
Numerical Simulation of Dynamic Systems VIII

Numerical Simulation of Dynamic Systems VIII

Prof. Dr. François E. Cellier
Department of Computer Science

ETH Zurich

March 19, 2013

Numerical Simulation of Dynamic Systems VIII

Multi-step Integration Methods III

Symbolic Method Coefficients

Symbolic Method Coefficients

You may have noticed that I presented the coefficients of the linear multi-step
methods always as rational numbers. Yet, if I use Matlab to compute the coefficient
vector, e.g. with the formula:

coef = sum(inv(M));

Matlab will return real-valued numbers truncated to a given number of digits after the
comma.

How did I compute the rational numbers? A first idea might be to remember that
both the determinant and the adjugate matrix of a matrix with integer coefficients are
integer-valued. This means, we might try to compute:

Mdet = round(det(M));

Madj = round(Mdet ∗ inv(M));

coef num = sum(Madj);

Unfortunately, this approach will only work for low-order methods, because the
determinant is growing so fast that we quickly exhaust the range of integer numbers.

Numerical Simulation of Dynamic Systems VIII

Multi-step Integration Methods III

Symbolic Method Coefficients

Symbolic Method Coefficients II

A better approach makes use of Matlab’s symbolic toolbox, an implementation of a
Maple kernel accessible using a Matlab interface.

We can write:
coef = sum(inv(sym(M)));

This is how all of the coefficients of the linear multi-step methods offered in the
previous presentation were computed. The sym-function converts the coefficients of
the M-matrix to text strings. The inv- and sum-functions have been overloaded to
operate on symbolic data structures as well as on numerical data structures.

Numerical Simulation of Dynamic Systems VIII

Multi-step Integration Methods III

Newton Iteration

Newton Iteration

We noticed that many of the most interesting linear multi-step methods, such as the
BDF algorithms, ar implicit algorithms. Consequently, we need to iterate during each
step using Newton iteration.

We can write the BDF methods in the form:

xk+1 = αi h · fk+1 +
i∑

j=1

βij xk−j+1

Plugging in the linear homogeneous problem and solving for xk+1, we find:

xk+1 = −
[
αi · (A · h) − I(n)

]−1 ·
i∑

j=1

βij xk−j+1

On a non-linear problem, we cannot apply matrix inversion. Instead, we formulate a
zero-crossing function:

F(xk+1) = αi h · f(xk+1, tk+1) − xk+1 +
i∑

j=1

βij xk−j+1 = 0.0

Numerical Simulation of Dynamic Systems VIII

Multi-step Integration Methods III

Newton Iteration

Newton Iteration II

We apply Newton iteration to the zero-crossing function, F(xk+1), iterating on the
unknown xk+1:

x�+1
k+1 = x�

k+1 − [H�]−1 · [F�]

where: H is the Hessian matrix of the vector function, F :

H = αi · (J · h) − I(n)

with J being the Jacobian matrix of the system.

Numerical Simulation of Dynamic Systems VIII

Multi-step Integration Methods III

Newton Iteration

Newton Iteration III

� Most professional multi-step codes do not reevaluate the Jacobian during each
step.

� They use the error estimate of the method as an indicator when the Jacobian
needs to be reevaluated.

� As long as the error estimate remains approximately constant, the Jacobian is
still acceptable. However, as soon as the error estimate starts to grow,
indicating the need for a change in step size, this is a clear indication that a new
Jacobian computation is in order.

� Only if a reevaluation of the Jacobian doesn’t get the error estimate back to
where it was before, will the step size of the method be adjusted.

� Even the Hessian is not reevaluated frequently. The Hessian needs to be
recomputed either if the Jacobian has been reevaluated, or if the step size has
just been modified.

Numerical Simulation of Dynamic Systems VIII

Multi-step Integration Methods III

Newton Iteration

Newton Iteration IV

Most professional codes offer several options for how to treat the Jacobian. The user
can choose between:

1. providing an analytical expression for the Jacobian,

2. having the full Jacobian evaluated by means of a numerical approximation, and

3. having only the diagonal elements of the Jacobian evaluated by means of a
numerical approximation ignoring the off-diagonal elements altogether.

Both the convergence speed and the convergence range of the Newton iteration
scheme are strongly influenced by the quality of the Jacobian.

� A diagonal approximation is cheap, but leads to a heavy increase in the number
of iterations necessary for the algorithm to converge, and necessitates more
frequent Jacobian evaluations as well. In our experience, it hardly ever pays off
to consider this option.

� The full Jacobian is usually determined by first-order approximations. The ith

state variable, xi , is perturbed by a small value, Δxi . The state derivative vector
is then reevaluated using the modified state value. We find:

∂f(x, t)

∂xi
≈ fpert − f

Δxi

Numerical Simulation of Dynamic Systems VIII

Multi-step Integration Methods III

Newton Iteration

Newton Iteration V

� Computing an estimate of the full Jacobian calls for n additional function
evaluations, one for each state variable, xi .

� Yet, even by spending these additional n function evaluations, we gain only a
first-order approximation of the Jacobian.

� Using the first-order approximation, we usually need three to four iterations in
order to get the iteration error down to a value below the integration error.

� For these reasons, we strongly advocate the analytical option. An nth-order
model calls for n2 additional equations in order to analytically describe its
Jacobian.

� The additional equations can, however, be generated automatically by the
model compiler. There is no need to burden the user with this task.

Numerical Simulation of Dynamic Systems VIII

Multi-step Integration Methods III

Step-size and Order Control

Cost vs. Accuracy of AB Algorithms

Let us simulate a linear fifth-order system using a variety of AB methods with differing
fixed step sizes. We compare the global errors of the simulation. For completeness, we
also compare with the RK4 algorithm.

10−7 10−6 10−5 10−4 10−3 10−2 10−1 100
0

1000

2000

3000

4000

AB2

AB3

AB4
RK4

Cost vs. Accuracy in Adams-Bashforth Methods

Global Relative Error#
F
u
n
ct

io
n

E
va

lu
at

io
n
s

Figure: Cost versus accuracy for different ABi algorithms

Numerical Simulation of Dynamic Systems VIII

Multi-step Integration Methods III

Step-size and Order Control

Cost vs. Accuracy of AB Algorithms II

We notice that:

� For the same number of function evaluations (i.e., for the same “price” of the
simulation), we obtain approximately an improvement in accuracy by a factor of
10, if we increase the order of the algorithm by one.

� Using a method of order n, we can economically obtain an accuracy of 10−n.

� In this example, AB4 is more economical than RK4, as we are dealing with a
linear system without discontinuities. However, if we also take into consideration
the step-size control, the situation changes, because step-size control is much
cheaper for single-step than for multi-step methods.

Numerical Simulation of Dynamic Systems VIII

Multi-step Integration Methods III

Step-size and Order Control

Order Control

� Order control is very cheap in linear multi-step methods.

� Proceeding from one integration step to the next, we simply throw away the
oldest support value in the tail.

� If we wish to increase the order of the method by one, we keep the oldest
support value for the next step.

� If we wish to decrease the order of the method by one, we throw the two oldest
support values in the tail away.

� For this reason, order control is very fashionable in multi-step ODE solvers.

� Most professional multi-step codes start the simulation with one step of order
one and then increase the order in each subsequent step by one, until the error
estimate of the method stops decreasing.

Numerical Simulation of Dynamic Systems VIII

Multi-step Integration Methods III

Step-size and Order Control

Step-size Control

The linear multi-step algorithms were designed under the assumption of equidistant
sampling. If we change the length of the integration step-size from one step to the
next, this assumption no longer holds.

If we like to make use of multi-step ODE solvers with step-size control, we need to
employ a trick. Once again, our Newton-Gregory polynomials will save the day.

We start with a backward Newton-Gregory polynomial of the state vector:

x(t) = xk + s∇xk +

(
s2

2
+

s

2

)
∇2xk +

(
s3

6
+

s2

2
+

s

3

)
∇3xk + . . .

We differentiate with respect to time:

ẋ(t) =
1

h

[
∇xk +

(
s +

1

2

)
∇2xk +

(
s2

2
+ s +

1

3

)
∇3xk + . . .

]

The second derivative can be written as follows:

ẍ(t) =
1

h2

[∇2xk + (s + 1)∇3xk + . . .
]

etc.

Numerical Simulation of Dynamic Systems VIII

Multi-step Integration Methods III

Step-size and Order Control

Step-size Control II

Truncating after the cubic term and evaluating for t = tk , i.e., s = 0.0, we obtain:

⎛
⎜⎜⎜⎝

xk

h · ẋk
h2

2
· ẍk

h3

6
· x (iii)

k

⎞
⎟⎟⎟⎠ =

1

6
·

⎛
⎜⎜⎝

6 0 0 0
11 −18 9 − 2
6 −15 12 − 3
1 − 3 3 − 1

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝

xk

xk−1

xk−2

xk−3

⎞
⎟⎟⎠

The vector to the left of the equal sign is called Nordsieck vector, here of third order.

If we have n equidistantly spaced values of a state variable, we can calculate without
loss of precision in its place the value of the state variable itself together with values
of its first n − 1 time derivatives at the time instant tk .

Numerical Simulation of Dynamic Systems VIII

Multi-step Integration Methods III

Step-size and Order Control

Step-size Control III

It is now easy to change the step size:

⎛
⎜⎜⎜⎜⎝

xk
hnew · ẋk
h2
new
2

· ẍk

h3
new
6

· x
(iii)
k

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0

0 hnew
hold

0 0

0 0
(

hnew
hold

)2
0

0 0 0
(

hnew
hold

)3

⎞
⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎝

xk
hold · ẋk
h2
old
2

· ẍk

h3
old
6

· x
(iii)
k

⎞
⎟⎟⎟⎟⎠

The Nordsieck vector is meanwhile expressed in the new step size, hnew.

Consequently, we can write:

⎛
⎜⎜⎝

xk
xk−1
xk−2
xk−3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1 0 0 0
1 −1 1 − 1
1 −2 4 − 8
1 −3 9 −27

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎜⎜⎝

xk
hnew · ẋk
h2
new
2

· ẍk

h3
new
6

· x
(iii)
k

⎞
⎟⎟⎟⎟⎠

We obtain another equidistantly spaced sequence of state values expressed in the new
step size, hnew.

No precision was lost in the process. The new “state history vector” is accurate to
the same order of approximation accuracy as the previous one.

Numerical Simulation of Dynamic Systems VIII

Multi-step Integration Methods III

Step-size and Order Control

Step-size Control IV

� To change the integration step size, the state history vector of each state
variable must be multiplied consecutively by three matrices.

� For this reason, changing the step size during the simulation when using a
multi-step ODE solver is quite expensive.

� A step-size control algorithm like the one proposed by Gustafsson cannot be
economically implemented for multi-step algorithms.

� We prefer to use a more conservative step size to avoid that the step size has to
be changed frequently.

� For all these reasons, the Adams algorithms aren’t competitive for the
simulation of non-linear engineering systems.

� In contrast, the BDF algorithms are competitive for the simulation of
engineering systems due to their ability to deal with stiff systems.

Numerical Simulation of Dynamic Systems VIII

Multi-step Integration Methods III

The Startup Problem

The Startup Problem

As we already explained, higher-order multi-step methods cannot be used during the
initial steps of the simulation due to their need for support values of the past. They
rely on a state history vector.

One easy way to tackle this problem, that is being used frequently in practice, is to
change the order of the algorithm during the simulation.

� We start with an algorithm of order 1. For example, we may start the simulation
with one step of BDF1. After the first step, we already have one history point.

� During the second step, we use BDF2. This step generates a second history
point.

� During the third step, we use BDF3, etc., until we reach the order of the
algorithm that is most appropriate, i.e., that minimizes the error estimate.

This technique has an important disadvantage. In order to obtain results with
acceptable accuracy during the first low-order steps, we need to start with a very small
step size. Once we have reached the desired method order, we then will have to
increase the step size in order to improve the economy of the algorithm.

Numerical Simulation of Dynamic Systems VIII

Multi-step Integration Methods III

The Startup Problem

The Startup Problem II

� Another technique, that has been proposed in the literature is to use a
single-step algorithm during the startup phase of the simulation, e.g. an RK
algorithm. Since single-step methods are self-starting, we can start the
simulation immediately with a method of higher order.

� For example, if we would like to simulate using the BDF4 algorithm, we start
with three steps of RK4. After the initial RK4 steps, we have the state history
information available that we require to switch over to the corresponding BDF4
algorithm.

� Unfortunately, this technique has the same disadvantage as the previous one,
because the problem to be simulated is presumably stiff, since otherwise we
wouldn’t use a BDF algorithm, and consequently, we’ll again have to start out
with a very small step size, because the RK4 starter method is a non-stiff ODE
solver that is numerically unstable for larger step sizes when dealing with a stiff
system.

� RK starters will work well for simulations employing Adams-Moulton, but we
already know that Adams-Moulton is not a competitive algorithm for simulating
non-stiff non-linear models of engineering systems.

Numerical Simulation of Dynamic Systems VIII

Multi-step Integration Methods III

The Startup Problem

The Startup Problem III

If we decide to use an RK starter, how do we determine the correct step size to use by
the multi-step technique after the startup period? Remember that we should hit the
correct step size at once, because each new change in the step size is expensive.

Let us redraw the relationship between cost and accuracy of different algorithms, this
time using a double-logarithmic scale.

10−7 10−6 10−5 10−4 10−3 10−2 10−1 100
102

103

104

AB2
AB3

AB4 RK4

Cost vs. Accuracy in Adams-Bashforth Methods

Global Relative Error

#
F
u
n
ct

io
n

E
va

lu
at

io
n
s

Figure: Cost versus accuracy for different ABi algorithms

We notice that the logarithm of the step size is, for all practical purposes, linear in the
logarithm of the accuracy.

Numerical Simulation of Dynamic Systems VIII

Multi-step Integration Methods III

The Startup Problem

The Startup Problem IV

After the startup phase, we can perform one step of the multi-step technique using the
step size h1 from the RK starter, and obtain an error estimate ε1. We then reduce the
step size to h2 = h1/2 and repeat the step. We obtain a new error estimate ε2.

We now place a linear curve through the two points, and interpolate (extrapolate)
with the desired accuracy εdes to obtain a good value for the true step size to be used
by the multi-step algorithm:

(
ln(h1)
ln(h2)

)
=

(
ln(ε1) 1
ln(ε2) 1

)
·
(

a1

a2

)

ln(hdes) = a1 · ln(εdes) + a2

hnew = 0.8 · hdes

The step size hdes should be fairly close to the optimal step size. I introduced a fudge
factor of 0.8 to be on the safe side, i.e., I prefer to use a step size that is slightly
smaller than the optimal one to avoid having to change the step size rapidly again.

Numerical Simulation of Dynamic Systems VIII

Multi-step Integration Methods III

The Startup Problem

The Startup Problem V

� A better approach, not yet implemented in any professional BDF code, might be
to use a BI algorithm, such as BI4/50.45, as a starter method.

� BI4/50.45 is a single-step algorithm, and therefore, this algorithm is self-starting.

� Yet, BI4/50.45 is also a stiff system solver, and consequently, we may be able to
employ a larger step size already during the startup phase.

Numerical Simulation of Dynamic Systems VIII

Multi-step Integration Methods III

The Dense Output Problem

The Dense Output Problem

We would like to be able to obtain state (output) values at any point in time, also in
between sampling instants. The values obtained should be accurate to the same order
of approximation accuracy as the values at the sampling points. This feature is called
dense output.

Since changing the step size of the simulation is expensive in a multi-step algorithm,
we wish to obtain dense output without changing the step size.

To this end, we shall integrate across the communication instant to the next regular
sampling instant, and then use interpolation to find the desired state (output) values
at the communication instant.

Once again, the Nordsieck vector comes to our rescue. Once we passed the next
communication instant, i.e., the next instant for which we wish to know the values of
the states (outputs), we calculate the Nordsieck vector at the current sampling
instant, and, using that information, employ a Taylor series expansion to determine
the state (output) information at the communication instant. This can be done with
the same accuracy as the integration itself.

After calculating the states (outputs) at the communication instant in this fashion, we
continue with our simulation from the sampling instant using the same step size as
before.

Numerical Simulation of Dynamic Systems VIII

Multi-step Integration Methods III

The Dense Output Problem

The Dense Output Problem II

Techniques for obtaining dense output were also developed for some single-step
algorithms.

Unfortunately, we don’t have access to the Nordsieck vector in single-step methods.

We cannot even use the intermediate computations (i.e., the predictor stages) to
estimate the states (outputs) at the communication instant, because in most
single-step methods, the states calculated by the predictor stages are not of the same
order of approximation accuracy as those of the corrector stage.

One successful and economic method for computing dense output in single-step
algorithms is to make use of three embedded algorithms, i.e., three methods of the
same order of approximation accuracy that share as many stages with each other as
possible.

Using the three approximations of the state variables at time tk+1, we can obtain an
approximation of the state vector at any time instant t ∈ [tk , tk+1] that is accurate to
the same order of approximation accuracy as the three individual algorithms
themselves.

Numerical Simulation of Dynamic Systems VIII

Multi-step Integration Methods III

Conclusions

Conclusions

In this presentation, we looked at the issues of step-size and order control in
multi-step algorithms. The problems surrounding step-size and order control are quite
different in the case of multi-step algorithms than in the case of single-step
algorithms. Whereas step-size control is easy and cheap in single-step methods, it is
quite involved and expensive for multi-step methods. In contrast, order control is
much cheaper and simpler for multi-step than for single-step algorithms.

We have also discussed the startup problems that are specific to multi-step algorithms.
Contrary to the single-step algorithms, which are self-starting, multi-step algorithms
require a separate startup procedure. This makes multi-step algorithms not suited for
simulating systems with heavy discontinuities that call for a restart after each
discontinuity.

Finally, we looked at the readout problem, i.e., how to get output at communication
points that don’t coincide with sampling instants. Once again, the methods used in
multi-step algorithms are quite different from those used in single-step algorithms.
Single-step algorithms will usually reduce the step size around communication points,
whereas multi-step algorithms will simulate across communication points and
interpolate back using the Nordsieck vector that is implicitly available for multi-step
algorithms, but not for single-step methods.

Numerical Simulation of Dynamic Systems VIII

Multi-step Integration Methods III

Conclusions

Conclusions II

It turns out that the actual integration algorithm occupies not more than about 5% of
the lines of code in a professional multi-step ODE solver. The remaining lines of code
are for all of the secondary algorithms surrounding the actual integration method, such
as step-size and order control, the startup procedure, the readout procedure, and the
localization of discontinuities.

Numerical Simulation of Dynamic Systems VIII

Multi-step Integration Methods III

References

References

1. Hu, Luoan (1991), DBDF: An Implicit Numerical Differentiation Algorithm for
Integrated Circuit Simulation, MS Thesis, Dept. of Electrical & Computer
Engineering, University of Arizona, Tucson, AZ.

