
Numerical Simulation of Dynamic Systems XXIII

Numerical Simulation of Dynamic Systems XXIII

Prof. Dr. François E. Cellier
Department of Computer Science

ETH Zurich

May 14, 2013

Numerical Simulation of Dynamic Systems XXIII

Simulation of Discontinuous Systems III

Variable Structure Models

Variable Structure Models

Let us try to simulate another almost identical circuit. All I did was to add an inductor
in series with the source.

R=10

C
=0

.0
01

R
=5

0

L=0.015

+

-

Ri

RLC

L

U0

i0
u1

u2

uduL

iC iR

u0 = f (t)

u1 = Ri · i0
u2 = RL · iR
iC = C · du2

dt

uL = L · di0

dt

u0 = uL + u1 + ud + u2

i0 = iC + iR

ud = mo · s
i0 = (1 − mo) · s

Numerical Simulation of Dynamic Systems XXIII

Simulation of Discontinuous Systems III

Variable Structure Models

Variable Structure Models II

This time, there is no algebraic loop. All equations can be causalized at once.

Eq.(1)

Eq.(2)

Eq.(3)

Eq.(8)

Eq.(9)

Eq.(7)

Eq.(5)

Eq.(6)

Eq.(4)

u0

iR

iC

ud

du2/dt

uL

u1

s

di0/dt

U0 = f (t)

u1 = Ri · i0
iR =

1

RL
· u2

s =
1

1 − mo
· i0

iC = i0 − iR

ud = mo · s
uL = u0 − u1 − ud − u2

du2

dt
=

1

C
· iC

di0

dt
=

1

L
· uL

Numerical Simulation of Dynamic Systems XXIII

Simulation of Discontinuous Systems III

Variable Structure Models

Variable Structure Models III

� When we try to simulate this model, we get a division by zero as soon as the
switch opens for the first time.

� The reason is simple: we failed to include the switch equation inside an
algebraic loop. Thus, the causality on the switch was fixed, which invariably
leads to a division by zero in one of the two switch positions.

� The cause of the problem is quite obvious. The inductor defines the inductive
current as a state variable, i.e., i0 is a known variable. Since this current flows
also through the diode, we have no choice but to always compute the voltage
across the diode, ud , from the diode characteristic. Hence the causality of the
diode is fixed, which foretells disaster.

Numerical Simulation of Dynamic Systems XXIII

Simulation of Discontinuous Systems III

Variable Structure Models

Variable Structure Models IV

The Modelica Standard Library tackles this problem by replacing the ideal diode by a
leaky diode:

diode blocking di
od

e
co

nd
uc

tin
g

s = 2

s = 1

s = 0

s
=

-1

s
=

-2

ud

id

Logical model equations:

ud = if OpenSwitch then s else R0 · s;
id = if OpenSwitch then G0 · s else s;
OpenSwitch = s < 0;

Algebraic model equations:

ud = [mo + (1 − mo) · R0] · s;
id = [mo · G0 + (1 − mo)] · s;
mo = if s < 0 then 1 else 0;

Numerical Simulation of Dynamic Systems XXIII

Simulation of Discontinuous Systems III

Variable Structure Models

Variable Structure Models V

The leaky diode model doesn’t change the causalities of the equation system, i.e., the
structure digraph of the model using the leaky diode is exactly the same as that using
the ideal diode. However, the leaky diode avoids the division by zero.

The causal equations of the model using the leaky diode are:

U0 = f (t)

u1 = Ri · i0

iR =
1

RL

· u2

s =
1

mo · G0 + (1 − mo)
· i0

iC = i0 − iR

ud = [mo + (1 − mo) · R0] · s

uL = u0 − u1 − ud − u2

du2

dt
=

1

C
· iC

di0

dt
=

1

L
· uL

Numerical Simulation of Dynamic Systems XXIII

Simulation of Discontinuous Systems III

Variable Structure Models

Variable Structure Models VI

� The leaky diode approximation is not unrealistic. In fact, the real diode
characteristic resembles more a leaky diode than an ideal diode.

� Unfortunately, whenever the ideal diode simulation model dies with a division by
zero, the leaky diode model exhibits a division by a very small fudge variable
whose value is arbitrary. Thus, the model becomes stiff, and the smaller we
make the fudge variables, R0 and G0, the stiffer the model will become.

� Furthermore, the simulation results often depend significantly on the value of
these non-physical fudge parameters.

� For these reasons, we would prefer to use an ideal diode model if we could.

Numerical Simulation of Dynamic Systems XXIII

Simulation of Discontinuous Systems III

Variable Structure Models

Variable Structure Models VII

What is so special about this model?

� When the switch is closed, i.e., while the diode is conducting, the model exhibits
second-order dynamics. However, once the switch opens, i.e., while the diode
blocks the current, we are faced with only first-order dynamics. The inductor
does not contribute to the dynamics in that case.

� We call a model that exhibits different structural properties, such as a varying
number of differential equations depending on the position of some switches, a
variable structure model.

� Variable structure systems are very common, e.g. in mechanical engineering. All
systems involving clutches are by their very nature variable structure systems. In
electrical engineering, most switching power converters are variable structure
systems.

� The way, the equations of our system were formulated, it doesn’t look like these
equations contain a structural singularity. There is no constraint equation to be
found. The singularity looks to be parametric in nature, thus the Pantelides
algorithm cannot solve it.

Numerical Simulation of Dynamic Systems XXIII

Simulation of Discontinuous Systems III

Mixed-mode Integration

Mixed-mode Integration

Let us look a little more closely at the inductor equation:

uL = L · di0

dt

The reason why the causality on this equation is fixed is because of our desire to use
i0 as a state variable.

Let us check what happens when we inline the inductor, e.g. using a BDF algorithm:

uL = L · di0

i0 = pre(i0) + h̄ · di0

Substituting the model equation into the solver equation, we obtain:

i0 = pre(i0) +
h̄

L
· uL

By now, the current, i0, is algebraic and linear in the voltage, uL, i.e., the causality of
the inlined inductor is free.

Numerical Simulation of Dynamic Systems XXIII

Simulation of Discontinuous Systems III

Mixed-mode Integration

Mixed-mode Integration II

A simulation scheme, in which different integrators use different algorithms, is called a
mixed-mode integration scheme.

In the given example, we use a mixed-mode integration scheme by inlining the
inductor, but not the capacitor.

The model equations can now be written as follows:

u0 = f (t)

u1 = Ri · i0

u2 = RL · iR

iC = C · du2

dt

i0 = pre(i0) +
h̄

L
· uL

u0 = uL + u1 + ud + u2

i0 = iC + iR

ud = mo · s

i0 = (1 − mo) · s

Numerical Simulation of Dynamic Systems XXIII

Simulation of Discontinuous Systems III

Mixed-mode Integration

Mixed-mode Integration III

We start to causalize the equations:

Eq.(1)

Eq.()

Eq.(2)

Eq.(9)

Eq.()

Eq.()

Eq.(8)

Eq.()

Eq.()

u0

iR

iC

ud

du2/dt

uL

u1

s

i0

u0 = f (t)

u1 = Ri · i0
u2 = RL · iR
iC = C · du2

dt

i0 = pre(i0) +
h̄

L
· uL

u0 = uL + u1 + ud + u2

i0 = iC + iR

ud = mo · s
i0 = (1 − mo) · s

We encounter an algebraic loop in five equations and five unknowns.

Numerical Simulation of Dynamic Systems XXIII

Simulation of Discontinuous Systems III

Mixed-mode Integration

Mixed-mode Integration IV

We must select s as our first tearing variable to avoid a division by zero:

Eq.(1)

Eq.()

Eq.(2)

Eq.(9)

Eq.()

Eq.()

Eq.(8)

Eq.(3)

Res.Eq.1

u0

iR

iC

ud

du2/dt

uL

u1

s

i0

Unfortunately, there is still a second embedded algebraic loop in three equations and
three unknowns.

Numerical Simulation of Dynamic Systems XXIII

Simulation of Discontinuous Systems III

Mixed-mode Integration

Mixed-mode Integration V

We choose a second residual equation and complete the causalization:

Eq.(1)

Eq.(4)

Eq.(2)

Eq.(9)

Res.Eq.2

Eq.(5)

Eq.(8)

Eq.(3)

Res.Eq.1

u0

iR

iC

ud

du2/dt

uL

u1

s

i0

u0 = f (t)

iR =
1

RL
· u2

ud = mo · s
u1 = Ri · i0
uL = u0 − u1 − ud − u2

i0 = pre(i0) +
h̄

L
· uL

s =
1

1 − mo
· i0

iC = i0 − iR

du2

dt
=

1

C
· iC

Numerical Simulation of Dynamic Systems XXIII

Simulation of Discontinuous Systems III

Mixed-mode Integration

Mixed-mode Integration VI

Using the variable substitution technique, we find replacement equations for the two
residual equations. The final set of horizontally and vertically sorted equations
presents itself as follows:

u0 = f (t)

iR =
1

RL
· u2

s =
L · pre(i0) + h · (u0 − u2)

h · mo + (L + h · Ri) · (1 − mo)

ud = mo · s
i0 = (1 − mo) · s
u1 = Ri · i0
uL = u0 − u1 − ud − u2

iC = i0 − iR

du2

dt
=

1

C
· iC

Numerical Simulation of Dynamic Systems XXIII

Simulation of Discontinuous Systems III

Mixed-mode Integration

Mixed-mode Integration VII

� This model can be simulated in both the open and closed switch positions
without any division by zero.

� There is no stiffness problem in the model.

� The switch variable m0 is still a discrete state variable that must be initialized in
the initialization section of the model.

Numerical Simulation of Dynamic Systems XXIII

Simulation of Discontinuous Systems III

Mixed-mode Integration

Mixed-mode Integration VIII

Can mixed-mode integration be used to simulate all variable structure systems?

To answer this question, let us look once more what happens in the two switch
positions.

� When the switch is closed, we are dealing with an index-0 model.

� When the switch is open, we have two storage elements, but only one degree of
freedom. Hence are dealing with an index-2 model.

� Thus, variable structure systems lead to conditional index changes.

� We already knew that, using inline integration, we can simulate some index-2
models directly. This was also the case here.

� However, we mentioned that it is better to perform index reduction first, e.g.
using the Pantelides algorithm.

� Unfortunately, the Pantelides algorithm usually doesn’t work when dealing with
conditional index changes.

Numerical Simulation of Dynamic Systems XXIII

Simulation of Discontinuous Systems III

Mixed-mode Integration

Mixed-mode Integration IX

� Let us consider the case of two rotational bodies on two separate axles
connected by a clutch.

� When the clutch is free, the two bodies move independently, each being
modeled by a second-order differential equation. Thus, we are dealing with an
index-0 model.

� When the clutch is locked, the two bodies move together, causing a constraint
among the rotational positions of the two bodies. Thus, we are now dealing
with an index-3 model.

� In this situation, mixed-mode integration will probably not be able to save our
neck.

Numerical Simulation of Dynamic Systems XXIII

Simulation of Discontinuous Systems III

Mixed-mode Integration

Mixed-mode Integration X

� Sol solves this problem in a different way.

� Sol uses dynamic causalization, i.e., whenever a structural change occurs in a
variable-structure system, Sol interrupts the simulation, and calls upon an
incremental model compiler to re-causalize those equations, the causality of
which has changed.

� Once the new causalization has been obtained, the simulation is resumed,
interpolating between the final values of the previous simulation segment to
obtain the initial conditions of the new segment. Since the set of state variables
has changed, we need to determine new initial conditions from the information
available just prior to the structure change.

Numerical Simulation of Dynamic Systems XXIII

Simulation of Discontinuous Systems III

Mixed-mode Integration

Mixed-mode Integration XI

� Mosilab, another dialect of the Modelica language, chose yet another approach.

� The Mosilab model compiler uses static causalization, but generates separate
simulation models for all combinations of switches at compile time, together
with conditions of when to change from one set of simulation equations to
another.

� Unfortunately, the Mosilab approach doesn’t scale well, because the number of
simulation models grows exponentially with the number of switches, and
because the set of initial conditions of each of these models grows quadratically
in the number of simulation models.

Numerical Simulation of Dynamic Systems XXIII

Simulation of Discontinuous Systems III

Mechanical Friction

Mechanical Friction

A typical friction force characteristic is shown below:

v

F(v)

Fd

Fs

-Fs

-Fd

� There are three different regions (modes) of this nonlinear model: a backward
mode, a sticking mode, and a forward mode.

� While the velocity of the articulation is zero, the articulation operates in its
sticking mode. It will remain in this mode, until the sum of forces applied to
this articulation becomes either larger than the positive sticking friction force,
Fs , or smaller than the negative sticking friction force, −Fs .

� When this happens, the articulation comes out of sticking friction, and changes
its operational mode to moving either forward or backward. It will remain in
that mode, until the velocity of the articulation crosses through zero, at which
time the model will return to its sticking mode.

Numerical Simulation of Dynamic Systems XXIII

Simulation of Discontinuous Systems III

Mechanical Friction

Mechanical Friction II

� The friction force is a known applied force if the velocity v is different from zero.
In that situation, the computational causality of the friction model is such that
the velocity is an input to the model, whereas the friction force is its output.

� When the velocity becomes zero, the two bodies, between which the friction
force is acting, become stuck. In this situation, the model changes its structure:
A new equation, v = 0.0, and a new unknown force, Fc , are added to the
model. The constraint force Fc is determined such that the new constraint on
the velocity, v = 0.0, is always met.

� This is a new situation as compared to the electrical switch, because the
electrical switch toggles between two different equations one of which is always
active. Thus, the number of equations remains the same. In contrast, the
friction element adds one equation and one variable to the model, when v
becomes 0, and removes them again, when abs(Fc) becomes larger than the
threshold value Fs .

Numerical Simulation of Dynamic Systems XXIII

Simulation of Discontinuous Systems III

Mechanical Friction

Mechanical Friction III

� Modelica does not allow to add/remove variables and/or equations during the
simulation. Therefore, a dummy equation is added that becomes active, when
the constraint equation, v = 0.0, is removed. The dummy equation is used to
provide a unique –but arbitrary– value for Fc during sliding motion. For
example, Fc = 0.0 is as good a value as any.

� Sol and Mosilab would have allowed us to add/remove equations and/or
variables, but we wish to discuss the more compact, albeit less readable,
Modelica solution for now.

� The friction force F can thus be defined using the following Modelica code:

F = if v > 0 then cf · v + Fd else
if v < 0 then cf · v − Fd else Fc

0 = if Sticking then v else Fc

� The third equation is our meanwhile well-known switch equation.

Numerical Simulation of Dynamic Systems XXIII

Simulation of Discontinuous Systems III

Mechanical Friction

Mechanical Friction IV

� This very elegant and compact friction model has only one disadvantage: it
won’t work.

� As the velocity, v , is usually a state variable, it is considered known, and
consequently, the switch equation must always compute Fc .

� Since the causality of the switch equation is fixed, we will end up with a division
by zero.

� I told you that the Pantelides algorithm usually doesn’t work for conditional
index changes. However, it sometimes does, and this is one of the cases, where
this happens.

� If the velocity, v , is zero in the sticking mode, then also a = 0.

� Hence we can replace the velocity by the acceleration in the switch equation:

F = if v > 0 then cf · v + Fd else
if v < 0 then cf · v − Fd else Fc

0 = if Sticking then a else Fc

Numerical Simulation of Dynamic Systems XXIII

Simulation of Discontinuous Systems III

Mechanical Friction

Mechanical Friction V

� This model works, but since we no longer state explicitly that v = 0.0, while in
sticking mode, there may be a small remaining velocity from the iteration on the
state event that subsequently leads to a slow drift.

� We can avoid that problem by augmenting the model:

F = if v > 0 then cf · v + Fd else
if v < 0 then cf · v − Fd else Fc

0 = if Sticking then a else Fc
when Sticking then

reinit(v, 0);
end when;

Numerical Simulation of Dynamic Systems XXIII

Simulation of Discontinuous Systems III

Mechanical Friction

Mechanical Friction VI

� We haven’t defined yet, how the discrete state variable, Sticking , is computed
by the model. To this end, we need to define, how the switching between the
sliding and the sticking phases takes place.

� It is advantageous to split the friction force law into the following five different
regions:

region: region conditions:

Forward : v > 0 and F = cf · v + Fd
StartForward : v = 0 and a > 0 and F = +Fd
Sticking : v = 0 and a = 0 and F ∈ [−Fs , +Fs]
StartBackward : v = 0 and a < 0 and F = −Fd
Backward : v < 0 and F = cf · v − Fd

� Unfortunately, the above five regions cannot be encoded directly, because the
equality relation “=” appears in the conditional expressions of if-statements. It
is not meaningful to test computed real-valued variables for being equal to zero.

Numerical Simulation of Dynamic Systems XXIII

Simulation of Discontinuous Systems III

Mechanical Friction

Mechanical Friction VII

We shall use an indirect approach. The switching between the five regions is described
by a deterministic finite state machine (DFSM) represented by the following state
transition diagram:

Start

Sticking
a = 0 ; v = 0

Forward
v > 0

Backward
v < 0

Start
Forward

a > 0

Start
Backward

a < 0

v < 0 v > 0

else

v < 0 v > 0F > FΣ sF < -FΣ s

a > 0 and not v < 0_ a < 0 and not v > 0_

v > 0_ v < 0_

Numerical Simulation of Dynamic Systems XXIII

Simulation of Discontinuous Systems III

Mechanical Friction

Mechanical Friction VIII

We are now ready to encode to complete friction model:

Forward = pre(Start) and v > 0 or
pre(StartForward) and v > 0 or
pre(Forward) and not v <= 0;

Backward = pre(Start) and v < 0 or
pre(StartBackward) and v < 0 or
pre(Backward) and not v >= 0;

StartForward = pre(Sticking) and Fc > +Fs or
pre(StartForward) and not
(v > 0 or a <= 0 and not v > 0);

StartBackward = pre(Sticking) and Fc < −Fs or
pre(StartBackward) and not
(v < 0 or a >= 0 and not v < 0);

Sticking = not (Start or
Forward or StartForward or
Backward or StartBackward);

F = if Forward then cf · v + Fd else
if Backward then cf · v − Fd else
if StartForward then +Fd else
if StartBackward then −Fd else Fc ;

0 = if Sticking or Start then a else Fc ;

when Sticking and not Start then
reinit(v, 0);

end when;

Numerical Simulation of Dynamic Systems XXIII

Simulation of Discontinuous Systems III

Mechanical Friction

Mechanical Friction IX

� This model can be simulated. Unfortunately, the conditional expression
accompanying the switch equation is anything but smooth. Consequently, we
are forced to use golden section to iterate on the switch equation.

� Let us see whether we can improve on the situation by using the parameterized
curve description method.

Numerical Simulation of Dynamic Systems XXIII

Simulation of Discontinuous Systems III

Mechanical Friction

Mechanical Friction X

A slightly simplified parameterized friction force characteristic is shown below:

v

F(v)

Fd

-Fd

s = +1

s = -1

s = 0

v = 1

s = +2

v = -1

s = -2

The curve parameter is defined as follows:

region s

forward v + 1

sticking F
Fd

backward v − 1

Numerical Simulation of Dynamic Systems XXIII

Simulation of Discontinuous Systems III

Mechanical Friction

Mechanical Friction XI

� Curve parameters can be defined in any way that is most suitable.

� They don’t have to be equidistantly spaced, and they can even adopt different
units in different regions, as the example demonstrates.

� Using the new variable, s, we can define the simplified friction model as follows:

Forward = s > +1;
Backward = s < −1;
v = if Forward then s − 1 else

if Backward then s + 1 else 0;
F = if Forward then cf · (s − 1) + Fd else

if Backward then cf · (s + 1) − Fd else Fd · s;

� This model is correct in the sense that it describes unambiguously our intentions
of what the model is supposed to accomplish.

Numerical Simulation of Dynamic Systems XXIII

Simulation of Discontinuous Systems III

Mechanical Friction

Mechanical Friction XII

� Unfortunately, the Dymola model compiler, as it is currently implemented, is
unable to generate executable simulation code from that model.

� While the model operates in its Forward region, the velocity, v , is a state
variable, thus can be assumed known. Hence the curve parameter, s, can be
computed from the equation s = v + 1, and the friction force can be obtained
using the equation F = cf · (s − 1) + Fd .

� When s becomes smaller than +1, the model enters its Sticking region. In this
region, we have the equation; v = 0. Thus, the velocity, v , can no longer be
treated as a known state variable, and we are confronted with a conditional
index change.

� We can tackle the problem using the same argumentation that had been used
already in the previous model: If the velocity, v , is constantly equal to zero over
a period of time, then also the acceleration, a, must be constantly equal to zero
during that time period.

Numerical Simulation of Dynamic Systems XXIII

Simulation of Discontinuous Systems III

Mechanical Friction

Mechanical Friction XIII

Hence we parameterize the friction force characteristic differently:

a

F(a)

Fd

-Fd

s = +1

s = -1

s = 0

a = 1

s = +2

a = -1

s = -2

^
^

^

^
^

StartForward

StartBackward

The curve parameter is defined as follows:

region ŝ

forward a + 1

sticking F
Fd

backward a − 1

Numerical Simulation of Dynamic Systems XXIII

Simulation of Discontinuous Systems III

Mechanical Friction

Mechanical Friction XIV

We code the so parameterized force characteristic as follows:

StartForward = ŝ > +1;
StartBackward = ŝ < −1;
a = if StartForward then ŝ − 1 else

if StartBackward then ŝ + 1 else 0;
F = if StartForward then +Fd else

if StartBackward then −Fd else Fd · ŝ;

The following state transition diagram describes the transitions between the different
modes:

Start

Sticking
a = 0 ; v = 0

Forward
v > 0

Backward
v < 0

v < 0 v > 0

else

StartBackward and v < 0 StartForward and v > 0

v > 0_ v < 0_

Numerical Simulation of Dynamic Systems XXIII

Simulation of Discontinuous Systems III

Mechanical Friction

Mechanical Friction XV

� This is a simplified version of the state transition diagram used by the earlier
model. The new finite state machine has only four instead of six discrete states
(regions).

� The StartForward and StartBackward modes of operation are no longer
considered separate regions. Instead, they are contained within the Sticking
region model. They only represent different aspects of the Sticking region.

� This is the friction model that is currently being offered as part of the
mechanics sub-library of the Modelica Standard Library.

Numerical Simulation of Dynamic Systems XXIII

Simulation of Discontinuous Systems III

Petri Nets

Petri Nets

We shall now demonstrate that it is always possible to decompose complex
(combined) event conditions into sets of simple event conditions that consist of a
single relational operator only.

Thus, all zero-crossing functions can be made smooth.

To this end, we shall introduce a new model description tool: the Petri net.

Numerical Simulation of Dynamic Systems XXIII

Simulation of Discontinuous Systems III

Petri Nets

Petri Nets II

� Petri nets consist of two modeling elements: places and transitions.

� Places are holders of tokens.

� Each place maintains a discrete state variable that counts the number of tokens
currently held by the place.

� Transitions connect places.

� When a transition fires, it takes some tokens out of places connected at its
inputs, and places some new tokens at places connected at its outputs in
accordance with some logic to be defined.

� A transition may fire, when an external firing condition is true, if the conditions
concerning the necessary numbers of tokens held by its input places are also true.

� If one place feeds several transitions, additional logic may be required to
determine firing preferences in the case of simultaneous events, i.e., in the case
where the external firing conditions of several transitions become true
simultaneously, because there may be enough tokens in the input place to fire
one or the other of these transitions, but not all of them.

Numerical Simulation of Dynamic Systems XXIII

Simulation of Discontinuous Systems III

Petri Nets

Petri Nets III

Many different dialects of Petri nets have been described in the literature.

� Bounded Petri nets are Petri nets with capacity limitations imposed on their
places.

� Normal Petri nets are Petri nets with a capacity limit of one imposed on each
place. In a normal Petri net, the discrete state counting the number of tokens
contained in a place can thus be represented as a Boolean state. If the state has
a value of true, there is a token located at the place. If the state has a value of
false, there is no token at the place.

� Priority Petri nets resolve the ambiguity associated with multiple transitions
being able to fire simultaneously by associating a prioritization scheme to these
transitions.

� Normal priority Petri nets (NPPNs) are normal Petri nets employing
prioritization schemes in all of their transitions.

Numerical Simulation of Dynamic Systems XXIII

Simulation of Discontinuous Systems III

Petri Nets

Petri Nets IV

A NPPN place with two inputs and two outputs is shown below:

xxxx
xxxx
xxxx
xxxx

s3

s1

s2

s4

p1

f1

f2

f3

f4

The place passes state information, si , to
all neighboring transitions, and in turn
receives firing information, fi , back from
these transitions.

The NPPN place could be governed by the
following equations:

s1 = pre(p1)

s2 = pre(p1) or f1

s3 = pre(p1)

s4 = pre(p1) and not f3

p1 = [pre(p1) and not (f3 or f4)] or f1 or f2

Numerical Simulation of Dynamic Systems XXIII

Simulation of Discontinuous Systems III

Petri Nets

Petri Nets V

� The place first provides the first input transition, t1, with its state information.
Transition t1 needs to know this information, because, due to the single-token
capacity limitation, it cannot fire, unless the place, p1, is currently unoccupied.
The place receives the firing information, f1, back from transition t1. If t1 fires,
it means that it is going to place a new token at p1.

� The place then provides the appropriate state information, s2, to the second
input transition, t2. Transition t2 is assigned a lower priority than transition t1.
Transition t2 is not allowed to fire if either there is already a token at place p1,
or if the other input transition, t1, decided to fire, because if both transitions
were to fire simultaneously, they both would try to place a token at p1, which
would violate the imposed capacity limit of one.

� The place then provides its state information to the first output transition, t3.
Transition t3 is allowed to fire if a token is currently at p1. If it fires, it will take
the token away from place p1.

Numerical Simulation of Dynamic Systems XXIII

Simulation of Discontinuous Systems III

Petri Nets

Petri Nets VI

� The place then provides its state information to the second output transition,
t4. Transition t4 is assigned a lower priority than transition t3. Transition t4 is
not allowed to fire, unless there is currently a token at place p1 and transition t3
has not decided to fire, because if both transitions were to fire simultaneously,
they both would fight over who gets to remove the token from p1.

� Finally, the place must update its own state information. If there was a token at
p1 before, and neither of the two output transitions, t3 or t4, has taken it away,
or, if one of the two input transitions, t1 or t2, has placed a new token at p1,
there will be a token at that place during the next cycle.

Numerical Simulation of Dynamic Systems XXIII

Simulation of Discontinuous Systems III

Petri Nets

Petri Nets VII

Let us now look at a transition with two input places and two output places:

s2

f2

s3

f3
s1

f1

s4
f4

c1

The transition is allowed to fire along all of
its connections, when the external firing
condition, c1, is true, and if each of the
input places holds a token (or more
precisely, if the state information arriving
from all of the input places is true), and if
none of the output places holds a token (or
more precisely, if the state information of
none of the output places is true).

This logic can be described by the
following set of equations:

fire = c1 and s1 and s2 and not (s3 or s4)

f1 = fire

f2 = fire

f3 = fire

f4 = fire

Numerical Simulation of Dynamic Systems XXIII

Simulation of Discontinuous Systems III

Petri Nets

Petri Nets VIII

Deterministic finite state machines (DFSMs) can be modeled as normal priority Petri
nets with the additional constraints that there is only one token in the system that is
initially located at the Start place. Furthermore, DFSMs map to NPPNs, in which
each transition is associated with exactly one input place and one output place.

Let us model the DFSM of the original friction model as a Petri net. The
corresponding NPPN representation is shown below:

Start

Sticking ForwardBackward
Start

Forward
Start

Backward

c7

c1 c2c3

c4 c5

c6

c11

c8 c9

c10

Numerical Simulation of Dynamic Systems XXIII

Simulation of Discontinuous Systems III

Petri Nets

Petri Nets IX

What have we gained by this representation?

� We immediately recognize what the external firing conditions, ci , represent.
These are the conditions that are associated with state transitions in the DFSM.
Hence those are the edge-triggered Boolean variables associated with the
zero-crossing functions.

� In the past, we had many different discrete event blocks representing the actions
to be taken, when one or the other of the zero-crossing functions triggered an
event. This is no longer the case.

� All of the discrete equations governing both places and transitions are valid at
every event, since they were formulated as functions of the current location of
the tokens, i.e., they were functions of the discrete state that the system is
currently operating in.

Numerical Simulation of Dynamic Systems XXIII

Simulation of Discontinuous Systems III

Petri Nets

Petri Nets X

Thus, every discontinuous model, as complex as it may be, can be described by
exactly three sets of equations:

� There are the implicitly defined algebraic and differential equations describing
the continuous subsystem.

� There is the set of zero-crossing functions that are all evaluated in parallel, while
the continuous subsystem is being simulated. If a state event is being triggered
by one of them, an iteration (or interpolation) takes place to locate the event
time as accurately as necessary.

� At that moment, the third set of simultaneous equations is being executed.
These are the (possibly implicitly defined) algebraic and difference equations
describing the discrete subsystem. The discrete equations are executed
iteratively, until no discrete state changes occur any longer. When this happens,
we have found our new initial state, from which we can start the continuous
simulation afresh.

Numerical Simulation of Dynamic Systems XXIII

Simulation of Discontinuous Systems III

Petri Nets

Petri Nets XI

� A simulation model that has been compiled into this form, can be simulated in
an organized and systematic fashion based on a synchronous data flow.

� It may not be convenient for the end user of the modeling and simulation
environment to describe his or her model in this fashion. Different application
domains make use of different modeling formalisms that users are familiar with.

� It is the job of the model compiler to dissect the model description that the user
supplies, and translate it down to sets of simultaneous equations that can be
simulated without numerical difficulties.

� As this class concerns itself with the set of algorithms underlying a powerful
modeling and simulation environment, such as Dymola, we had to show step by
step, how model equations need to be preconditioned, until they are finally in a
form such that they can be simulated without difficulties. Yet, it is inconvenient
to translate every model that we came across manually down to such a form.

Numerical Simulation of Dynamic Systems XXIII

Simulation of Discontinuous Systems III

Petri Nets

Petri Nets XII

Will the iteration on the simultaneous discrete equations always converge?

� If the model of a physical system is formulated correctly, the iteration should
always converge, as our Newtonian world is deterministic in nature.

� Yet, it is easy to make mistakes, and formulate a set of discrete equations that
will not converge. It is very easy to specify logical conditions that are
contradicting themselves.

� In the Petri-net implementation, this leads to oscillations of discrete state
variables with infinite frequency, a so-called illegitimate model, i.e., it prevents
the algorithm from finding a consistent initial state, from which the continuous
simulation can be started.

� For example, the discrete “equation” p1 = not pre(p1); should not be contained
in the set of discrete equations, as this will lead to an oscillation between the
two states true and false that will never end.

� If we mean to toggle between two discrete states as a response to a state-event
being triggered (a fairly common situation), we need to model this using two
separate places with transitions back and forth that get fired by zero-crossing
functions.

Numerical Simulation of Dynamic Systems XXIII

Simulation of Discontinuous Systems III

Petri Nets

Petri Nets XIII

How can complex zero-crossing functions be reduced to simple ones?

� or -conditions can be mapped to a set of parallel transitions located between the
same two places. They can thus be easily implemented.

� and-conditions are harder to implement, as they would require transitions to be
placed in series with each other. Unfortunately, this cannot be done without
introducing a new place between them. Thus, and-conditions invariably call for
an increase in the number of discrete states.

Numerical Simulation of Dynamic Systems XXIII

Simulation of Discontinuous Systems III

Petri Nets

Petri Nets XIV

We shall demonstrate this concept by means of the modified friction DFSM.

� We recognize that we wouldn’t need the and-conditions on the zero-crossing
functions in this example, if we were to have available separate discrete states
called StartForward and StartBackward . Thus, we shall decompose the state
Sticking again into three separate discrete states. Luckily, we know the
conditions for switching between them.

� We don’t need to draw the modified Petri net, as is looks exactly like the
previous one. Only the interpretation of the zero-crossing functions is now
different:

c1 = v < 0

c2 = v > 0

c3 = v == 0

c4 = v < 0

c5 = v > 0

c6 = ŝ < −1

c7 = ŝ > 1

c8 = ŝ >= −1

c9 = ŝ <= 1

c10 = v >= 0

c11 = v <= 0

� As expected, all of the zero-crossing functions are now simple functions
consisting of a single relational operation only.

Numerical Simulation of Dynamic Systems XXIII

Simulation of Discontinuous Systems III

Conclusions

Conclusions

� In this third presentation on the simulation of discontinuous systems, we looked
at variable structure models, i.e., models with different sets of equations and/or
variables during different segments of the simulation.

� We resumed the discussion of electrical switches, and demonstrated that
switches that are not included in algebraic loops lead invariably to a division by
zero in one of the two switch positions.

� We then showed that inlining integrators that constrain the causality of switches
often helps to avoid divisions by zero. To this end, we introduced the concept of
mixed-mode integration.

� Next, we looked at mechanical friction characteristics as a very important
example of a complex variable structure system that exhibits all of the
theoretical difficulties illuminated before. We made use of state transition
diagrams and, more abstractly, deterministic finite state machines (DFSMs) to
describe the different regions of operation of a friction characteristic and the
conditions for switching from one region to another.

Numerical Simulation of Dynamic Systems XXIII

Simulation of Discontinuous Systems III

Conclusions

Conclusions II

� The presentation ended with the introduction of a new modeling tool, the Petri
net, a low-level technique for describing discrete events, and demonstrated that
DFSMs can always be represented by normal priority Petri nets (NPPNs).

� This offered us a systematic way for grouping equations together so that every
discontinuous system can now be described by three sets of declarative
equations: the set of continuous DAEs describing the model equations, whereby
the different segments are specified by discrete state variables that change their
values only at event times; a set of zero-crossing functions that specify when
events occur; and a set of discrete DAEs describing the evolvement of the
discrete state variables over time.

� Hence all discontinuous systems can be described by models that can be
simulated using a synchronous data flow approach.

� We showed that the Petri-net representation makes it furthermore possible to
reduce all zero-crossing functions to simple Boolean expressions containing a
single relational operator that can be implemented using smooth functions.

Numerical Simulation of Dynamic Systems XXIII

Simulation of Discontinuous Systems III

References

References

1. Cellier, F.E. and M. Krebs (2007), “Analysis and Simulation of Variable
Structure Systems Using Bond Graphs and Inline Integration,” Proc. ICBGM07,
8th SCS Intl. Conf. on Bond Graph Modeling and Simulation, San Diego,
California, pp. 29-34.

2. Otter, M., H. Elmqvist, and F.E. Cellier (1996), “Modeling of Multibody
Systems with the Object-Oriented Modeling Language Dymola,” J. Nonlinear
Dynamics, 9(1), pp.91-112.

3. Krebs, Matthias (1997), Modeling of Conditional Index Changes, MS Thesis,
Dept. of Electr. & Comp. Engr., University of Arizona, Tucson, AZ.

4. Zimmer, Dirk (2010), Equation-based Modeling of Variable-structure Systems,
Ph.D. Dissertation, Dept. of Computer Science, ETH Zurich, Switzerland.

