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Hierarchical Modular Modeling of
Continuous Systems

Preview

To this point, we have dealt with very simple and small problems.
In this chapter, we shall cover some of the techniques necessary for
modeling larger systems. Very often, systems consist of subsystems
that may be described in quite different ways. Besides state-space
representations and topological descriptions (which we have met pre-
viously), subsystems may also be described in the frequency domain
in terms of transfer functions or may simply be given as a static
characteristic relating one output variable to one or several input
variables. It is therefore important that models can be structured.
Modular modeling enables us to encapsulate subsystem descriptions
and treat them as unseparable entities that can be incorporated in a
hierarchical fashion within ever-more-complex system descriptions.

5.1 Modeling Transfer Functions

Let us assume a system is described by the following transfer func-
tion:

(s+1)
(s 7 10)(s + 20) (5.1)

G(s) = 200

In order to make this system amenable to simulation, we need to
convert the specification back from the frequency domain into the
time domain. The easiest way to do this is the following.

133
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_ _200+200s _ P(s) _Y(s)
(s) = 200+30s+ 52 Q(s)  U(s)

(5.2)

where G(s) denotes the transfer function, P(s) denotes its numerator
polynomial, Q(s) denotes its denominator polynomial, Y (s) denotes
the output signal, and U(s) denotes the input signal. We introduce
an additional signal X(s)

2o Y _Y(s) X(s)

)= T = X0 Tis) (5-3)
such that
X _ 1 .
U(s) = () (5:4)
Yo _
X9 = PO (5.4b)

We shall look at Eq.(5.4a) first. We can rewrite this for our example
as:

[200 + 30s + s?]| X (s) = U(s) (5.5)
which can be transformed back into the time domain as:
200z (t) + 30&(2) + &(t) = u(t) (5.6)

assuming that all initial conditions are zero, which is standard prac-
tice when operating on transfer functions. We now solve Eq.(5.6) for
its highest derivative:

Z(t) = —200x(t) — 30z (t) + u(t) (5.7)

Finally, we introduce the following state variables:
61 =2z (5.80)
62 = é (5.86)

which leads us to the following state-space model:

=6 ' (5.9a)
€ = —2006; — 30¢2 + u (5.95)
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We now look at Eq.(5.46), which can be written for our example as:
Y (s) = [200 + 200s]X (s) (5.10)
or in the time domain:
y(t) = 200z(t) + 200z(¢) (5.11)
and using our state variables:

y = 200§, + 200§; (5.12)

We can rewrite Eqs.(5.9a-b) and Eq.(5.12) in a matrix form as:

£ = (—300 —;0) ¢+ (2) v (5.13a)

y=(200 200)¢ (5.13b)

In general, if a system is specified through the transfer function:

bo +bys+ bzsz +...+b ._13“_1
ao+a1s+azs?+...+ap_18" 1 4 s

G(s) =

(5.14)

we can immediately convert this to the following state—space descrip-
tion:

0 1 0 0 0 \ 0
0 0 1 0 0 0
x=| ° 3 L : : x+|:|u (5.15a)
0 0 0 ces 1 0 0
0 0 0 . 0 1 0
—ap —a; —az ... —Gp_3 —%-1} 1
y= (bo by b2 ... bp_2 ba-a )x (5.15b)

In other words, the state matriz consists of all zero elements except
for a superdiagonal of one elements and the last row in which the
negative coefficients of the denominator polynomial are stored. The
input vector consists of zero elements except for the last element,
which is one, and the output vector contains the positive coefficients
of the numerator polynomial.

This technique will work fine as long as the numerator polynomial
is of lower degree than the denominator polynomial. If this is not
the case, we need to divide the numerator by the denominator first
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and separate in this way the direct input/output coupling from the
remainder of the system. This procedure will be illustrated by means
of another simple example: '

653 + 3282 + 10s + 2

252 4+8s+4 (5-16)

G(s) =

We always start by normalizing the highest—degree coefficient of the
denominator polynomial to one, i.e.:

35+ 1652 +55+1

G(s) o (5.17)

The division of polynomials works the same way as the division of
regular numbers:

(3s®+ 165+ 55+ 1):(s*+4s5+2)=3s+4
— 353+ 12824+  6s

\ 453 s+ 1
- 4524+ 16s+ 8
\ —17s— 7

i.e., G(s) can also be written as:

~17s =7

1452 (5.18)

G(s)=(3s+4)+

which can be interpreted as a parallel connection of two subsystems,
as depicted in Fig.5.1.

3 2
Uls) 3s +216s +5s+1 s Y(s)
§s“+4s5+2
3s+4
+
U(s) — Y(s)

-17s-7 +

32 +4s +2

Figure 5.1. Separation of the direct input/output coupling.
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The transfer function has been split into a polynomial that contains
the input/output coupling of the system and a remainder transfer
function, the numerator of which is now guaranteed to be of lower
degree than the denominator polynomial. This contains the so—called
strictly proper portion of the system.

In the case of our example, we end up with the following simulation
model:

T1 = 3 (5.19a)
23 = —2z1 —4z2+1u (5.19b)
y=—Tz, — 1723 + 4u + 32 (5-19¢)

As can be seen, a true differentiation of the input signal u was un-
avoidable in this case. This is always true when the numerator poly-
nomial of a transfer function is of a higher degree than the denom-
inator polynomial. As a small consolation, the necessary numerical
differentiation is performed as part of the evaluation of output equa-
tions and has thereby been removed from the simulation loop. Nu-
merical errors made in the process of numerical differentiation will
not grow by being passed around the integration loop many times.
We came upon this situation in Chapter 3, and at that time, I had
mentioned (without a proof) that essential differentiators can, in
linear systems, always be moved out of the simulation loop into the
output equations. It has now become clear why this is the case and
how this can be accomplished in practice.

5.2 Modeling Static Characteristics

Often, static but nonlinear functional relationships exist between
input variables and output variables of a subsystem. Often, math-
ematical equations describing these relationships are not available.
Instead, these relationships have been found through experimenta-
tion with a real system.

Let us demonstrate this concept by means of our lunar landing
module, which now should be equipped to land on Earth instead. Of
course, this wouldn’t work with the rockets designed in the previous
model, but let us be forbearing with these lesser details. However, it
will be important to modify our mechanical equations to take the air



