Prof. Dr. François E. Cellier Department of Computer Science ETH Zurich

March 12, 2013

Numerical Simulation of Dynamic Systems V

Accuracy Considerations

The Accuracy Domain II

The analytical solution can easily be found:

 $\mathbf{x}_{anal} = \exp(\mathbf{A} \cdot (t - t_0)) \cdot \mathbf{x}_0$

A numerical solution can be obtained using any one of the previously introduced numerical ODE solvers, such as the RK4 algorithm:

```
function [x] = rk4(A, h, x0)

h2 = h/2; h6 = h/6;

x(:, 1) = x0;

for i = 1: 10/h,

xx = x(:, i);

k1 = A * xx;

k2 = A * (xx + h2 * k1);

k3 = A * (xx + h2 * k2);

k4 = A * (xx + h * k3);

x(:, i + 1) = xx + h6 * (k1 + 2 * k2 + 2 * k3 + k4);

end

return
```

Numerical Simulation of Dynamic Systems V

Single-step Integration Methods III

Accuracy Considerations

The Accuracy Domain

We already noticed that the numerical stability of an algorithm can be expressed in the complex $\lambda \cdot h$ plane. We furthermore saw that a *numerically stable* solution isn't necessarily also an *accurate* solution.

We would now like to investigate if it is possible to obtain something like an *accuracy domain* similar to the *numerical stability domain*.

We shall start with the linear system:

 $\dot{\mathbf{x}} = \mathbf{A} \cdot \mathbf{x}$; $\mathbf{x}(t_0) = \mathbf{x_0}$

using the same A-matrix that we had been using before in the stability analysis:

 $\mathbf{A} = \begin{pmatrix} 0 & 1 \\ -1 & 2\cos(\alpha) \end{pmatrix}$

This matrix exhibits two eigenvalues on the unit circle forming an angle α with the negative real axis.

We use the normalized initial conditions:

 $\mathbf{x_0} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

Numerical Simulation of Dynamic Systems V

Single-step Integration Methods III

The Accuracy Domain III

We simulate across 10 seconds and compute the global error:

 $\varepsilon_{\text{global}} = \|\mathbf{x}_{\text{anal}} - \mathbf{x}_{\text{simul}}\|_{\infty}$

We iterate over the integration step size, h, until the global error stays below a specified threshold value, tol:

 $\varepsilon_{\text{global}} \leq tol$

Figure: Accuracy domain of RK4 with $tol = 10^{-4}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Single-step Integration Methods III

Accuracy Considerations

The Accuracy Domain IV

has the identical solution as the continuous-time system at the sampling instants, $k \cdot h$.

Therefore:

$$\operatorname{Eig}\{\mathbf{F}_{anal}\} = \exp(\operatorname{Eig}\{\mathbf{A}\} \cdot h)$$

Every eigenvalue of the discrete-time system corresponds to an eigenvalue of the continuous-time system:

$$\lambda_{disc} = \exp(\lambda_{cont} \cdot h) = \exp((-\sigma + j \cdot \omega) \cdot h) = \exp(-\sigma \cdot h) \cdot \exp(j \cdot \omega \cdot h)$$

10 10 10 10 10 Tolerance

Figure: Simulation efficiency of different FRK algorithms

Simulation Efficiency

The Accuracy Domain V

Numerical Simulation of Dynamic Systems V

Single-step Integration Methods III

<u>Acc</u>uracy Considerations

Single-step Integration Methods III

Damping Factor and Oscillation Frequency II

We introduce a new complex plane:

 $z = \exp(\lambda \cdot h)$

Control engineers know this plane very well.

We introduce also a *discrete damping factor*, σ_d , and a *discrete oscillation frequency*, ω_d :

$$\sigma_d = \sigma \cdot h$$

$$\omega_d = \omega \cdot h$$

Therefore:

$$|z| = \exp(-\sigma_d)$$
$$\angle z = \omega_d$$

The values σ_d and ω_d are the discrete damping factor and the discrete oscillation frequency that we would expect to see if the simulation of the model were to be performed analytically.

Numerical Simulation of Dynamic Systems V — Single-step Integration Methods III

Accuracy Considerations

The Damping Plot

Consequently, it makes sense to introduce the *damping error*, ε_{σ} , and the *frequency error*, ε_{ω} :

$$\varepsilon_{\sigma} = \sigma_d - \hat{\sigma}_d$$

 $\varepsilon_{\omega} = \omega_d - \hat{\omega}_d$

We can plot the *numerical damping*, $\hat{\sigma}_d$, in function of the *analytical damping*, σ_d . This graph is called *damping plot*.

Figure: Damping plot of RK4

・ロト・日本・ キャー キャー キャー シック ()

Numerical Simulation of Dynamic Systems V

Single-step Integration Methods III

Accuracy Considerations

Damping Factor and Oscillation Frequency III

In reality, we perform a numerical simulation. Its $F_{simul}\mbox{-matrix}$ approximates the $F_{anal}\mbox{-matrix}$ of the analytical solution.

Consequently, we can define for the F_{simul}-matrix:

 $\hat{z} = \exp(\hat{\lambda}_d)$

 $\hat{\lambda}_d = -\hat{\sigma}_d + \mathbf{i} \cdot \hat{\omega}_d$

with:

and therefore:

$$|\hat{z}| = \exp(-\hat{\sigma}_d)$$

 $\angle \hat{z} = \hat{\omega}_d$

The variable $\hat{\sigma}_d$ approximates σ_d , and the variable $\hat{\omega}_d$ approximates ω_d .

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ●

Numerical Simulation of Dynamic Systems V <u>Single-step</u> Integration Methods III

Accuracy Considerations

The Damping Plot II

Figure: Damping plot of BI4

This algorithm doesn't lose its stability, but its damping factor at infinity assumes a value of zero instead of infinite.

This is an *F-stable* algorithm. All F-stable algorithms have this property in common.

Single-step Integration Methods III

Accuracy Considerations

The Damping Plot III

This algorithm doesn't lose its stability, but its damping factor at infinity is:

$$\hat{\sigma}_d(-\infty) = -4 \cdot \log(\frac{\vartheta}{1-\vartheta})$$

This is an *A-stable but not L-stable* algorithm.

- The damping is infinite in the case of the BRK4 algorithm with $\vartheta = 0$. The BRK4 algorithm is *L-stable*.
- ▶ The damping is zero in the case of the BI4 algorithm with $\vartheta = 0.5$. The BI4 algorithm is *F*-stable.
- The damping is negative in the case of ϑ > 0.5. These algorithms lose their numerical stability, i.e., their numerical stability domains loop in the left-half complex A · h plane.

Numerical Simulation of Dynamic Systems V

Single-step Integration Methods III

Accuracy Considerations

The Damping Plot V

In the case of the IEX4 algorithm, strange things happen that we need to understand better. Its $\ensuremath{\mathsf{F}}\xspace$ -matrix is:

$$\mathbf{F} = -\frac{1}{6} \cdot [\mathbf{I}^{(n)} - \mathbf{A} \cdot h]^{-1} + 4 \cdot [\mathbf{I}^{(n)} - \frac{\mathbf{A} \cdot h}{2}]^{-2}$$
$$-\frac{27}{2} \cdot [\mathbf{I}^{(n)} - \frac{\mathbf{A} \cdot h}{3}]^{-3} + \frac{32}{3} \cdot [\mathbf{I}^{(n)} - \frac{\mathbf{A} \cdot h}{4}]^{-4}$$
$$(\Box \models \langle \Box \rangle \land \langle \Xi \land \langle \Xi \rangle \land \langle \Xi \rangle \land \langle \Xi \rangle \land \langle \Xi \rangle \land \langle \Xi \land \langle \Xi \rangle \land \langle \Xi \rangle \land \langle \Xi \rangle \land \langle \Xi \land \langle \Xi \land \langle \Xi \land \langle \Xi \rangle \land \langle \Xi \land \Box \land \langle \Xi \land \Box$$

Numerical Simula	tion of Dyna	mic Systems V
------------------	--------------	---------------

Single-step Integration Methods III

Accuracy Considerations

The Damping Plot IV

Figure: Damping plot of BRK4

The BRK4 algorithm is *L-stable*. Therefore, the damping grows to infinity.

However, the damping of the numerical simulation algorithm grows much more slowly than that of the analytical simulation.

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ●

Numerical Simulation of Dynamic Systems V <u>Single-step</u> Integration Methods III

Accuracy Considerations

The Damping Order Star

We can analyze the scalar case with:

$$q = \lambda \cdot h$$

We obtain:

$$f = -\frac{1}{6} \cdot \frac{1}{1-q} + 4 \cdot \frac{1}{(1-q/2)^2} - \frac{27}{2} \cdot \frac{1}{(1-q/3)^3} + \frac{32}{3} \cdot \frac{1}{(1-q/4)^4}$$

Therefore:

 $\hat{\sigma}_d = -\log(|f|)$

This equation has a solution for all complex values of q, not only for $q = -\sigma_d$.

Single-step Integration Methods III

<u>Acc</u>uracy Considerations

The Damping Order Star II

Let us draw the *damping error*, ε_{σ} , in function of σ_d and ω_d :


```
ロト 《母 》 《臣 》 《臣 》 〔臣   のへぐ
```

Numerical Simulation of Dynamic Systems V — Single-step Integration Methods III

Accuracy Considerations

The Damping Order Star IV

The function:

is a *strictly proper rational function*. It has 10 poles and 9 zeros.

The damping of the poles is $-\infty$. For this reason, useful simulation methods must have all of their poles in the right-half complex $\lambda \cdot h$ plane.

The damping of the zeros is $+\infty$. Zeros are therefore useful in the left-half complex $\lambda \cdot h$ plane.

In the proximity of the origin, we cannot accept either poles or zeros. At least, we cannot accept them in the left-half complex $\lambda \cdot h$ plane.

erical Simulation of Dynamic Systems	v
wells show hat something Mathematical III	

Accuracy Considerations

The Damping Order Star III

We can draw a graph with all the points, where the damping error is zero. This graph is called *"order star"*.

Numerical Simulation of Dynamic Systems V

Single-step Integration Methods III

Accuracy Considerations

The Damping Order Star V

The damping order stars of F-stable methods are symmetric to the imaginary axis due to the symmetry of their poles and zeros. $(\Box \Rightarrow \langle \Box \rangle \land \langle \Xi \land \langle \Xi \rangle \land \langle \Xi \land \langle \Xi \rangle \land \langle \Xi \land \langle \Xi \land \langle \Xi \rangle \land \langle \Xi \land \Box \land \langle \Xi \land \Box \land \langle \Xi \land \Box \land \langle \Xi \land \Box$

Single-step Integration Methods III

<u>Acc</u>uracy Considerations

The Frequency Plot

We can also analyze the frequency error. We can draw the *discrete numerical frequency*, $\hat{\omega}_d$, in function of the *discrete analytical frequency*, ω_d .

Figure: Frequency plot of RK4

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − 釣べ⊙

The frequency is 2π -periodic. Yet, the frequency error is only of interest in the proximity of the origin. Therefore, its periodicity doesn't bother us much.

Numerical Simulation of Dynamic Systems V Single-step Integration Methods III

Accuracy Considerations

The Frequency Order Star

It is also possible to draw the *frequency error*, ε_{ω} , in function of σ_d and ω_d . We thus can draw a *frequency order star*.

Numerical Simulation of Dynamic Systems V

Single-step Integration Methods III

Accuracy Considerations

The Asymptotic Regions

Let us look once more at the damping and frequency plots. There are regions, where the damping and frequency errors are very small. These regions are called *asymptotic regions*.

Figure: Asymptotic regions of RK4

э.

Numerical Simulation of Dynamic Systems V

The Frequency Order Star II

Single-step Integration Methods III

Accuracy Considerations

The Accuracy Domain VI

It may make sense to define a combined error consisting of the damping and frequency errors:

$$os_{err} = |\sigma_d - \hat{\sigma}_d| + |\omega_d - \hat{\omega}_d|$$

We can encounter, in the two order stars (of damping and frequency), a region around the origin, where o_{Serr} stays smaller than a given threshold, to/:

 $os_{err} \leq tol$

This region can also be used as an accuracy domain.

However, this new definition of the accuracy domain is much more useful than the one offered previously, because it doesn't depend on any experiment.

Numerical Simulation of Dynamic Systems V

Single-step Integration Methods III

Accuracy Considerations

The Accuracy Domain VII

Figure: Order star accuracy domain of RK4

- ロ ト 4 酉 ト 4 亘 ト 4 酉 - めへぐ

Numerical Simulation of Dynamic Systems V

Single-step Integration Methods III

Step-size and Order Control

Integration Step-size Control

To guarantee the quality of the numerical simulation results, we have the choice of controlling either the *integration step size* or the *order of approximation accuracy*. It is more common, in the case of the RK algorithms, to control the integration step size.

In order to control the integration step size, we need to estimate the *local integration error*.

One way of accomplishing this is to repeat the same step twice using two different integration algorithms.

Assuming that the two algorithms don't produce (by chance) the same erroneous result, we may implement the following algorithm:

$$\begin{split} \varepsilon_{\rm rel} &= \frac{|x_1 - x_2|}{|x_1|} \\ \text{if } \varepsilon_{\rm rel} &> tol_{\rm rel} \implies h_{\rm new} = 0.5 \cdot h \\ \text{if } \varepsilon_{\rm rel} &< 0.5 \cdot tol_{\rm rel} \text{ during four steps } \implies h_{\rm new} = 1.5 \cdot h \end{split}$$

Numerical Simulation of Dynamic Systems V

└─Single-step Integration Methods III └─Accuracy Considerations

The Accuracy Domain VIII

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 → のへぐ

Single-step Integration Methods III

Step-size and Order Control

Integration Step-size Control II

The above algorithm is a bit risky, because it may happen that $x_1 = 0$ at a given instant of time.

Therefore, it may be better to use an improved formula for estimating the relative error, $\varepsilon_{\rm rel}$:

$$\varepsilon_{\rm rel} = \frac{|x_1 - x_2|}{\max(|x_1|, |x_2|, \delta)}$$

where $\delta = 10^{-10}$ is a very small (fudge) constant.

However, it is not very efficient to repeat the entire step twice just for the purpose of obtaining an estimate of the local integration error.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

- ・ロト ・ 御 ト ・ 臣 ト ・ 臣 ・ の 9 ()

Meanwhile there exist *encapsulated codes*, where two different algorithms share a number of stages.

Numerical Simulation of Dynamic Systems V

Single-step Integration Methods III

Step-size and Order Control

The Code RKF4/5

The code *Runge-Kutta-Fehlberg 4/5 (RKF4/5)* is one of these encapsulated codes. The method is characterized by the Butcher table:

0	0	0	0	0	0	0
1/4	1/4	0	0	0	0	0
3/8	3/32	9/32	0	0	0	0
12/13	1932/2197	-7200/2197	7296/2197	0	0	0
1	439/216	-8	3680/513	-845/4104	0	0
1/2	-8/27	2	-3544/2565	1859/4104	-11/40	0
×1	25/216	0	1408/2565	2197/4104	-1/5	0
×2	16/135	0	6656/12825	28561/56430	-9/50	2/55

The code contains an RK4 algorithm in five stages and another RK5 algorithm in six stages:

$$\begin{split} f_1(q) &= 1 + q + \frac{1}{2}q^2 + \frac{1}{6}q^3 + \frac{1}{24}q^4 + \frac{1}{104}q^5 \\ f_2(q) &= 1 + q + \frac{1}{2}q^2 + \frac{1}{6}q^3 + \frac{1}{24}q^4 + \frac{1}{120}q^5 + \frac{1}{2080}q^6 \end{split}$$

Numerical Simulation of Dynamic Systems V

Single-step Integration Methods III

Integration Step-size Control III

We can interpret the problem of controlling the integration step size as a *discrete control problem*.

Figure: Step-size control viewed as a control problem

Numerical Simulation of Dynamic Systems V

Step-size and Order Control

The Code RKF4/5 II

Therefore:

and consequently:

We conclude:

 $h\sim \sqrt[5]{arepsilon}$

 $\varepsilon(q) = f_1(q) - f_2(q) = \frac{1}{780}q^5 - \frac{1}{2080}q^6$

We want:

$$tol_{rel} = \frac{|x_1 - x_2|}{\max(|x_1|, |x_2|, \delta)}$$

and thus, it makes sense to propose:

$$h_{\mathrm{new}} = \sqrt[5]{rac{tol_{\mathrm{rel}} \cdot \max(|x_1|, |x_2|, \delta)}{|x_1 - x_2|}} \cdot h_{\mathrm{old}}$$

In this way, if the error is too large, the *next step* is reduced, and if the error is unnecessarily small, the next step is increased. Steps are never repeated, even if the error is excessively large.

Single-step Integration Methods III

LStep-size and Order Control

Integration Step-size Control IV

A *PI controller* was developed by Kjell Gustafsson in his Ph.D. dissertation:

$$h_{\rm new} = \left(\frac{0.8 \cdot tol_{\rm rel}}{\varepsilon_{\rm rel_{new}}}\right)^{\frac{0.3}{n}} \cdot \left(\frac{\varepsilon_{\rm rel_{old}}}{\varepsilon_{\rm rel_{new}}}\right)^{\frac{0.4}{n}} \cdot h_{\rm old}$$

where:

$$\begin{split} \varepsilon_{\rm rel_{new}} &= \frac{\|\mathbf{x}_1 - \mathbf{x}_2\|_{\infty}}{\max(\|\mathbf{x}_1\|_2, \|\mathbf{x}_2\|_2, \delta)} \\ \varepsilon_{\rm rel_{old}} &= \text{ same quantity one time step back} \end{split}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへぐ

Numerical Simulation of Dynamic Systems V Single-step Integration Methods III Conclusions

Conclusions

- In this presentation, we developed a numerical accuracy treatment for ODE solvers that is as solid as that of the numerical stability treatment introduced earlier.
- We introduced a *frequency domain analysis* similar to the approach taken by control engineers in the discussion of discrete-time linear control systems.
- We designed visualization methods for accuracy properties of an ODE solver using damping and frequency plots. Furthermore, we showed the beautiful damping and frequency order stars of ODE solvers.
- The presentation ended with a discussion of *integration step-size control* methods.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 - のへで