers, it is also important to consider the
approximation accuracy of the algorithm.

� The numerical accuracy of an ODE solver is subject to a number of error types,
such as the truncation error, the roundoff error, and the accumulation error.

� Most important among these error types is the truncation error that is
characterized by the order of approximation accuracy of the solver.
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Conclusions

Conclusions II

� In the analysis of numerical ODE solvers, it is also important to consider the
approximation accuracy of the algorithm.

� The numerical accuracy of an ODE solver is subject to a number of error types,
such as the truncation error, the roundoff error, and the accumulation error.

� Most important among these error types is the truncation error that is
characterized by the order of approximation accuracy of the solver.

� It is important to analyze the order of approximation accuracy also for
non-linear and multi-state systems, because it can happen that the order of
approximation accuracy is higher for linear than for non-linear systems and
possibly also higher for scalar than for multi-state systems.
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