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A number of important simulation applications must run under real-time constraints.

� A training simulator (flight simulator, driving simulator, plant operation
simulator) must run in real time to offer meaningful training to the user.

� A model reference adaptive controller (MRAC) makes use of a plant model for
its control decisions. Evidently, the plant model must then be simulated under
real-time constraints so that the control action can be taken in a timely manner.

� A watchdog monitor makes use of a plant model, simulated under real-time
constraints, to compare the simulation trajectories with real measurements to
identify anomalous behavior of the real plant when it occurs, i.e., it is being
used for fault detection, fault isolation, and fault identification.
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What is special about running a simulation under real-time constraints?

Conceptually, the implementation of real-time simulation software is straightforward.
It contains only four new components:

� The real-time clock is responsible for the synchronization of real time and
simulated time. The real-time clock is programmed to send a trigger impulse
once every h time units of real time, where h is the current step size of the
integration algorithm, and the simulation program is equipped with a busy
waiting mechanism that is launched as soon as all computations associated with
the current step have been completed, and that checks for arrival of the next
trigger signal. The new step will not begin until the trigger signal has been
received.

� The analog to digital (A/D) converters are read at the beginning of each
integration step to update the values of all external driving functions. This
corresponds effectively to a sample and hold (S/H) mechanism. The inputs are
updated once at the beginning of every integration step and are then kept
constant during the entire step.
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� The digital to analog (D/A) converters are set at the end of each integration
step, i.e., the newest output information is put out through the D/A converters
for inspection by the user, or for driving real hardware (for so-called
hardware-in-the-loop simulations).

� External events are time events that are generated outside the simulation.
External events are used for asynchronous communication with the simulation
program, e.g. for the modification of parameter values, or for handling
asynchronous readout requests, or for communication between several
asynchronously running computer programs either on the same or different
computers. External events are usually postponed to the end of the current step
and replace a portion of the busy waiting period.
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The interprocessor and intertask communication mechanisms can be implemented in
many different ways.

� In some cases, it may be desirable to use the waiting time of the processor for
background tasks, rather than waste it in a busy waiting loop. In that case, it is
not sufficient for the real-time clock to send a message to the simulation
program. Instead, it must use the interrupt mechanism of the processor on
which the simulation is running to interrupt whatever other task the processor is
currently working on.

� In other cases, the same processor may be used for multiple real-time tasks
using a time-multiplexing scheme. In that situation, the real-time clocks of the
different tasks need to be synchronized with each other.

� When the interrupt mechanism of the real-time operating system is being used,
we also need to make sure that tasks that are related to the real-time operation
cannot be interrupted by other tasks.
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The difficulties of real-time simulation are not of a conceptual nature. They have to
do with keeping track of real time.

� How can we guarantee that all that needs to be accomplished during the
integration step can be completed prior to the arrival of the next trigger impulse?

� How do we control the computational load of an integration algorithm during
the execution of an integration step?

� What happens when we fail in this endeavor and cause an over-run?
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Previously, we introduced more and more bells and whistles that would help us in
being able to maximize user convenience, to ensure the robustness of the modeling
and simulation environment, and to guarantee the correctness of the simulation results
obtained, but all these additional features were accompanied by a substantial amount
of run-time overhead, and in many cases, the amount of time needed to bring these
algorithms to completion was not fixed.

� If we use an implicit integration algorithm, how can we know beforehand how
many iterations will be needed to guarantee a prescribed tolerance of the results?

� If we do not limit the number of iterations available to the algorithm, how can
we possibly know for sure that the step will be completed before the arrival of
the next trigger impulse from the real-time clock?

� Iteration on state events is a great thing. Yet, can we afford it under real-time
constraints?

� What happens if we do not iterate on the event? Can we still know something
about the accuracy of the results obtained?
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Real-time simulations are usually run on dedicated processors that often are bought
just for the task at hand and have to be as cheap as possible in order to make the
final product competitive on the market.

Consequently, simulation speed is of utmost importance, whereas user convenience is
fairly irrelevant.

Consequently, whereas the average user of Dymola can simulate many quite involved
and complex models without knowing anything about the numerics of the underlying
simulation engine, an engineer designing a real-time simulation program cannot be
protected from such knowledge.

Real-time simulation designers must know their simulation algorithms intimately, or
else, they will surely fail in their endeavors.
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There are four things that we can do if we don’t meet the schedule. We can:

1. increase the step size, h, in order to make more time for the tasks that need to
be completed,

2. make the function evaluation more efficient, i.e., optimize the program that
represents our state-space model,

3. improve the speed of the integration algorithm, e.g. by reducing the number of
function evaluations necessary during one step, and finally

4. buy ourselves a faster computer.

The fourth approach may sound like a measure of last resort, but in these times of
cheap hardware and expensive software and manpower, it may often be the wisest
thing to do.
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The first approach is interesting. Until now, the step size was always bounded from
the top due to accuracy and stability requirements. Now suddenly, the step size is also
bounded from the bottom.

� We cannot reduce the step size to a value smaller than the total real time
needed to perform all the computations associated with simulating the model
across one step plus the real time needed for dealing with the administration of
the simulation during that step.

� Especially, when we are using an explicit integration algorithm, as we most likely
will in order to avoid the need for iteration, the two bounds are interrelated. By
increasing the step size to avoid over-runs, we are weakening the numerical
stability of the algorithm.

� If it happens that the lower bound is larger than the upper, then we are in real
trouble.
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The second approach is interesting also.

� In order to reduce the computational load associated with function evaluations,
we may consider simplifying the model.

� In particular, we may choose to throw out the fastest modes (eigenvalues) from
the model. This will also help with the numerical stability of the scheme,
thereby allowing us to increase the step size some more.

� Often the problems with spending too much time in function evaluations is
related to needs for interpolation in data tables.

� An attractive answer to this problem may be the parallelization of the function
evaluation, e.g. by implementing the model as a neural network.
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The third approach is directly related to the integration algorithms themselves, and as
these are the central focus point of this class, it is the third solution that we shall be
pursuing in more detail in this presentation.

Numerical Simulation of Dynamic Systems XXIV

Real-time Simulation

Suitable Numerical Integration Methods

Suitable Numerical Integration Methods

Single-step vs. multi-step algorithms

� In general-purpose simulations, we may prefer single-step algorithms, because
they offer cheaper step-size control and allow us to use larger steps.

� In real-time simulation, step-size control is not an option, since the steps need
to be synchronized with the real-time clock. Thus, one of the major advantages
of single-step algorithms is gone.

� The larger step sizes may not help us either, because we need to sample external
input signals and incorporate them in the model. The larger the step size, the
less frequently we are able to update the external input signals.

� For this reason, we may prefer smaller and cheaper steps over larger and more
expensive ones even if the overall computational efficiency of using larger steps
is better.

Explicit linear multi-step methods are well suited for real-time simulation, as long as
the model to be simulated is neither stiff nor discontinuous.
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Explicit vs. implicit algorithms

� In general-purpose simulation environments, we may prefer (implicit)
stiff-system solvers, as they increase the robustness of our simulations, thereby
protecting the users from having to understand much of the intricacies of the
simulation engine they are using.

� In real-time simulation, run-time efficiency is much more important than
convenience of use. Also, implicit solvers require a Newton iteration, which
makes it impossible to know beforehand how long (how many iterations) it will
take to complete one step of the simulation.

� For this reason, we may prefer explicit over implicit solvers in real-time
simulation.

Explicit ODE solvers are preferred for real-time simulation, as long as the model to
be simulated is non-stiff.
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High-order vs. Low-order Algorithms

� In general-purpose simulation environments, we usually prefer higher-order over
lower-order methods. The reason is that we normally set the error tolerance to
10−4 (default value in Dymola), and at that accuracy requirement, a 4th- or
5th-order method is usually most economical. In some cases, such as the
simulation of chemical reaction dynamics, we may tighten our accuracy
requirements even more to e.g. 10−10, as otherwise the Newton iterations may
not converge.

� In real-time simulation, speed is of the essence, and we may simply not be able
to afford such high accuracy. For this reason, we hardly ever use an algorithm of
higher than 3rd -order in a real-time simulation.

� AB3 may be a good choice for a real-time simulation of a non-stiff model, but
many designers of real-time simulation software actually use FE . . . because that
is an algorithm they fully understand and know how to implement.

Explicit low-order ODE solvers are preferred for real-time simulation, as long as the
model to be simulated is non-stiff.
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It is kind of sad . . .

Here we went and developed more and more sophisticated numerical ODE and DAE
solvers that could do ever more good things for us, and now, faced with real-time
constraints, we simply resign.

Most real-time simulations make use of very crude (garbage!) ODE solvers to
simulate heavily simplified (garbage!) models, thereby generating highly inaccurate
(garbage!) simulation trajectories . . .

. . . but at least, they do it very fast.
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What do we do if the model to be simulated in real time is stiff?

� We already know that we cannot afford a Newton iteration, because we cannot
guarantee that it will converge in time before the next real-time synchronization
impulse arrives.

� Yet, we also know that we need a stiff system solver.

� Hence we are in a real quandary.

� Or are we not?
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Given the explicit state-space model:

ẋ = f(x, t)

We start with BE:
xk+1 = xk + h · f(xk+1, tk+1)

We develop f(xk+1, tk+1) into a Taylor series around f(xk, tk ):

f(xk+1, tk+1) = f(xk, tk ) + Jxk,tk · (xk+1 − xk) + . . .

where:

Jxk,tk =
∂f

∂x

∣
∣
∣
∣
xk,tk
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We can truncate the Taylor series after the linear term, and plug the expression into
the solver equation:

xk+1 = xk + h · [f(xk, tk ) + Jxk,tk · (xk+1 − xk)]

Solving for xk+1:

(I − h · Jxk,tk ) · xk+1 = (I − h · Jxk,tk ) · xk + h · f(xk, tk )

or:
xk+1 = xk + h · (I − h · Jxk,tk )−1

· f(xk, tk)

The new method approximates backward Euler, since the Taylor series was truncated
after the linear term. As the Taylor series gets multiplied by h, the approximation is
second-order accurate, and since the entire method is only first-order accurate, the
approximation is acceptable.
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What does the stability domain of this new method look like?

To answer this question, we plug the linear system:

ẋ = A · x

into the solver.

With f(xk, tk ) = A · xk and Jxk,tk = A:

xk+1 = xk + h · (I − Ah)−1
· A · xk

Thus:

xk+1 = (I − Ah)−1
· (I − Ah) · xk + h · (I − Ah)−1

· A · xk

= (I − Ah)−1
· [(I − Ah) · xk + h · A · xk]

= (I − Ah)−1
· xk

The numerical stability domain of the new method is the same as that of BE.
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� The linearly implicit backward Euler (LIBE) method is a stiff-system solver.

� The method is similar to Forward Euler, but differs by the presence of the term
(I − h · Jxk,tk )−1.

� From a computational point of view, that term implies that the algorithm has to
calculate the Jacobian at each step and then either solve a linear equation
system or invert a matrix.

� Despite the fact that those calculations may turn out to be quite expensive, the
computational effort is predictable, which makes the method suited for real-time
simulation.

� Low-order linearly implicit methods may indeed often be the best choice for
real-time simulation of stiff systems.

� However, they share one drawback with implicit methods: if the size of the
problem is large, then the solution of the resulting linear equation system is
computationally expensive.
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� It is important to recognize that the numerical stability domain of the LIBE
algorithm is only the same as that of BE, as long as the Jacobian is computed
accurately.

� If the Jacobian is only approximated, the stability domain changes, and it takes
little approximation, until it flips over to the left-half complex plane, i.e., until
stiff stability is getting lost.

� If the Jacobian is “approximated” by the zero matrix, LIBE turns into FE.

� A good approach may be to compute the non-zero elements of the Jacobian,
which is usually quite sparse, analytically, i.e., by symbolic (algebraic)
differentiation.

� The underlying linear system can then be solved by tearing to minimize the
number of iteration variables.

� Since the equation system to be solved is linear, the iteration will converge
within a single iteration step. Thus, the computational load can be anticipated
accurately.
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There are many applications, in which the stiffness is due to the presence of a
sub-system with very fast dynamics compared to the rest of the system.

Typical examples of this can be found in multi-domain physical systems, since the
components of different physical domains usually involve distinct time constants.

� In a mechatronics system, the electrical time constants are usually somewhere
between 1 kHz and 10 kHz, whereas the mechanical time constants are in the
order of 10 Hz to 100 Hz.

� In the thermal analysis of an integrated electronic circuit, we need to simulate
simultaneously the electrical and thermal properties of the system. Yet, the
thermal time constants are usually below 1 Hz.

In those cases, it may make sense to split the simulation into a fast and a slow part
and integrate these parts using different step sizes.
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Let us introduce the idea with an example:

RRR

L

LLL

C CCC

LineOscillator

We shall assume that the non-linear resistor of the oscillator circuit satisfies the law:

iR = k · u3
R − uR

The example is clearly non-physical, as the “resistor” doesn’t operate strictly in the
first and third quadrant of the plane spanned by uR and iR . Consequently, there are
times when the resistor converts thermal energy to electrical energy, something no
respectable resistor will ever do.
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The system can be described by the following set of state equations:

diL

dt
=

1

L
uC

duC

dt
=

1

C
(uC − k · u

3
C − iL − i1)

di1

dt
=

1

L
uC −

R

L
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1

L
u1

du1

dt
=

1

C
i1 −

1
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i2

di2

dt
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1
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i2 −

1
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u2
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i2 −

1

C
i3

.

.

.

din

dt
=

1

L
un−1 −

R

L
in −

1

L
un

dun

dt
=

1

C
in
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� Let us assume that the transmission line has 5 stages (i.e., n = 5), and the
parameters are L = 10 mH, C = 1 mF, R = 10Ω, and k = 0.04.

� If we simulate the system using FE, we need to use a step size no greater than
h = 10−4 seconds. Otherwise, the oscillator output (uC ) is computed with an
error that is unacceptably large.

� On the other hand, if we eliminate the oscillator from the circuit and replace it
by a voltage source, the transmission line alone can be simulated with a step
size that is 10 times bigger.

� Thus, we decided to split the system into two subsystems, the oscillator circuit
and the transmission line, using two different step sizes: 10−4 seconds for the
former, and 10−3 seconds for the latter.

� In this way, we integrate the fast but small (2nd-order) sub-system using a small
step size, whereas we integrate the slow and large (10th-order) sub-system using
a ten times larger step size.
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As a consequence, during each millisecond of real time, the computer has to evaluate
ten times the two scalar functions corresponding to the two first state equations,
whereas it only needs to evaluate once the remaining ten functions. Thus, the number
of floating-point operations is reduced by about a factor of four compared with a
regular simulation using a single step size throughout.

The simulation results are shown below:
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We can generalize this procedure to systems of the form:

ẋf (t) = ff (xf , xs, t)

ẋs(t) = fs(xf , xs, t)

where the sub-indices, f and s, stand for “fast” and “slow,” respectively.

Then, the use of the multi-rate version of Forward Euler with inlining results in a set
of difference equations of the form:

xf (ti + (j + 1) · h) = xf (ti + j · h) + h · ff (xf (ti + j · h),

xs(ti + j · h), ti + j · h)

xs(ti + k · h) = xs(ti ) + k · h · fs(xf (ti ), xs(ti ), ti )

where k is the (integer) ratio of the two step sizes, j = 0 . . . k − 1, and h is the
step-size of the fast sub-system.
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� The above equations do not specify, how xs(ti + j · h) is being calculated, since
the variables of the slow sub-system are not evaluated at the intermediate time
instants.

� We chose xs(ti + j · h) = xs(ti ), i.e., we used the last calculated value.

� A more accurate solution would involve using some form of extrapolation
technique.

� The problem is known as the interfacing problem. It is related to the way, in
which the fast and slow sub-systems are interconnected with each other.

� In our example, we used FE. Similar approaches have been reported in the
literature based on the AB2, including some improvements for parallel
implementation.
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Let us now try to simulate a slightly modified circuit:

RRR

L

LLL

C CCC

Rl

Cl

LineOscillator Load

Let us assume that the load parameters are Rl = 1 kΩ and Cl = 1 nF.
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� Since the load resistor is much bigger than the line resistors, the newly
introduced term in the state-space model won’t influence the dynamics of the
transmission line significantly, and we can expect the load not to influence the
behavior of the oscillator and the transmission line significantly.

� However, the added state equation introduces a fast pole. The position of this
pole is approximately located at:

λl ≈ −
1

Rl · Cl
= −106

sec
−1

� This means that we would have to reduce the step size by about a factor of
1000 with respect to the previous example, in order to obtain a numerically
stable result.

� Unfortunately, such a solution is totally unacceptable in the context of a
real-time simulation.
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A first alternative might be to replace FE by LIBE. However, this is a system of
order 13, and we may not have the luxury of inverting a 13 × 13 matrix at each step.

A second alternative might be to inline BE and apply the tearing method to the
resulting set of difference equations.

Let us rewrite the model using the inling approach.
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iL = pre(iL) +
h

L
uC

uC = pre(uC ) +
h

C
(uC − k · u
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C − iL − i1)
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Eq.(1)

Res.Eq.1

Eq.(2)

Res.Eq.2

Eq.(3)

Res.Eq.3

Eq.(6)

Res.Eq.6

Eq.(7)
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i3

u3
i4

u4
i5

u5
ul

Eq.(4)

Eq.(5)

Res.Eq.4

Res.Eq.5
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Inlining did indeed help. We got away with six tearing variables.

� Instead of having to invert a 13 × 13 matrix in every step, we now must invert a
6 × 6 matrix.

� Since even the best linear sparse matrix solver grows at least quadratically with
the size of the system in terms of its computational complexity, the savings were
quite dramatic. The computations just got faster by about a factor of four.

� Although inline integration had been developed for general simulation problems,
it turns out that this method has become a quite powerful ally in dealing with
real-time simulation as well.

� Unfortunately, we are now once again using an implicit algorithm, iterating on
non-linear equations. This means that we have no guarantee that the iteration
on the tearing variables will converge in time.

� If the Newton iteration converges after three steps, we may still be ahead of the
game, but implicit algorithms are problematic for use in real-time simulation.
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Let us check whether we can further increase the simulation speed.

We notice that the fast and the slow sub-systems are weakly coupled.

Hence it may be reasonable to inline the slow sub-system using FE, while inlining the
fast sub-system using either BE or LIBE.

In our example circuit, we inlined the equations once more, this time using the explicit
Forward Euler algorithm everywhere except for the last equation, where we still used
the implicit Backward Euler method.
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iL = pre(iL) +
h

L
pre(uC )
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h

C
· [pre(uC ) − k · pre(uC )
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h

L
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L
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L
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pre(un−1) −

Rh

L
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pre(un)

un = pre(un) +
h

C
pre(in) −

h

Rl · C
[pre(un) − pre(ul )]

ul = pre(ul ) +
h

Rl · Cl

(un − ul )

� All equations are now
explicit, except for the
very last equation,
which is implicit in the
variable ul , but can be
solved symbolically for
ul .

� We simulated the
system using the same
approach as before, i.e.,
we applied a step size
of 10−4

seconds to the
two oscillator equation,
whereas we used a step
size of 10−3 seconds to
all other equations,
including the implicit
load equation.
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The simulation executed now very fast, while the simulation results are adequately
accurate.
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In more general terms, the Backward-Forward Euler Mixed-Mode integration scheme
can be written as:

xs(tk+1) = xs(tk ) + h · fs(xf (tk ), xs(tk ), tk )

xf (tk+1) = xf (tk ) + h · ff (xf (tk+1), xs(tk+1), tk+1)

� The algorithm starts by computing explicitly the value of xs(tk+1).

� It then uses this value to evaluate xf (tk+1) either implicitly or in a semi-implicit
fashion.
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We still need to discuss, how we can perform real-time simulations of discontinuous
systems.

We need to distinguish between external and internal events.

� External events are time events that are received from outside the simulation.
They are used by either humans or control agents to interfere with the real-time
simulation, e.g. for changing a parameter value.

� External events are not time-critical, as they are always asynchronous to the
simulation. Consequently, a small delay is acceptable, and therefore, external
events are always delayed until the end of the current integration step and are
handled during the waiting period, i.e., before the next synchronization impulse
arrives from the real-time clock.
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� Internal events are events caused by the real-time simulation itself. They are
thus synchronous to the simulation, and consequently, can be time-critical.
They should be handled at the correct time.

� In real-time simulation, there is not much difference between an internal time
event and an internal state event, as we shall see.

State-event handling in real-time simulation is simplified, when comparing it to the
techniques introduced earlier, by two factors:

1. As we are using low-order integration techniques, we can also use low-order
event localization algorithms.

2. Since we use much smaller step sizes, the precise localization of state events
becomes less critical, and there shouldn’t occur as often multiple state events
within a single integration step.
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Since we must control the total amount of computations performed within an
integration step, iterative techniques for localizing state events are out. We must rely
on interpolation alone.

Yet, as we are using low-order integration techniques, the former iterative algorithms
can now be employed as interpolators.

� If we integrate by inlining a first-order accurate algorithm, i.e., either FE, BE, or
LIBE, we can use a single step of Regula Falsi to locate the event as accurately
as we can hope to accomplish with such a crude integration algorithm.

� If we decide to inline the Radau-IIA(3) algorithm, a single step of cubic
interpolation will localize the discontinuity as accurately as can be done using
such an integration method.

Of course, it may be possible to reduce the residual on the zero-crossing function
further by iteration, but this does not necessarily imply that we would thereby locate
the event more accurately, as already the previous integration steps are contaminated
by numerical errors.
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Let us discuss, how event handling may proceed under real-time constraints.

� We perform a regular integration step, advancing the simulation from time tn to
time tn+1.

� At the end of the step, we discover that a zero crossing has taken place.

� We interpolate to the next event time, tnext ∈ [tn, tn+1], using a formula of the
same order of accuracy as that of the integration method in use.

� We repeat the last integration step to advance the entire state vector from time
tn to time tnext.

� We then perform the actions associated with the event, and compute a new
consistent initial state.

� Starting from the new initial state, we perform a partial step advancing the
state vector from time tnext to time tn+1.
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� As no iteration takes place, the amount of work, i.e., the total number of
floating-point operations needed, can be estimated accurately.

� Assuming that only one state event is allowed to occur within a single
integration step, we can thus calculate, how much extra time we need to allot,
in order to handle single state events within an integration step adequately.

� We perform three integration steps instead of only one, and we have to
accommodate the additional computations needed to process the event actions
themselves.

� Thus, the total effort may grow by about a factor of four.

� For this reason, the allowed resource utilization for regular integration steps
needs to drop from about 80% to about 20%.

Internal time events are handled essentially in the same manner, except that their time
of occurrence is known in advance, i.e., we only need two partial integration steps
within the time allotted for one step instead of three.
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We haven’t discussed yet, how the simulation engine is physically connected to the
hardware.

Although it is principally possible to connect directly the output signals of the sensor
units with the input of the A/D-converters, which form part of the simulation engine,
and the outputs of the D/A-converters, also integrated with the simulation engine,
with the input signals of the actuator units, this is hardly ever done in today’s world.

Instead, commercial converters have their own computer chips built in, that perform
the necessary computations and store the digital signals in mailboxes.

Thus, an A/D-converter is really a converter together with a built-in zero-order hold
(ZOH) unit. Once the analog signal has been converted, it is available for whichever
process needs it, until it is overridden by the next sample-and-hold (S/H) cycle.

A D/A-converter doesn’t take its data from the simulation directly, but instead, takes
it out of its own mailbox.

Even the sensor and actuator units contain their own hardware-built sample-and-hold
equipment.
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Handshaking mechanisms are needed to prevent the simulator from replacing the data
in the mailbox of the D/A-converter, while the converter tries to read out the data
from its own mailbox.

Similarly, handshaking mechanisms are also needed to prevent the simulator from
reading the data from the mailbox of the A/D-converter, while these data are in the
process of being updated by the converter.

This is usually accomplished by making read and write operations out of and into the
mailboxes non-interruptible.
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A possible physical configuration of a hardware-in-the-loop (HIL) simulation is shown
below:

Simulation
engine

A/D-
converters

Mailbox

D/A-
converters

Mailbox

Plant
hardware

Sensors Actuators

Bus
controller
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� Protocols have been designed to ensure that these handshaking mechanisms
always work correctly. To this end, the High-Level Architecture (HLA) standard
was created in the U.S., whereas Europe developed its own standard with
CORBA.

� Consequently, the first figure of this presentation needs to be updated. The
time intervals needed for the A/D-conversions and D/A-conversions are no
longer part of the computational load associated with advancing the simulation
by one time step, as these activities are performed in parallel by separate
computational units. Instead, we must include the time needed for the read and
write requests from and to the mailboxes across the architecture.

� Since the total time needed for computing all activities associated with a single
integration step must be known, both HLA and CORBA offer mechanisms for
specifying the maximum allowed latency in answering requests for information
transfer across the architecture using the established communication channels
and protocols.
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Overruns are defined as situations, where, in spite of our best efforts, the simulation
engine is unable to perform all of the required computations in time to advance its
state to the next clock time, before the real-time clock interrupt is received.

This may happen, because it cannot be guaranteed that no more than one state event
will ever occur within a single integration step.

As all events must be processed, it can happen that the simulation falls behind.

Most real-time simulations specify the maximum percentage of overruns as e.g. 1% or
2%.
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What happens, when the simulation falls behind?

Thanks to the buffers implemented in the form of the mailboxes, the hardware will
hardly notice it. It simply receives the same actuator values for a second time in a row.

For the simulation software, the situation may be worse, because it may need to know,
what time it is.

Thus, the following procedure is recommended in the case of an overrun.

� If the next real-time interrupt arrives, before the computations have been
completed, the subsequent integration step is doubled in length to catch up
with real time.

In this way, we allow an integration step to be computed less accurately once in a
while in order to stay synchronous with the real-time clock.
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� In this presentation, we looked at the special requirements of real-time
simulation.

� As real-time simulation is not conceptually different from general-purpose
simulations, many of the observations made were rather practical, and not
highly mathematical.

� Consequently, this presentation contains much more text and much less
formulae than any of the previous presentations.

� Yet, real-time simulation is a very important branch of simulation, and
consequently, its special demands require often solutions that we wouldn’t ever
consider apart from a real-time simulation task.
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� We introduced a new (derived) class of integration algorithms, the linearly
implicit integration algorithms. These can be designed as variants of practically
all implicit integration schemes, although we concentrated on one algorithm
only, the linearly implicit Backward Euler (LIBE) algorithm. Whereas such
algorithms could also be used for general-purpose simulation, this is hardly ever
done.

� We then looked at multi-rate integration schemes. They have a role to play in
real-time simulations of systems with clearly separate groups of eigenvalues,
such as in the real-time simulation of physical systems including multiple energy
domains. Once again, multi-rate integration schemes are hardly ever used
outside the world of real-time simulation.

� We then showed that inline integration methods and mixed-mode integration
schemes can be very useful for speeding up real-time simulations.

� The presentation ended with some general remarks about real-time simulation
architectures.
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