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We already noticed that the numerical stability of an algorithm can be expressed in

the complex λ · h plane. We furthermore saw that a numerically stable solution isn’t
necessarily also an accurate solution.

We would now like to investigate if it is possible to obtain something like an accuracy
domain similar to the numerical stability domain.

We shall start with the linear system:

ẋ = A · x ; x(t0) = x0

using the same A-matrix that we had been using before in the stability analysis:

A =

(
0 1
−1 2 cos(α)

)

This matrix exhibits two eigenvalues on the unit circle forming an angle α with the
negative real axis.

We use the normalized initial conditions:

x0 =

(
1
1

)
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The analytical solution can easily be found:

xanal = exp(A · (t − t0)) · xo

A numerical solution can be obtained using any one of the previously introduced
numerical ODE solvers, such as the RK4 algorithm:

function [x] = rk4(A, h, x0)
h2 = h/2; h6 = h/6;
x(:, 1) = x0;
for i = 1 : 10/h,

xx = x(:, i);
k1 = A ∗ xx ;
k2 = A ∗ (xx + h2 ∗ k1);
k3 = A ∗ (xx + h2 ∗ k2);
k4 = A ∗ (xx + h ∗ k3);
x(:, i + 1) = xx + h6 ∗ (k1 + 2 ∗ k2 + 2 ∗ k3 + k4);

end
return
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We simulate across 10 seconds and compute the global error:

εglobal = ‖xanal − xsimul‖∞
We iterate over the integration step size, h, until the global error stays below a
specified threshold value, tol :

εglobal ≤ tol
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Figure: Accuracy domain of RK4 with tol = 10−4
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Figure: Accuracy domains of RK4
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Unfortunately, the accuracy domain is not independent of the performed experiment.
It depends significantly on the initial conditions that we are using.
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Unfortunately, the accuracy domain is not independent of the performed experiment.
It depends significantly on the initial conditions that we are using.

We need something better.
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Figure: Simulation efficiency of different FRK algorithms



Numerical Simulation of Dynamic Systems V

Single-step Integration Methods III

Accuracy Considerations

Damping Factor and Oscillation Frequency

Given the linear continuous-time system:

ẋ = A · x ; x(t0) = x0

The linear discrete-time system:

xk+1 = Fanal · xk ; x(t0) = x0

with:
Fanal = exp(A · h)

has the identical solution as the continuous-time system at the sampling instants, k · h.

Therefore:
Eig{Fanal} = exp(Eig{A} · h)

Every eigenvalue of the discrete-time system corresponds to an eigenvalue of the
continuous-time system:

λdisc = exp(λcont · h) = exp((−σ + j · ω) · h) = exp(−σ · h) · exp(j · ω · h)
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We introduce a new complex plane:

z = exp(λ · h)

Control engineers know this plane very well.
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We introduce a new complex plane:

z = exp(λ · h)

Control engineers know this plane very well.

We introduce also a discrete damping factor, σd , and a discrete oscillation frequency,
ωd :

σd = σ · h
ωd = ω · h
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We introduce a new complex plane:

z = exp(λ · h)

Control engineers know this plane very well.

We introduce also a discrete damping factor, σd , and a discrete oscillation frequency,
ωd :

σd = σ · h
ωd = ω · h

Therefore:

|z | = exp(−σd )

∠z = ωd



Numerical Simulation of Dynamic Systems V

Single-step Integration Methods III

Accuracy Considerations

Damping Factor and Oscillation Frequency II

We introduce a new complex plane:

z = exp(λ · h)

Control engineers know this plane very well.

We introduce also a discrete damping factor, σd , and a discrete oscillation frequency,
ωd :

σd = σ · h
ωd = ω · h

Therefore:

|z | = exp(−σd )

∠z = ωd

The values σd and ωd are the discrete damping factor and the discrete oscillation
frequency that we would expect to see if the simulation of the model were to be
performed analytically.
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In reality, we perform a numerical simulation. Its Fsimul-matrix approximates the
Fanal-matrix of the analytical solution.
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In reality, we perform a numerical simulation. Its Fsimul-matrix approximates the
Fanal-matrix of the analytical solution.

Consequently, we can define for the Fsimul-matrix:

ẑ = exp(λ̂d )

with:
λ̂d = −σ̂d + j · ω̂d

and therefore:

|ẑ| = exp(−σ̂d )

∠ẑ = ω̂d
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In reality, we perform a numerical simulation. Its Fsimul-matrix approximates the
Fanal-matrix of the analytical solution.

Consequently, we can define for the Fsimul-matrix:

ẑ = exp(λ̂d )

with:
λ̂d = −σ̂d + j · ω̂d

and therefore:

|ẑ| = exp(−σ̂d )

∠ẑ = ω̂d

The variable σ̂d approximates σd , and the variable ω̂d approximates ωd .
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Consequently, it makes sense to introduce the damping error, εσ, and the frequency
error, εω :

εσ = σd − σ̂d

εω = ωd − ω̂d
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Consequently, it makes sense to introduce the damping error, εσ, and the frequency
error, εω :

εσ = σd − σ̂d

εω = ωd − ω̂d

We can plot the numerical damping, σ̂d , in function of the analytical damping, σd .
This graph is called damping plot.
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Figure: Damping plot of RK4
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Figure: Damping plot of BI4

This algorithm doesn’t lose its stability, but its damping factor at infinity assumes a
value of zero instead of infinite.

This is an F-stable algorithm. All F-stable algorithms have this property in common.
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This algorithm doesn’t lose its stability, but its damping factor at infinity is:

σ̂d (−∞) = −4 · log(
ϑ

1 − ϑ
)

This is an A-stable but not L-stable algorithm.
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This algorithm doesn’t lose its stability, but its damping factor at infinity is:

σ̂d (−∞) = −4 · log(
ϑ

1 − ϑ
)

This is an A-stable but not L-stable algorithm.

� The damping is infinite in the case of the BRK4 algorithm with ϑ = 0. The
BRK4 algorithm is L-stable.
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This algorithm doesn’t lose its stability, but its damping factor at infinity is:

σ̂d (−∞) = −4 · log(
ϑ

1 − ϑ
)

This is an A-stable but not L-stable algorithm.

� The damping is infinite in the case of the BRK4 algorithm with ϑ = 0. The
BRK4 algorithm is L-stable.

� The damping is zero in the case of the BI4 algorithm with ϑ = 0.5. The BI4
algorithm is F-stable.
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This algorithm doesn’t lose its stability, but its damping factor at infinity is:

σ̂d (−∞) = −4 · log(
ϑ

1 − ϑ
)

This is an A-stable but not L-stable algorithm.

� The damping is infinite in the case of the BRK4 algorithm with ϑ = 0. The
BRK4 algorithm is L-stable.

� The damping is zero in the case of the BI4 algorithm with ϑ = 0.5. The BI4
algorithm is F-stable.

� The damping is negative in the case of ϑ > 0.5. These algorithms lose their
numerical stability, i.e., their numerical stability domains loop in the left-half

complex λ · h plane.
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Figure: Damping plot of BRK4

The BRK4 algorithm is L-stable. Therefore, the damping grows to infinity.

However, the damping of the numerical simulation algorithm grows much more slowly
than that of the analytical simulation.
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Figure: Damping plot of IEX4

In the case of the IEX4 algorithm, strange things happen that we need to understand
better. Its F-matrix is:

F = −1

6
· [I(n) − A · h]−1 + 4 · [I(n) − A · h

2
]−2

−27

2
· [I(n) − A · h

3
]−3 +

32

3
· [I(n) − A · h

4
]−4
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We can analyze the scalar case with:

q = λ · h

We obtain:

f = −1

6
· 1

1 − q
+ 4 · 1

(1 − q/2)2
− 27

2
· 1

(1 − q/3)3
+

32

3
· 1

(1 − q/4)4

Therefore:
σ̂d = − log(|f |)

This equation has a solution for all complex values of q, not only for q = −σd .
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Let us draw the damping error, εσ, in function of σd and ωd :
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Figure: Damping error of IEX4
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We can draw a graph with all the points, where the damping error is zero. This graph
is called “order star”.
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The function:

f = −1

6
· 1

1 − q
+ 4 · 1

(1 − q/2)2
− 27

2
· 1

(1 − q/3)3
+

32

3
· 1

(1 − q/4)4

is a strictly proper rational function. It has 10 poles and 9 zeros.
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The function:

f = −1

6
· 1

1 − q
+ 4 · 1

(1 − q/2)2
− 27

2
· 1

(1 − q/3)3
+

32

3
· 1

(1 − q/4)4

is a strictly proper rational function. It has 10 poles and 9 zeros.

The damping of the poles is −∞. For this reason, useful simulation methods must

have all of their poles in the right-half complex λ · h plane.
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The function:

f = −1

6
· 1

1 − q
+ 4 · 1

(1 − q/2)2
− 27

2
· 1

(1 − q/3)3
+

32

3
· 1

(1 − q/4)4

is a strictly proper rational function. It has 10 poles and 9 zeros.

The damping of the poles is −∞. For this reason, useful simulation methods must

have all of their poles in the right-half complex λ · h plane.

The damping of the zeros is +∞. Zeros are therefore useful in the left-half complex

λ · h plane.
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The function:

f = −1

6
· 1

1 − q
+ 4 · 1

(1 − q/2)2
− 27

2
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(1 − q/3)3
+

32

3
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(1 − q/4)4

is a strictly proper rational function. It has 10 poles and 9 zeros.

The damping of the poles is −∞. For this reason, useful simulation methods must

have all of their poles in the right-half complex λ · h plane.

The damping of the zeros is +∞. Zeros are therefore useful in the left-half complex

λ · h plane.

In the proximity of the origin, we cannot accept either poles or zeros. At least, we

cannot accept them in the left-half complex λ · h plane.
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The damping order stars of F-stable methods are symmetric to the imaginary axis due
to the symmetry of their poles and zeros.
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We can also analyze the frequency error. We can draw the discrete numerical
frequency, ω̂d , in function of the discrete analytical frequency, ωd .
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Figure: Frequency plot of RK4

The frequency is 2π-periodic. Yet, the frequency error is only of interest in the
proximity of the origin. Therefore, its periodicity doesn’t bother us much.
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It is also possible to draw the frequency error, εω , in function of σd and ωd . We thus
can draw a frequency order star:
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I drew these frequency order stars . . . because they are beautiful.
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Let us look once more at the damping and frequency plots. There are regions, where
the damping and frequency errors are very small. These regions are called asymptotic
regions.
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Figure: Asymptotic regions of RK4
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It may make sense to define a combined error consisting of the damping and frequency
errors:

oserr = |σd − σ̂d | + |ωd − ω̂d |
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It may make sense to define a combined error consisting of the damping and frequency
errors:

oserr = |σd − σ̂d | + |ωd − ω̂d |

We can encounter, in the two order stars (of damping and frequency), a region around
the origin, where oserr stays smaller than a given threshold, tol :

oserr ≤ tol
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It may make sense to define a combined error consisting of the damping and frequency
errors:

oserr = |σd − σ̂d | + |ωd − ω̂d |

We can encounter, in the two order stars (of damping and frequency), a region around
the origin, where oserr stays smaller than a given threshold, tol :

oserr ≤ tol

This region can also be used as an accuracy domain.
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It may make sense to define a combined error consisting of the damping and frequency
errors:

oserr = |σd − σ̂d | + |ωd − ω̂d |

We can encounter, in the two order stars (of damping and frequency), a region around
the origin, where oserr stays smaller than a given threshold, tol :

oserr ≤ tol

This region can also be used as an accuracy domain.

However, this new definition of the accuracy domain is much more useful than the
one offered previously, because it doesn’t depend on any experiment.
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controlling either the integration step size or the order of approximation accuracy. It is
more common, in the case of the RK algorithms, to control the integration step size.
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Integration Step-size Control

To guarantee the quality of the numerical simulation results, we have the choice of
controlling either the integration step size or the order of approximation accuracy. It is
more common, in the case of the RK algorithms, to control the integration step size.

In order to control the integration step size, we need to estimate the local integration
error.
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Integration Step-size Control

To guarantee the quality of the numerical simulation results, we have the choice of
controlling either the integration step size or the order of approximation accuracy. It is
more common, in the case of the RK algorithms, to control the integration step size.

In order to control the integration step size, we need to estimate the local integration
error.

One way of accomplishing this is to repeat the same step twice using two different
integration algorithms.
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Integration Step-size Control

To guarantee the quality of the numerical simulation results, we have the choice of
controlling either the integration step size or the order of approximation accuracy. It is
more common, in the case of the RK algorithms, to control the integration step size.

In order to control the integration step size, we need to estimate the local integration
error.

One way of accomplishing this is to repeat the same step twice using two different
integration algorithms.

Assuming that the two algorithms don’t produce (by chance) the same erroneous
result, we may implement the following algorithm:

εrel =
|x1 − x2|

|x1|
if εrel > tolrel ⇒ hnew = 0.5 · h
if εrel < 0.5 · tolrel during four steps ⇒ hnew = 1.5 · h



Numerical Simulation of Dynamic Systems V

Single-step Integration Methods III

Step-size and Order Control

Integration Step-size Control II

The above algorithm is a bit risky, because it may happen that x1 = 0 at a given
instant of time.
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Integration Step-size Control II

The above algorithm is a bit risky, because it may happen that x1 = 0 at a given
instant of time.

Therefore, it may be better to use an improved formula for estimating the relative
error, εrel:

εrel =
|x1 − x2|

max(|x1|, |x2|, δ)
where δ = 10−10 is a very small (fudge) constant.
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Integration Step-size Control II

The above algorithm is a bit risky, because it may happen that x1 = 0 at a given
instant of time.

Therefore, it may be better to use an improved formula for estimating the relative
error, εrel:

εrel =
|x1 − x2|

max(|x1|, |x2|, δ)
where δ = 10−10 is a very small (fudge) constant.

However, it is not very efficient to repeat the entire step twice just for the purpose of
obtaining an estimate of the local integration error.
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Integration Step-size Control II

The above algorithm is a bit risky, because it may happen that x1 = 0 at a given
instant of time.

Therefore, it may be better to use an improved formula for estimating the relative
error, εrel:

εrel =
|x1 − x2|

max(|x1|, |x2|, δ)
where δ = 10−10 is a very small (fudge) constant.

However, it is not very efficient to repeat the entire step twice just for the purpose of
obtaining an estimate of the local integration error.

Meanwhile there exist encapsulated codes, where two different algorithms share a
number of stages.
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The code Runge-Kutta-Fehlberg 4/5 (RKF4/5) is one of these encapsulated codes.
The method is characterized by the Butcher table:

0 0 0 0 0 0 0
1/4 1/4 0 0 0 0 0
3/8 3/32 9/32 0 0 0 0

12/13 1932/2197 −7200/2197 7296/2197 0 0 0
1 439/216 -8 3680/513 −845/4104 0 0

1/2 −8/27 2 −3544/2565 1859/4104 −11/40 0
x1 25/216 0 1408/2565 2197/4104 −1/5 0
x2 16/135 0 6656/12825 28561/56430 −9/50 2/55

The code contains an RK4 algorithm in five stages and another RK5 algorithm in six
stages:

f1(q) = 1 + q +
1

2
q2 +

1

6
q3 +

1

24
q4 +

1

104
q5

f2(q) = 1 + q +
1

2
q2 +

1

6
q3 +

1

24
q4 +

1

120
q5 +

1

2080
q6
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Therefore:
ε(q) = f1(q) − f2(q) =

1

780
q5 − 1

2080
q6

and consequently:
ε ∼ h5

We conclude:
h ∼ 5

√
ε
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1

780
q5 − 1

2080
q6

and consequently:
ε ∼ h5

We conclude:
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ε

We want:

tolrel =
|x1 − x2|

max(|x1|, |x2|, δ)

and thus, it makes sense to propose:

hnew = 5

√
tolrel · max(|x1|, |x2|, δ)

|x1 − x2|
· hold
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and thus, it makes sense to propose:

hnew = 5

√
tolrel · max(|x1|, |x2|, δ)
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· hold

In this way, if the error is too large, the next step is reduced, and if the error is
unnecessarily small, the next step is increased. Steps are never repeated, even if the
error is excessively large.
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Therefore:
ε(q) = f1(q) − f2(q) =

1

780
q5 − 1

2080
q6

and consequently:
ε ∼ h5

We conclude:
h ∼ 5

√
ε

We want:

tolrel =
|x1 − x2|

max(|x1|, |x2|, δ)

and thus, it makes sense to propose:

hnew = 5

√
tolrel · max(|x1|, |x2|, δ)

|x1 − x2|
· hold

In this way, if the error is too large, the next step is reduced, and if the error is
unnecessarily small, the next step is increased. Steps are never repeated, even if the
error is excessively large.

RKF4/5 embraces thus an optimistic control strategy.



Numerical Simulation of Dynamic Systems V

Single-step Integration Methods III

Step-size and Order Control

Integration Step-size Control III

We can interpret the problem of controlling the integration step size as a discrete
control problem.

u(t)

x(t)xẋ

εrel

εrel

tolrel e

hnew

Controller

State-space
Model

Integration
Algorithm

+

−

Figure: Step-size control viewed as a control problem
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A PI controller was developed by Kjell Gustafsson in his Ph.D. dissertation:

hnew =

(
0.8 · tolrel
εrelnew

) 0.3
n ·

(
εrelold

εrelnew

) 0.4
n · hold

where:

εrelnew =
‖x1 − x2‖∞

max(‖x1‖2, ‖x2‖2, δ)

εrelold = same quantity one time step back
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Conclusions

� In this presentation, we developed a numerical accuracy treatment for ODE
solvers that is as solid as that of the numerical stability treatment introduced
earlier.

� We introduced a frequency domain analysis similar to the approach taken by
control engineers in the discussion of discrete-time linear control systems.

� We designed visualization methods for accuracy properties of an ODE solver
using damping and frequency plots. Furthermore, we showed the beautiful
damping and frequency order stars of ODE solvers.

� The presentation ended with a discussion of integration step-size control
methods.
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