
Numerical Simulation of Dynamic Systems VII

Numerical Simulation of Dynamic Systems VII

Prof. Dr. François E. Cellier
Department of Computer Science

ETH Zurich

March 19, 2013



Numerical Simulation of Dynamic Systems VII

Multi-step Integration Methods II

In Search of Stiffly-stable Methods

In Search of Stiffly-stable Methods

An interpolation polynomial of order n can be written as:

p(s) = a0 + a1 s + a2 s2 + a3 s3 + · · · + an sn

where s is the normalized time variable introduced earlier.

Its derivative with respect to time t can be formulated as:

h · ṗ(s) = a1 + 2a2 s + 3a3 s2 + · · · + n an sn−1

In the case of the BDF3 algorithm (n = 3), we know that:

h · ṗ(s = +1) = h · fk+1

p(s = 0) = xk

p(s = −1) = xk−1

p(s = −2) = xk−2

Therefore:

h · fk+1 = a1 + 2a2 + 3a3

xk = a0

xk−1 = a0 − a1 + a2 − a3

xk−2 = a0 − 2a1 + 4a2 − 8a3
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In matrix/vector form:

⎛
⎜⎜⎝

h · fk+1
xk

xk−1
xk−2

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0 1 2 3
1 0 0 0
1 −1 1 −1
1 −2 4 −8

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝

a0
a1
a2
a3

⎞
⎟⎟⎠

We can determine the values of the parameters and calculate:

xk+1 = p(s = +1) = a0 + a1 + a2 + a3

Using a computer algebra tool, such as Maple, we obtain:

xk+1 =
6

11
h · fk+1 +

18

11
xk − 9

11
xk−1 +

2

11
xk−2

i.e., the coefficients of the BDF3 algorithm found earlier using another approach.

We can make use of this alternate technique to search for other linear multi-step
methods for the numerical simulation of dynamic systems.
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In Search of Stiffly-stable Methods III

We might suspect that the extrapolation didn’t work so well until now because of the
long tail of the interpolation polynomial. It could be a good idea to reduce the length
of the tail.

Consequently, we shall design a sixth-order linear multi-step algorithm that passes
through three state values and four state derivative values. In this way, we can reduce
the length of the tail by two steps:

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

h · fk+1
xk

h · fk
xk−1

h · fk−1
xk−2

h · fk−2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 2 3 4 5 6
1 0 0 0 0 0 0
0 1 0 0 0 0 0
1 − 1 1 − 1 1 − 1 1
0 1 − 2 3 − 4 5 − 6
1 − 2 4 − 8 16 − 32 64
0 1 − 4 12 − 32 80 −192

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

· a

We obtain a beautiful and totally unknown sixth-order accurate algorithm:

xk+1 =
3

11
h · fk+1 − 27

11
xk +

27

11
h · fk +

27

11
xk−1 +

27

11
h · fk−1 + xk−2 +

3

11
h · fk−2

Unfortunately, this algorithm is unstable everywhere.
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In Search of Stiffly-stable Methods IV

Evidently, shortening the tail was a bad idea.

Now, we shall again permit the use of state values and state derivative values up to
t = tk−5, i.e., until s = −5. We are only interested in sixth-order accurate implicit
methods. Thus, all of the considered methods should include the state derivative value
fk+1.

For a sixth-order accurate method, we need to choose 6 terms out of the available 12.
Hence there exist 924 candidate methods.

Most of the 924 candidate methods are entirely unstable. Others behave like
Adams-Moulton. Only six out of the 924 methods have an intersection of their
respective stability domains with the positive real axis.
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In Search of Stiffly-stable Methods V

The six remaining methods are listed below:

(a) xk+1 =
20

49
h · fk+1 +

120

49
xk − 150

49
xk−1 +

400

147
xk−2 − 75

49
xk−3 +

24

49
xk−4 − 10

147
xk−5

(b) xk+1 =
308

745
h · fk+1 +

1776

745
xk − 414

149
xk−1 +

944

447
xk−2 − 87

149
xk−3 − 288

745
h · fk−4 − 2

15
xk−5

(c) xk+1 =
8820

21509
h · fk+1 +

52200

21509
xk − 63900

21509
xk−1 +

400

157
xk−2 − 28575

21509
xk−3 +

6984

21509
xk−4

+
600

21509
h · fk−5

(d) xk+1 =
179028

432845
h · fk+1 +

206352

86569
xk − 34452

12367
xk−1 +

26704

12367
xk−2 − 65547

86569
xk−3 − 83808

432845
h · fk−4

+
24

581
h · fk−5

(e) xk+1 =
12

29
h · fk+1 +

1728

725
xk − 81

29
xk−1 +

64

29
xk−2 − 27

29
xk−3 +

97

725
xk−5 +

12

145
h · fk−5

(f ) xk+1 =
30

71
h · fk+1 +

162

71
xk − 675

284
xk−1 +

100

71
xk−2 − 54

71
xk−4 +

127

284
xk−5 +

15

71
h · fk−5

We are already familiar with method (a), as this is the already familiar BDF6
algorithm.
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The Numerical Stability Domains

Two of the six methods are useless, because they exhibit problems with their
numerical stability domains. I drew the numerical stability domains of the remaining
four algorithms.
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Figure: Stability domains of some stiffly-stable algorithms
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Comparison of the Algorithms

How can we decide, which of the four algorithms is the best?

On the one hand, we may analyze the “damage” that we incurred because of the
unstable region to the left of the imaginary axis.
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Figure: Stability parameters of a stiffly-stable algorithm
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Comparison of the Algorithms II

� It is possible to define an angle α with the negative real axis that specifies a
region guaranteed to be stable.

� Algorithms that aren’t completely A-stable can still be characterized as
A(α)-stable. The BDF6 algorithm is A(α)-stable with an angle of α = 19o.

� It is also possible to measure the distances a from the negative real axis and c
from the imaginary axis that exclude all unstable regions.

� Together, the three parameters characterize well the “damage” that we incurred

because of the unstable region to the left of the complex λ · h plane.
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On the other hand, we may also wish to compare the numerical accuracy of the
algorithms.

All linear multi-step algorithms can be written in the form:

xk+1 =
�∑

i=0

ai · xk−i +
�∑

i=−1

bi · h · fk−i

Shifting the equation by � steps into the future:

m∑
i=0

αi · xk+i + h ·
m∑

i=0

βi · fk+i = 0

We can develop xk+i and fk+i into Taylor series around xk and fk, and come up with
an expression in xk and its derivatives:

c0 · xk + c1 · h · ẋk + · · · + cq · hq · x(q)
k + . . .

where x
(q)
k is the qth time derivative of xk.
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We find:

c0 =
m∑

i=0

αi

c1 =
m∑

i=0

(i · αi − βi )

...

cq =
m∑

i=0

(
1

q!
· i q · αi − 1

(q − 1)!
· i q−1 · βi

)
, q = 2, 3, . . .

Since the function that has been developed into a Taylor series is the zero function, all
of these coefficients ought to be equal to zero. However, since the approximation is
only nth-order accurate, the coefficients for q > n may be different from zero. Hence
we can define the dominant of those coefficients as the error coefficient of the
multi-step integration algorithm.
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Comparison of the Algorithms V

Hence we can define an error coefficient of the method as:

cerr =
m∑

i=0

(
1

(n + 1)!
· i n+1 · αi − 1

n!
· i n · βi

)

Comparing the error coefficients of the BDF methods with those of the Adams
methods, we notice that the error coefficients of the Adams methods are quite a bit
smaller than those of the BDF methods.

Consequently, if we use a linear multi-step algorithm for the simulation of a non-stiff
system, we obtain higher precision for the same step size, h, (i.e., for the same
“price”), with Adams-Moulton than with BDF.

For this reason, it is useful to include the error coefficient in the evaluation of the
overall quality of a linear multi-step algorithm.
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Comparison of the Algorithms VI

It is also useful to look at the damping plot of each algorithm.

In the analysis of the damping properties of single-step algorithms, it sufficed to look
at the scalar system. The damping factor was defined as:

σ̂d = − log(abs(f ))

In the analysis of the damping properties of multi-step algorithms, this approach won’t
work any longer, because already the scalar system is characterized by an F-matrix of
size 3 × 3.

Hence we need to extend the definition:

σ̂d = − log(max(abs(eig(F))))

We shall now draw not only the linear damping plot, but also the logarithmic damping
plot.
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The Damping Plots of the Algorithms
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Figure: Damping plot of BDF6 and other 6th-order stiffly-stable methods

We notice that only the BDF6 algorithm is L(α)-stable. None of the other
algorithms exhibits this property.
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� BDF6 apparently is the best of all sixth-order linear multi-step algorithms for
the simulation of stiff systems.

� All algorithms that survived the search exploit the full available range of support
values up to tk−5. Apparently shortening the length of the tail of the algorithm
was a very bad idea.

� None of those algorithms that survived the search use more than a single value
of a state derivative from the past. It seems to be a bad idea trying to use state
derivatives of the past in the design of algorithms for the simulation of stiff
systems.
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Extending the Search

� It might possibly be a good idea to lengthen the tail of the algorithm. As we
already decided that state derivatives from the past are not useful, we shall limit
our new search in such a way that we shall only consider algorithms that are
making use of state values from the past only. We shall extend the length of the
tail to tk−11.

� Once again, there exist 924 potential algorithms of order six. Among them, 314
exhibit characteristics similar to those of the BDF6 algorithm.

Their five performance parameters are:

BDF6 Other stiffly-stable methods

α = 19o α ∈ [19o, 48o ]
a = −6.0736 a ∈ [−6.0736, −0.6619]
c = 0.5107 c ∈ [0.2250, 0.8316]
cerr = −0.0583 cerr ∈ [−7.4636, −0.0583]
as.reg. = −0.14 as.reg. ∈ [−0.30, −0.01]

In order to evaluate the performance of these methods quantitatively, we require a
performance index:

P.I .i =
|αi |
‖α‖ − |ai |

‖a‖ +
|ci |
‖c‖ − k · |cerri

|
‖cerr‖

+
|as.reg.i |
‖as.reg.‖ = max!

We choose k = 20 to indicate that a small error coefficient is very important.
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Extending the Search II

The best three algorithms are:

xk+1 =
72

167
h · fk+1 +

2592

1169
xk − 2592

1169
xk−1 +

1152

835
xk−2

− 324

835
xk−3 +

81

5845
xk−7 − 32

5845
xk−8

xk+1 =
420

977
h · fk+1 +

19600

8793
xk − 2205

977
xk−1 +

1400

977
xk−2

− 1225

2931
xk−3 +

40

2931
xk−6 − 7

8793
xk−9

xk+1 =
44

103
h · fk+1 +

5808

2575
xk − 242

103
xk−1 +

484

309
xk−2

− 363

721
xk−3 +

242

7725
xk−5 − 4

18025
xk−10

with the following performance parameters:

BDF6 SS6a SS6b SS6c

α = 19o α = 45o α = 44o α = 43o

a = −6.0736 a = −2.6095 a = −2.7700 a = −3.0839
c = 0.5107 c = 0.7994 c = 0.8048 c = 0.8156
cerr = −0.0583 cerr = −0.1478 cerr = −0.1433 cerr = −0.1343
as.reg. = −0.14 as.reg. = −0.21 as.reg. = −0.21 as.reg. = −0.21
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Extending the Search III
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Figure: Stability domains of some stiffly-stable algorithms
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Extending the Search IV
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Figure: Damping plot of BDF6 and other 6th-order stiffly-stable methods
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Extending the Search V

� Finally, we encountered a few stiffly-stable sixth-order multi-step methods
that are better than BDF6.

� The new algorithms can also be used for the simulation of systems with
oscillatory behavior, as their angle α is quite a bit larger than that of BDF6.

� The most important characteristic of these three algorithms is their asymptotic
region, which is almost 50% larger than that of BDF6. This enables us to use
larger step sizes during the simulation.

� The error coefficient, cerr , of these new methods is a bit larger than that of
BDF6, but this is not important. The integration step size of BDF6 is much
more frequently limited by the asymptotic region than by the magnitude of cerr .
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High-order Backward Difference Formulae

Using the same methodology, we may be able to find higher-order backward difference
formulae. To this end, we enlarged the length of the tail to tk−13 and searched for
7th-order accurate BDF methods. Thus, we have to choose seven support values from
an available number of 14.

Of the possible 3432 algorithms, 762 possess properties similar to BDF6, i.e., they are
A(α)-stable and also L-stable. The search was limited to algorithms with α ≥ 10o.

Their five performance parameters are:

BDF6 7th-order stiffly-stable methods

α = 19o α ∈ [10o , 48o ]
a = −6.0736 a ∈ [−6.1261, −0.9729]
c = 0.5107 c ∈ [0.0811, 0.7429]
cerr = −0.0583 cerr ∈ [−6.6498, −0.1409]
as.reg. = −0.14 as.reg. ∈ [−0.23, −0.01]

The smallest error coefficient is now almost three times larger than in the case of the
6th-order algorithms. The other parameters are comparable in their ranges with those
of the 6th-order algorithms.
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High-order Backward Difference Formulae II

The best three algorithms are:

xk+1 =
5148

12161
h · fk+1 +

552123

243220
xk − 200772

85127
xk−1 +

184041

121610
xk−2

− 184041

425635
xk−3 +

20449

1702540
xk−8 − 4563

851270
xk−10 +

99

121610
xk−12

xk+1 =
234

551
h · fk+1 +

13689

6061
xk − 492804

212135
xk−1 +

4056

2755
xk−2

− 4563

11020
xk−3 +

169

19285
xk−8 − 507

121220
xk−11 +

54

30305
xk−12

xk+1 =
3276

7675
h · fk+1 +

17199

7675
xk − 191646

84425
xk−1 +

596232

422125
xk−2

− 74529

191875
xk−3 +

1183

191875
xk−8 − 882

422125
xk−12 +

2106

2110625
xk−13

with the following performance parameters:

BDF6 SS7a SS7b SS7c

α = 19o α = 37o α = 39o α = 35o

a = −6.0736 a = −3.0594 a = −2.9517 a = −3.2146
c = 0.5107 c = 0.6352 c = 0.6664 c = 0.6331
cerr = −0.0583 cerr = −0.3243 cerr = −0.3549 cerr = −0.3136
as.reg. = −0.14 as.reg. = −0.15 as.reg. = −0.16 as.reg. = −0.15
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Figure: Stability domains of BDF6 and a set of 7th-order stiffly-stable
algorithms
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High-order Backward Difference Formulae IV
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Figure: Damping plots of BDF6 and a set of 7th-order stiffly-stable
algorithms
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High-order Backward Difference Formulae V

We can now proceed to 8th-order accurate algorithms. We searched for algorithms
with tails reaching all the way back to tk−15. Hence we had to choose eight support
values out of a list of 16 candidates. Of the possible 12870 algorithms, 493 exhibit
properties similar to those of BDF6.

Their five performance parameters are:

BDF6 8th–order stiffly–stable methods

α = 19o α ∈ [10o, 48o ]
a = −6.0736 a ∈ [−5.3881, −1.4382]
c = 0.5107 c ∈ [0.0859, 0.6485]
cerr = −0.0583 cerr ∈ [−6.4014, −0.4416]
as.reg. = −0.14 as.reg. ∈ [−0.16, −0.01]

The smallest error coefficient has unfortunately again grown by about a factor of
three, and this time around, also the largest asymptotic region has begun to shrink.
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High-order Backward Difference Formulae VI

The two best algorithms are:

xk+1 =
112

267
h · fk+1 +

71680

31239
xk − 2800

1157
xk−1 +

179200

114543
xk−2 − 3920

8811
xk−3

+
112

12015
xk−9 − 160

12727
xk−13 +

7168

572715
xk−14 − 35

10413
xk−15

xk+1 =
208

497
h · fk+1 +

216320

93933
xk − 93600

38269
xk−1 +

16640

10437
xk−2 − 67600

147609
xk−3

+
5408

469665
xk−9 − 1280

147609
xk−12 +

3328

574035
xk−14 − 65

31311
xk−15

with the following performance parameters:

BDF6 SS8a SS8b

α = 19o α = 35o α = 35o

a = −6.0736 a = −3.2816 a = −3.4068
c = 0.5107 c = 0.5779 c = 0.5456
cerr = −0.0583 cerr = −0.9322 cerr = −0.8636
as.reg. = −0.14 as.reg. = −0.14 as.reg. = −0.13

Their stability domains and damping plots look almost identical to those of the
7th-order algorithms.
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High-order Backward Difference Formulae VII

Let us now proceed to 9th-order accurate algorithms. We decided to search for
algorithms with their tails reaching back as far as tk−17. Hence we had to choose 9
support values from a list of 18 candidates. Of the 48620 candidate algorithms, only
152 exhibit properties similar to those of BDF6.

Their five performance parameters are:

BDF6 9th–order stiffly–stable methods

α = 19o α ∈ [10o, 32o ]
a = −6.0736 a ∈ [−5.0540, −2.4730]
c = 0.5107 c ∈ [0.0625, 0.4991]
cerr = −0.0583 cerr ∈ [−5.9825, −1.2492]
as.reg. = −0.14 as.reg. ∈ [−0.10, −0.02]

The smallest error coefficient has once again grown by about a factor of three, and
also the largest asymptotic region has now shrunk significantly.
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High-order Backward Difference Formulae VIII

The two best algorithms are:

xk+1 =
4080

9947
h · fk+1 +

165240

69629
xk − 16854480

6336239
xk−1 +

1664640

905177
xk−2

− 5618160

9956947
xk−3 +

23120

1462209
xk−8 − 332928

9956947
xk−14 +

351135

6336239
xk−15

− 29160

905177
xk−16 +

1360

208887
xk−17

xk+1 =
1904

4651
h · fk+1 +

719712

302315
xk − 62424

23255
xk−1 +

6214656

3325465
xk−2

− 873936

1511575
xk−3 +

18496

1046475
xk−8 − 249696

16627325
xk−13 +

7803

302315
xk−15

− 6048

302315
xk−16 +

952

209295
xk−17

with the following performance parameters:

BDF6 SS9a SS9b

α = 19o α = 18o α = 18o

a = −6.0736 a = −4.3280 a = −4.3321
c = 0.5107 c = 0.3957 c = 0.3447
cerr = −0.0583 cerr = −1.7930 cerr = −1.6702
as.reg. = −0.14 as.reg. = −0.10 as.reg. = −0.08
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High-order Backward Difference Formulae

High-order Backward Difference Formulae IX

� We were able to find backward difference formulae of orders 7..9.

� Unfortunately, these methods exhibit once again smaller α angles. For orders
seven and eight, we could still find methods with α = 35o. For order nine, the
largest angle found was α = 18o.

� Also the asymptotic region is shrinking. For orders seven and eight, we could
still find methods with reg .as. = −0.14. For order nine, the largest asymptotic
region found was reg .as. = −0.10.

� The error coefficient, cerr , also grows rapidly. Yet, it makes little sense to
compare error coefficients of methods of different approximation orders with
each other. It only makes sense to compare the error coefficients of methods of
identical orders.

� Methods of such high orders of approximation accuracy are useful for the
simulation of celestial mechanics problems. However in methods of such high
orders, the roundoff error in double precision is already larger than the
truncation error on a 32-bit architecture. These algorithms should therefore be
used on a 64-bit machine only or alternatively, they should be implemented in
quadruple precision.
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Conclusions

Conclusions

In this presentation, we demonstrated how new multi-step algorithms can be found
that are of interest for the numerical simulation of stiff systems.

We developed a set of performance parameters and a performance index that help us
to quickly compare many thousands of different candidate methods and find those
among them that look most promising.

For the first time, we were able to discover stable BDF algorithms of orders higher
than six. In particular, we found several promising BDF algorithms of orders 7..9.
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