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ABSTRACT

This thesis discusse~ the application of the bond

graph modeling technique directly coded into the Dynamic
Modeling Language (DYMOLA) for simulating a solar-heated
house. Scientists throughout the years have investigated the
exploitation of solar radiation for space heating. In this

thesis, the physical behavior of such a system is modeled

and simulated in a convenient, robust and fast manner. The

bond graph modeling methodology has found widespread use in
a wide range of systems. DYMOLA is a modeling language well
suited to represent bond graphs. DYMOLA is a program genera-
tor that can map a topological system description, such as a

bond graph, into a state-space description expressed in the

form of a DESIRE simulation program.
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CHAPTER 1
INTRODUCTION

Engineers are trained in inventing new means which
will eventually lead to easier solutions of their problems.
One of them is to model and then to simulate a certain number

of physical systems encountered in their everyday life with

the main target being to first predict and secondly to study

their physical behavior.
The goal of this thesis is to present a modern and

advanced modeling-simulation technique applied to a solar-
heated house. The bond graph modeling technique as well as

the Dynamic Modeling Language (DYMOLA) will be used.

There exist a number of bond graph modeling tools on

the .market. The best established tool is ENPORT-7 (Rosencode

Associates Inc., 1989), a SPICE-like bond graph language with
a graphical front end. Other tools are TUTSIM (van Dixhoorn,

1982) and CAMP (Granda, 1982). However, none of these systems

is able to handle truly hierarchical bond graphs as they will

be essential for our endeavor. DYMOLA (Elmqvist, 1978) is the

only modeling language available which can handle truly
hierarchical nonlinear bond graphs in a completely general

fashion.
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It is attractive to many engineers to study the
possibility of exploiting the freely available solar radia-
tion for heating a house. For.a successful design of such a
facility, it is essential that the system behavior can be
simulated so that various alternatives can be tested prior to
implementation. DYMOLA together with the bond graph approach
to physical system modeling is expected to be the quickest
and most accurate method compared with others used in the
past to describe such a system. Bond graphs were invented in
1960 by Henry Paynter, an MIT professor (Paynter, 1961), and
DYMOLA was designed at the Lund Institute of Technology in
1979 by Hilding Elmqvist in his Ph.D. dissertation (Elmqvist,
1978). However, the application of DYMOLA to express bond
graphs is new and has never been done before.

Bond graphs find many applications in various
engineering disciplines because they make modeling more
systematic, because they make it easier to deal with
interfaces between subsystems of different types (e.g.,
electro-mechanical couplers), and because they simplify the
verification of a correct energy flow across such interfaces
and within the sUbsystems. They are able to provide a common
modeling methodology not only for electrical, mechanical and
other frequently simulated systems, but also for less
commonly simulated systems such as chemical, ecological or
biomedical systems. They offer a more general graphical
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representation than either block diagrams or signal flow
graphs since they preserve both the computational and the
topological structure of all the systems mentioned above. As
the word indicates, a bond graph is a collection of elements
bonded together. More information about this unique modeling
technique is provided in the second chapter.

After modeling our solar-heated house into bond
graphs, the produced diagrams are directly coded into DYMOLA,
a modular hierarchical continuous-system modeling language.
Its main advantage is that it can deal with large-scale
systems in a modular and hierarchical manner. Moreover, it
is very well suited to implement the bond graph modeling
methodology, and is able to map bond graphs into state-space
descriptions of the type ~' = i(~,y,t). special features of
DYMOLA are found in the third chapter.

The main subject of the fourth chapter is a
demonstration of the way in which DYMOLA can be used to solve
the presented problem. The transition from the bond diagram
to DYMOLA code is a straightforward procedure requiring
several simple rules being presented in a concrete and
succinct manner. DYMOLA is so powerful that it can auto-
matically evaluate the causality of the bond graph, produce
a state-space description for the system, as well as generate
a simulation program coded in either DESIRE (Korn, 1989b) or
SIMNON (Elmqvist, 1975), two direct executing continuous-
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system simulation languages. Moreover, a simple electrical
network is included, transformed first into its bond diagram
and then into DYMOLA code, with the hope that the reader will
follow and comprehend all the presented steps in a convenient
manner.

As mentioned before, the case study presented in this
thesis is a solar-heated house, a relatively complicated
system involving various subsystems and various types of
energy. The configuration under study consists of a flat-
plate solar collector, one solid body storage tank, water
loops, a heat exchanger, and the habitable space. Each part
is governed by a set of first order differential equations
illustrating the energy flow through the subsystem. Each
subsystem is directly transformed into a bond graph
representation. The various parameters used for the
simulation were taken from an older study of a similar solar-
heated house performed in the late 70's (Kass, 1978), from
other sources in the literature (Deffie and Bechman, 1980)
and from using our physical intuition and common sense.

It is hoped to have the opportunity to apply both the
bond graph modeling technique and the dynamic modeling
language in industry observing the physical properties of
various systems. Being able to translate them into bond
diagrams and then code them directly into DYMOLA is, indeed,
an exciting experience.
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CHAPTER 2
BOND GRAPHS

In this chapter the Bond Graph methodology is

discussed extensively. It starts with an overview of this

unique modeling technique, then it gives some basic defini-
tions with illustrations and it discusses the concept of
causality. Furthermore, a reference to Pseudo Bond Graphs and

Thermal Systems is given.

2.1 overview
Engineers needed to find a more general graphical

(symbolic) representation which attempts to preserve both the

computational and topological structure of any kind of
physical system. They found out that block diagrams and

signal flow graphs only preserve the computational but not

the topological structure. Thus, a relatively new and

powerful representation is that of Bond Graphs which has been
introduced by Henry Paynter in the early sixties (Paynter,
1961). Many types of physical systems have been studied

using bond graphs including electrical networks, mechanical

rigid bodies, hydraulic, thermal and energy transduction
phenomena. Some researchers refer to Bond Graphs also as Bond

Diagrams. We shall use both terminologies interchangeably.
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It is true, however, that for the beginner this

modeling language is quite abstract. Block diagrams and
signal flow diagrams can be more easily comprehended.

Nevertheless, for the case of modeling the solar-house, a

relatively complicated system involving many different types

of energy flow between its interconnected parts, it appears
that the bond graph procedure is more appealing due to its

ease of application and greater information content.
Modeling a physical system is a simplified abstract

construction used to predict its physical behavior. That is

exactly what the bond graph modeling methodology is

performing.

The purpose of this chapter is to introduce the

reader to this abstract modeling methodology and to provide

enough information so that he/she can easily comprehend it.

2.2 Basic Definitions

2.2.1 Mu1tiport Elements, Ports, and Bonds

The nodes of the graph are called Multiport Elements

designated by alpha-numeric characters such as 1 and R, as
shown in Figure 2.1(a). The places where a multiport element

can interact with its environment are called Ports designated

by line segments incident on the element at one end. Figure

2.1 (b) shows the 1 element having three ports and the R

element having one port. When pairs of ports are combined
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1 R -1- -R

I
1

I(C)

R

(a) (b)

Figure 2.1 (a) Multiport elements
(b) The elements and their ports

(c) Formation of a bond

R,
eSE- O-TF- 1 ~

I I f

C I
(a) (b)

Fig~re 2.2 (a) Bond graph
(b) A bond

134
SE~O~TF~

2~
C

R

15
1

~6

I

Figure 2.3 The Bond Graph with powers directed
and bonds labeled
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together, bonds are formed. Thus, bonds are connections
between pairs of multiport elements. For example, Figure
2.1(c) shows a formation of the bond between 1 and R.

2.2.2 Bond Graphs
A bond graph is a collection of multiport elements

bonded together. In a more general perspective it is a linear
graph with nodes being the multiport elements and with
branches being the bonds. An example of a bond graph is shown
in Figure 2.2(a) having seven multiport elements and six
bonds.

Another definition:
"A bond, represented by a bold half arrow, is nothing

but a connector that simultaneously connects two variables,
one across variable, in bond graph terminology usually
referred to as the 'effort' e, and one through variable,
called the 'flow' f" (Cellier, 1990a). Refer to Figure 2.2(b)
as well as to the next sUbsection for more information.

2.2.3 Port variables
There are three direct and three integral quantities

associated with a given port.
The first two direct quantities are called Effort,

e(t), one across variable and Flow, f(t), one through
variable, assumed to be scalar functions of an independent
variable (t).
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The scalar product of effort and flow is called Power

defined by

pet) = e(t) .f(t) (2.1)

comprising the third direct quantity.
In Figure 2.3, the same bond graph is drawn but it

has its powers directed and bonds labeled. The direction of

the positive power is indicated by a half-arrow on the bond.
Two of the three integral quantities are Momentum,

p(t), and Displacement, get), which are related to effort and
flow respectively as

pet) = p(to)+f
t

e(r)dr
to

(2.2)

and

get) = g(to)+f
t

f(r)dr
to

(2.3)

The third is Energy which is related to power as

E(t) = E(to)+f
t

P(r)dr
to

(2.4)

The net energy, represented by E(t)-E(to), is

transferred through the port in the direction of the half-

arrow (positive power) over the interval (to,t).

2.2.4 Basic Mu1tiport Elements

There are nine basic multiport elements divided into

four categories according to their energy characteristics.

There are two Sources, two Storages, one Dissipation and four
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Junctions. The two sources, the two storages (capacitance and
inertance) and the dissipation (resistance) are I-port
elements whereas two of the junctions (transformer and
gyrator) are 2-port ones and the other two (0 and 1) are at
least 3-port elements. The following Figure 2.4 shows the
symboI, definition and name of the nine basic multiport
elements. In the figure, ~ stands for a general function
relating two variables.

2.2.5 Extended Definitions
Although the following features are beyond the scope

of this thesis they are worth mentioning. The term Field is
also used in bond graph terminology. Thus, there are
C-fields, I-fields and R-fields which are multiport
generalizations of -C, -I and -R respectively. Moreover,
there are the Modulated Transformer (MTF) and Modulated
Gyrator (MGY).

Later in the fifth chapter, when the bond graph of a
three-dimensional cell is constructed the R-field is used
(three resistors are connected in x, y, z directions, see
Figure 5.6a).

2.2.6 Generalization to Basic Physical Types of Systems
We have already seen four generic variables effort,

flow, momentum and displacement. The following Figure 2.5
demonstrates a presentation summarizing the above four
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SYMBOL DEFINITION NAME

SE e,
e = e(t) source of effort

SF f
f = f(t)p sou rce of flow

C
e e =<1>(q)

d capacitancef q(t) = q(to) +J fdt
e f =<1>(p)

d inertancef p(t) = p(to) +J edt

R
e <1>(e,f) = 0-d resistancef

1 2 e1= me2, TF , transformerf2= mf 1m

1 2 e1=rf2), GY ), gyratore2= rf1r

1 3 e1= e2= e3 common effort'" 0 ),

f1+f2-f3=0 junction

t2
1 3 f1= f2= f3 common flow), 1 '" e1+ e2- e3= 0 junction

t2
Figure 2.4 Definitions of the basic multiport elements
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Effort
e

Flow
f

Generalized Generalized
Momentum Displacement

p q

Electrical vOlt~e current flux charge
u [ ] i[A] cl>[Vs] q [A s]

Translational force velocity momentum displacement
F[N] . u [ m s-'] I [N s] x [m]

torque angular twist angleRotational velocityT[ N m] Q [ rad s·1] 't[ N ms] e [rad ]

pressure volume pressure volumeHydraulic P [N m-2] flow momentum v [m3]cl>v[ m3s-1] IlN m-2s]

chemical molar flow molar mass
Chemical potential QN [ moles-1] N [mol]u] Jemol-1] dt

Thermo- temperature entropy flow entropy
dynamical T [OK] ~ [WOK-1] S [Je OK-1]

dt

Figure 2.5 Presentation of a summary of the four generic
variables being used in some common physical systems
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generic variables being used to the most common physical
system types.

2.3 The Concept of causality
Bond graphs have the property of preserving the

topological as well as the computational structure of a
system. When, for example, a given electrical system is
transformed into bond graphs its topological structure is
quite evident to the reader. Nevertheless, its computational
structure cannot be seen easily. Thus, the introduction of
bond graph causality comes into account.

We say that in bond graphs inputs and outputs are
specified by means of the causal stroke. It is a short
perpendicular line made at one end of a bond or port line. It
indicates the direction in which the effort signal is
directed, implying that the other end which does not have a
causal stroke is the one that the flow signal arrow points.
Figures 2.6(a) and 2.6(b) illustrate succinctly the meaning
of causality (causal stroke).

The following Figure 2.7 shows the nine multipart
elements with their desired causal forms and relations. It
is worthwhile saying that for resistance both causal forms
(as shown) are physically and computationally possible.
However, for capacitances and inertances we would rather pick
the causalities that numerically integrate over all state
variables.
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e
A : I B; ISy~eml : ISy~emI

(a) f

A I e
f

Figure 2.6 Meaning of causal strokes

(a) Effort is output of A, input to Bi
flow is output of B, input to A

(b) Effort is output of B, input to A
flow is output of A, input to B



ELEMENT
Effort Source

Flow Source

Resistance

Capacitance

Inertance

Transformer

Gyrator

0- Junction

1 - Junction

CAUSALFORM
SE > I

SF I >

---->•...1 R
RI >

->-C

>~I

I 1 > TF I 2 >

1 > JTF 2 > I

I 1 > GY 2> I
1> IGYI 2 >

1~ 0 d
2 I

31
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CAUSALRELATION
e (t) = E(t}

f (t) = F(t}

f = Cl>-~(e)
e =Cl>R(Q

e =Cl>d (Jfdt)

1=Cl>-;Uedt}

e1= me2, f2= m f1
f1= f2/m, e2 = e 11m

e1= rf2' e2= rf1
11= e2/r, 12 = e 1/r

e2= el , e3 = e1
11=-(f2+f3}

12= 11. 13= 11
el = -(e2 + e3)

Figure 2.7 Desired causal forms and relations of the basic
nine multiport elements
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2.4 Pseudo Bond Graphs and Thermal Systems
Because of the fact that the solar-heated house is a

thermal system, it is time to introduce some bond-graph
representations for such a thermal system. Thermal systems
have been presented as analogous to electrical systems,
usually with temperature analogous to voltage and heat flow
analogous to current. with this analogy in mind we have
sources analogous to voltage and current sources, thermal
resistors and capacitors, and a and 1 junctions. However,
there are no thermal inertias (inertances).

There is one major obstacle. The product of
temperature and heat flow isn't power. Heat flow is by itself
a power. Engineers, then, decided to name such a bond graph
in which the product of effort and flow isn't power a pseudo
bond graph. As long as the basic elements in the pseudo bond
graph are correctly related to the e, f, p, and q variables,
the rules for the regular bond graph technique can be
usefully applied. The true bond graph results (see Figure
2.8), if temperature and entropy flow are used as effort and
flow variables respectively. Indeed, the product of
temperature and entropy flow is power.

The following Figure 2.8 shows a thermal resistor and
I-junction as well as a thermal capacitor and a-junction
which are going to be used in the fifth chapter during the
modeling procedure of the solar house.
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R c
Ts S'S

T1
1

T3 T4
), 0

TS
), >r >r

S'1 S'3 S'4 S'S

S'1= S2 = S'3 T4=TS=TS

T1-T2-T3=O S4 - S'S - S'S = 0

(a) (b)

Figure 2.8 (a) Thermal resistor and l-junction
(b) Thermal capacitor and a-junction
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Despite the fact that in the literature pseudo-bond graphs are

more popular than the true-bond graphs in modeling thermal
systems, it may be argued that using the latter ones will be
more appropriate for modeling the solar house. True-bond graphs

are better suited to represent the energy flow across a

junction to and from other types of energy, such as mechanical,

electrical, hydraulic, or pneumatic. Thus, as shown in the

previous figure, temperature (T) would be the effort variable
and entropy flow (S') would be the flow variable.
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CHAPTER 3
DYMOLA

DYMOLA (Dynamic Modeling Language) is presented in

this chapter. It is focused more on DYMOLA's main features,

capabilities, unsolved problems and other important

properties rather than on its software aspects. This thesis
focuses more on modeling aspects than on software engineering
aspects. More information about all the syntactic aspects
surrounding the software can be found in Wang's thesis (Wang,

1989), particularly in the third chapter. Some of the figures

presented in this chapter are very similar to those in Wang's
thesis (3rd chapter).

3.1 overview

As mentioned before, DYMOLA is a modeling language
rather than a simUlation language since it does not have its

own simUlation engine. It equips the user with a more

comprehensible and better modularized hierarchically

structured model description. A DYMOLA translator has as its
input the hierarchically structured model, whereas as its

output the governed model equations which are gathered into

system equations.

DYMOLA is instructed by a compiler switch as to the

desired simUlation language the output is to be generated in.
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Presently, DYMOLA supports DESIRE, SIMNON and FORTRAN and it

would not be difficult to enhance it to support other

languages, such as ACSL, as w~ll.
DYMOLA uses two concepts: the submodel concept as

well as the cut concept. These will be clarified later in

this chapter.

There exist currently two different implementations

of DYMOLA, one coded in PASCAL and the other coded in SIMULA.
The first one runs on VAX/VMS and on PC compatibles, while
the latter runs on UNIVAC computers.

3.2 Special Properties of DYMOLA Model Descriptions

3.2.1 Some Properties

The following are properties of a DYMOLA model. Some

are quoted directly from Cellier's book (Cellier, 1990a),
others are paraphrased:

(1) DYMOLA variables can be of two types: the

terminal type and the local type. If they are
connected to something outside the model, they

will be of the terminal type; otherwise, they

will be of the local type (connected inside the
model).

(2) Terminals might be either inputs or outputs,

frequently depending on the surroundings to

which they are connected. The user has the right
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to declare them the way he wants them to be by

explicitly specifying input or output.

(3) DYMOLA constants can be of the parameter type if
the user wishes to do so. Parameter values can
be assigned from outside the model, but they can

alternatively also assume default values.

(4) "Terminals can have default values. In this way,

they don't need to be externally connected"
(Cellier, 1990a).

(5) The first time derivative of state variable x
can be expressed in two ways, either through

der(x) or through x'. Second derivatives can be

written as either der2(x) or x".
(6) The user cannot set initial conditions for the

integrators inside a model, showing clearly a

flaw of DYMOLA.

(7) The syntax expression = expression is used in

DYMOLA equations, being solved for the proper

variable during the process of a model

expansion. DYMOLA accepts the fact that the left

hand side of an equation can have der
(temperature), while temperature appears on the

left hand side of another.



33

(8) When multiplying terms by a zero parameter, they

are automatically eliminated during a model

expansion. For example, if we have

La = 0.0

and the model equation

La * der (ia) = ua - ui - Ra * ia
then the above is replaced by

0.0 = ua - ui - Ra * ia

(3.1)

(3.2)

resulting in the following three

simulation equations:

(a) ua = ui + Ra * ia (3.4)

(b) ui = ua - Ra * ia (3.5)

(c) ia = (uo - ui)/Ra (3.6)
depending on the environment in which the model

is used.

(3.3)

possible

If La ~ 0.0, then the model equation is always
transformed into

der (ia) = (ua - ui - Ra * ia)/La (3.7)

(9) "The above rule indicates that parameters with

value 0.0 are treated in a completely different

manner than all other parameters" (Cellier,
1990a). Parameters which are not equal to zero
are maintained in the generated simulation code,

whereas the ones with 0.0 value are not

represented in the simulation code.
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(10) DYMOLA models are modular because the equations
can automatically be solved during model
expansion.

3.2.2 The "Cut" Concept
When advancing to higher levels of the hierarchy, the

number of the parameters will be growing. Similar to real
systems where wires are grouped into cables and cables are
grouped into trunks, the concept of "cut" has been introduced
in DYMOLA to group variables together. Cuts correspond to
complex connection mechanisms of physical systems like
electrical wires, pipes and shafts. A more precise definition
is the following: "Cuts are hierarchical data structures that
enable the user to group individual wires into buses or
cables and cables into trunks. A cut is like a plug or a
socket. It defines an interface to the outside world"
(Cellier, 1990b).

The following two figures, 3.1 and 3.2, show a model
of a conductance (inverse of resistor) illustrating the
different model descriptions before and after using the
concept of cut. This example demonstrates how a continuous
model achieves modularity.

with cut declarations the input and output variables
do not change the model description by switching them.
Nevertheless, the main advantage of cut is the two types of
variables, the across and through variables with which there
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model name : conductance
input: I
output: V
parameter: G
equations: V = I/G

or model name: conductance
input: V
output: I
parameter: G
equations : I = V • G

Figure 3.1 Model of a conductance using input output
declaration

model name: conductance
cut: A(Va II) 8(Vb I-I)
local: V
parameter: G
equations: V = Va -Vb

V=IIG
Figure 3.2 Model of a conductance using cut declaration
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is associated as in the real physical world a connection
mechanism. The equations which describe the physical laws at
the connection mechanism are automatically generated by the
declaration of cut and the connection statements.

Consider the following example: Three submodels
defined as "GH" "Gz" and "G3" have A and B as their cut
variables. V« and I are the across variable and the through
variable associating with cut A, respectively, being declared
as (see Figure 3.3)

cut A (V«/I)

Using the connect statement
connect G1:A at Gz:A at G3:A,

the following equations are automatically generated:
GpV« = Gz.V« (3.8)

Gz•V« = G3• V« ( 3 • 9 )

Gp I + Gz• I + G3• I = 0 (3.10)
The above equations describe what exactly happens at the
boundary of the subsystem where two or more elements are
connected. "Thereby, all across variables (to the left of the
slash separator) are set equal, and all the through variables
(to the right of the slash operator) are summed up to zero"
(Cellier, 1990b).

When several cuts are grouped together, a
hierarchical cut is formed in the same way as individual
wires are grouped together into a cable.
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Va G1 Vb
A -----i t---. B B

•I
Va G2 Vb

A -----i t---. B
•I

Va G3 Vb
A -----i t---. B B B

•
I

(a) (b)

Figure 3.3 Three submodels connected at port A

(a) Three submodels
(b) Connected at A
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Using the concept of cut, the following conclusions
can be derived:

(1) When varying the I/O variables, a model in a

continuous system can avoid a change in its

model description.
(2) It separates the physical laws which describe

the static and dynamic properties of the model
from the physical laws which dominate at several

subsystems at their connecting points.

(3) Models in DYMOLA are said to be in proper

modular form so that the user can build them in

a hierarchical modular manner.
The above concept can be extended to other systems

such as mechanical, hydraulic and thermal systems. Being

interested in the last ones, it is worthwhile mentioning that

temperature and pressure are across variables, whereas heat

flow is a through variable.

3.2.3 The "Submode1" Concept and "nodes" in DYMOLA
A submodel might be an atomic model, i.e., a model

without coupling, or a coupled model.

Figure 3.4 illustrates atomic models, whereas the

following one (Figure 3.5) illustrates a coupled model. In

the latter one, the submodels of a resistor and a capacitor

are depicted which are in modular form. The resistor's only
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Example 1 : A RESISTOR
model resistor

cut A (VA / I ) B (VB / -I )
local V
parameter R = 1
V = VA-VB
R-I = V

end

Example 2 : A CAPACITOR
model capacitor

cut A (VA / I ) B (VB / -I )
local V
parameter C = 1
V = VA-VB
C - der (V) = I

end

Figure 3.4 Examples of atomic models in DYMOLA
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model prc
submodel resistor (30)
sub model capacitor (20)
cut A (VAil)
cut B (VA / -I )
connect resistor: B at capacitor: Bat B
connect resistor: A at capacitor: A at A

end

Figure 3.5 Example of a coupled model prc



41

parameter R is 30 (indicated by the (30) in the submodel
statement), whereas the capacitor's only parameter C is 20.

By coupling the two atomic models together, a coupled
model "prc" is produced. "prc" stands for parallel connected
resistor and capacitor. The coupled model is in proper
modular form and can be used to construct larger systems.
This concept of coupled models in DYMOLA is shown in
Figure 3.6.

The "node" statement will be seen very often in a
DYMOLA program. Nodes are convenient ways to make several
connections acting like the power distributor. We plug
several appliances into one distributor. For example, we can
have

node n
connect x:A at n
connect y:B at n

which is equivalent to the single statement
connect x:A at y:B

3.2.4 Hierarchical Model structure in DYMOLA

Figure 3.7 depicts a system named "S" decomposed into
several sUbsystems: "Sl" , "S2'" and "S3". "S2" is decomposed
into "S21" and the last subsystem is further decomposed into
"S31" and S32" showing an overall hierarchical structure.
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R RA ----i I--e B PRC
A T T B1 I I I

C I I

A. II • B C

(a)

cut 1
• •

cut 1 cut 2•.•----1LliJ--·cut 2

cu
Zc

t 1 I ZA :I cut-
I ZB :I

2

cu~ ZA I •• ~2

(b)

Figure 3.6 Coupled models in DYMOLA
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s

Figure 3.7 A hierarchically structured system
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Figure 3.8 depicts one way to describe the
hierarchical structure of the system (S) in DYMOLA. However,
this technique has a serious flaw. For example, if system
"S21" and "S32" are the same, the model specification must be
repeated. In order to avoid duplicating subsystems with the
same models, DYMOLA introduces a term called "model type."

"A model specified as 'model type' represents a
generic model of a general class of objects. This 'model
type' can be used to generate several models with a submodel
statement so that duplication will be avoided" (Wang, 1989).

For instance, the "model resistor" and the "model
capacitor" in the model specification can now be defined as
"model type resistor" and "model type capacitor." The
following Figure 3.9 demonstrates the same model
specification as before but now using model types.

After creating model types of any system, it
naturally comes to the user to declare libraries of models.
This library is set up first when a system is modeled and
then the hierarchy can be specified.

3.3 Generation of DESIRE Models

As mentioned before, DYMOLA is used to generate not
only SIMNON and FORTRAN model but also DESIRE models. The
following command is used for this purpose:

output desire model
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Model S
model S1

end
model S2

model 821

end

end
model S3

model S31

end.
model S32

end

end

end

Figure 3.8 Description of the hierarchical structure
of a system in DYMOLA



model type PRe
submodel (resistor) rtwo (30)
submodel (capacitor) cone (20)
cut A (VA /1)
cut B (VB / -I )

connect rtwo : A at cone: A at A
connect rtwo : B at cone: B at B

end

Figure 3.9 Model specification for "pre"
using model type

46
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However, before proceeding, the user has to issue the

command:

partition

which manipulates all the equations emanated by the model

description and connection mechanism. This works in the

following way: First, the computer will determine if a
variable is present in an equation or not. Secondly, it finds

out for which variable each equation must be solved. Thirdly,

it partitions the equations into smaller systems of equations

which must be solved at the same time. At the very end, it
sorts the equations into the correct computational order.

3.3.1 creation of a DESIRE Simulation Program

To create a DESIRE Simulation Program, a control

portion of the DYMOLA program is added. In order to run the

simulation of a continuous system, the basic information for

simulation control such as simulation step, communication

points and simulation time are required.

3.3.1.1 Description of the Simulation Control Model

Its syntax is "cmodel" and it must be stored into a

file with the same filename as that of the controlled system.

It is indicated by the file extension "ctl" and is comprised
of three parts:

(1) basic part

(2) run control block
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(3) output block
In the basic part the following information is stored:

(1) simulation time
(2) simulation step size
(3) number of communication points
(4) inputs (optional)

The reader should consult Wang's thesis (Wang, 1989)
concerning the format of the basic part.

The run control block involves the run control
statements which can appear in the run-time control part of
a DESIRE program.

The output block must contain the simulation output
requirements. There are four output statements which are
"dispt", "dispxy", "type", and "stash." Wang's thesis gives
extensive details concerning their syntactic structures which
are beyond the scope of this thesis. For this thesis, we
require simulation graphs, so the "dispt" statement is going
to be used.

3.3.1.2 Obtaining Executable DESIRE Programs

The command
output desire program

will create executable DESIRE programs. First, the program
verifies if the simulation control model associated with the
system exists. Secondly, if the above is true, then an
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executable DESIRE program is generated; otherwise, an error
message is displayed.

The procedure of generating DESIRE models will be
shown with examples in the next chapter where a direct
procedure of transforming bond graphs into DYMOLA code is
developed.

3.4 Some Unsolved Problems
Currently, DYMOLA is still in a developing stage. A

fair amount of research is needed to make DYMOLA a more
productional code. There are, indeed, some unsolved problems
which are listed below. They are good research topics for
DYMOLA's future enhancement and advancement.

(1) DYMOLA is currently able to eliminate variables
from equations of type Q = f3. However, it is
unable to eliminate variables from equations of
type Q ± f3 = O.

(2) DYMOLA must be able to find out duplicate
equations and to get rid of one of these
automatically. This is very important for
hierarchically connected submodels.

(3) "DYMOLA should be able to handle superfluous
connections, i.e., if we specify that w2 = -w1,

it is obviously true that also b2 = -b1"

(Cellier, 1990a). (w is the angular velocity and
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b is its corresponding angle.) Currently,
DYMOLA cannot let the user specify this
additional connection and eliminate superfluous
connections during the model expansion.

(4) DYMOLA must be capable of recognizing that
connections of outputs of integrators can always
be transformed into connections of inputs of
such integrators. For example, having ia3 = ia2,

it is obviously true that iadot3 = iadot2• This
reformulation can help eliminate structural
singularities.

(5) "Groups of linear algebraic equations are
currently grouped together and printed out by
DYMOLA without being solved. DYMOLA should be
able to rewrite the system of equations into a
matrix form, since DESIRE can handle matrix
expressions efficiently and future versions of
DESIRE will include efficient algorithms for
inverting matrices" (Wang, 1989).

(6) If, for example, the following expression is
written

x2 + z2 + 2 * Y - 10 = 0

and it is desired to be solved for x or z, then
problems will arise. DYMOLA cannot solve for
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second or higher order equations. It can solve
for Y, however.

(7) DYMOLA can handle only continuous-time systems.

It still cannot handle discrete time systems

although DESIRE can handle them.

The aforementioned unsolved problems are the most

noticeable ones. For more information, the reader can refer
to Cellier's book (Cellier, 1990a) and Wang's thesis (Wang,
1989) .
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CHAPTER 4

CONSTRUCTION OF BOND GRAPHS

AND THEIR TRANSFORMATION INTO DYMOLA

After discussing both the bond graph methodology and
the Dynamic Modeling Language in the previous two chapters,
this chapter focuses on the way to combine these two tools

for modeling and simulating. A demonstration for constructing

a bond graph for a simple electrical network is given and

then its graph is transformed into DYMOLA code. It is a

simple, direct procedure as will be seen.

4.1 Overview

A detailed procedure for constructing the bond graph

is provided. The sample system is going to be a simple

electrical network. Several diagrams are drawn demonstrating

the step by step procedure so that the reader can follow it

without any difficulty.

Once the bond graph for the given system has been
constructed, it can be directly coded into DYMOLA. There are,

however, several rules for this procedure that should be
observed. They are stressed in the subsequent sections of

this chapter. The basic bond graph modeling elements of R,

C, L, TF, GY and bond can be described once and for all and
stored away in a DYMOLA model library called "bond.lib."
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At the very end, the DYMOLA coded program is run on
the pc. It is going to be seen that DYMOLA is so powerful

that it can automatically evaluate the causality of a bond

graph, generate a state-space description for the system and

finally generate a simulation program in currently either

DESIRE or SIMNON, two "flat" direct executing continuous-
system simulation languages. DESIRE is going to be used for
this purpose.

4.2 Some Basic Rules for constructing Bond Diagrams
for Electrical Networks

Before proceeding to our construction of a bond
diagram for a simple electrical network, we need to meet some
regulations given in this section.

(1) In the a-junction, all effort variables are

equal, whereas all flow variables add up to

zero.

(2) In the I-junction, all flow variables are equal,
whereas all effort variables add up to zero.

Therefore, for an electric circuit diagram the a-junction is

equivalent to a node, or a node in a DYMOLA program

(Elmqvist, 1978). Moreover, the a-junction represents

Kirchhoff's current law, whereas the I-junction represents
Kirchhoff's voltage law. If two junctions are connected with
a bond, one is always of the a-junction type while the other
is always of the I-junction type. It can be said that
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a-junctions and 1-junctions always toggle. Neighboring
junctions of the same type can be amalgamated into one.

4.3 Construction of a Bond Diagram
of a Simple Electrical Network

Because of my familiarity to electrical networks, I
have chosen a simple electrical network to demonstrate the
step by step procedure for constructing its bond graph.

The network is shown on Figure 4.1, with its node
voltages labelled a, b, c and r.

4.3.1 The Step by Step Procedure
The following steps must be followed for constructing

its bond graph:
(1) It is better to use voltages than currents, so

Figure 4.2 shows three a-junctions (voltage
junctions) being laid out with subscripts
corresponding to the nodes. The reference node
is not represented by a a-junction.

(2) Then, we represent each branch of the circuit
diagram by a pair of bonds representing two
a-junctions with a 1-junction in between them
(l-junction = current-junction). This is
displayed in Figure 4.3

(3) Setting Vr to zero, we can remove the bonds
connecting the rest of the circuit (see
Figure 4.4).
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a R b c

r

Figure 4.1 An electrical network with nodes labelled
(r = reference)

Va R c Vc

Figure 4.2 Layout of voltage junctions (O-junctions)
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R

I
0-1

c
I

0- 1- 0

SE 1

Figure 4.3 The assembly of components and source

R C

I I
0 1 0 1- 0

I I I
1 1 1

I I I
SE L1 L2

Figure 4.4 The cancellation of reference node
and associated bonds
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(4) If only two bonds go to a junction then this
junction and its bonds are replaced by a single
bond (see Figure 4.5). This has been done for
the whole circuit demonstrated on Figure 4.6.

(5) Arrows point in the same direction as the branch
currents are picked. The effort variables are
assigned on the side the arrow points on the
bond and for active elements such as sources
(voltage, current) the arrow points towards the
junction, whereas for passive elements (such as
resistor, capacitor and inductor) the arrow
points away from the junction.

So the bond graph is complete as indicated on
Figure 4.7. The following Figure 4.8 demonstrates for each
bond its voltage (effort variable) and current (flow
variable) as well as the arithmetic values for each element.
This is the detailed completed bond graph. E stands for
resistance, ~ stands for capacitance, I stands for inductance
(or inertia) and SE stands for effort source.

Now, let us assign causalities for the network. It
can be seen how the energy flow is distributed throughout the
electrical network. This is also shown on Figure 4.8 and it
has been done based on Figure 2.7. Fortunately, every condi-
tion has been met, so our network is said to be a causal one.



58

1- -
0- -

Figure 4.5 The condensation of bonds

R C

I I
SE - 1 0 1- L2

I
L1

Figure 4.6 The reduced graph

R C

1 1
SE >- 1 >- 0 >- 1 > L2

~

L1

Figure 4.7 The bond graph
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.
ve 'c

SE: u, Uo v1 v1 vL2 > I I:L2
> I 1 > I 0 > I 1=20V .

ie
. =1mH10 10

iL11V1
Ie

I:L 1
=1.5mH

Figure 4.8 The completed bond graph with its causalities
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4.4 Transformation of Bond Graphs into DYMOLA Code
After constructing the bond graph for the selected

simple electrical network, we are ready to transform it into
DYMOLA code which is a straightforward procedure. The
following rules must be observed, however:

(1) The O-junctions are equivalent to DYMOLA's
"nodes."

(2) There is no DYMOLA equivalent for 1-junctions;
however, if the effort and flow variables are
interchanged, then they are the same as
a-junctions.

(3) Having the above in mind, a model type "bond"
which simply exchanges the effort and flow
variables can be created and installed in
DYMOLA's library. Besides, the elements R, C, L,
TF and GY which describe the basic bond graph
multiport elements are installed once and for
all in DYMOLA's library. They are illustrated in
Figure 4.11.

(4) "In DYMOLA, all elements should be attached to
O-junctions only. If we want to attach an
element to a 1-junction, then we need to place
a bond in between" (Cellier, 1990a). The
expanded bond graph is shown on Figure 4.9.
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Figure 4.9 DYMOLA expanded bond graph
with each node indicated

61



62

(5) Neighboring junctions are always of the opposite
sex, i.e., O-junctions and I-junctions always
toggle.

(6) Fortunately, we do not need to worry about
causalities. DYMOLA is perfectly capable of
handling the causalities as is seen during the
execution of the algorithm assigning them.
However, as we saw earlier, we were perfectly
capable of assigning causalities. This is not
true every time. For example, a non-causal
system results when we try to connect two
sources of different values.

Now we are ready to translate the expanded bond graph
into DYMOLA code as indicated by Figure 4.10. The code is
self-explanatory as we use the statements "submodel",
"connect", and "node" which had been analyzed in the previous
chapter. Furthermore, the various DYMOLA model types as well
as the Experiment used for simulating the network are shown
in the next two figures. Experiment is the simulation control
model as described in chapter three.

DYMOLA can furthermore be used for obtaining various
results such as causality, elimination of redundant
equations, derivation of a state-space representation, and
generation of a simulation program for DESIRE. The ultimate



{bond graph model for a simple RLC network}

@rlc.r
@rlc.c
@rlc.i
@rlc.se
@rlc.bnd

model RLC

submodel (SE) UO
submodel (R) RI(R=200.0)
submodel (1) Ll(1=1.5E-3),L2(1=I.OE-3)
submodel (C) CI(C=O.lE-6)
submodel (bond) BI,B2,B3,B4,B5,B6
node vO,iO,vl,dRI,ic,dL2,dCl
output yl

connect UO at vO
connect BI from vO to iO
connect B2 from iO to dRI
connect RI at dRI
connect B3 from iO to vI
connect LI at vl
connect B4 from vI to ic
connect B5 from ic to dCI
connect CI at dCI
connect B6 from ic to dL2
connect L2 at dL2

UO.EO=20.0
yl=L2.e

end

Figure 4.10 DYMOLA code of the bond graph
shown on Figure 4.9
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model type R
cut A (e / f)
parameter R=l.O
R*f = e

end

model type GY
cut A(el/fl) B(e2/ -f2)
main cut C[A B)
main path P<A - B>
parameter r=l.O
el=r*f2
e2=r*f1

end

model type I
cut A (e / f)
parameter 1=1.0
I*der(f) = e

end

model type TF
cut A(el/f1) B(e2/ -f2)
main cut C[A B)
main path P<A - B>
parameter m=l.O
e1=m*e2
f2=m*f1

end

model type C
cut A (e / f)
parameter C=l. 0
C*der(e) = f

end

model type SF
cut A(./ -f)
terminal FO
FO=f

end

model type SE
cut A (e / .)
terminal EO
EO = e

end

model type bond
cut A (x / y) B (y / -x)
main cut C [A B)
main path P <A - B>

end

Figure 4.11 The various basic DYMOLA model types
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cmodel

simutime 50.0E-6
step 50.0E-9
commupoints 101

ctblock
scale = 1
XCCC = 1
label TRY

drunr I if XCCC<O then XCCC = -XCCC I scale = 2*scale I go to TRY
else proceed

ctend

outblock
OUT
yl=L2Se
dispt yl

outend

end

Figure 4.12 Experiment used for the network
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goal is the generation of an executable DESIRE program using
the following commands:

$ dymola

> enter model

- @ rlc.dym

> enter experiment

- @ rlc.ctl
> outfile rlc.des
> partition eliminate

> output desire program

> stop

clarifying the last portions of the last chapter.

Then, we can run DESIRE using the following commands
$ desire

> load 'rlc.des'

> run

> bye

The generated DESIRE program as well as the state-space
representation are shown in the following two figures
respectively (see Figure 4.13 and Figure 4.14). The

statements above the DYNAMIC declaration of the generated

DESIRE program describe the experiment to be performed on the

model, and the other statements describe the dynamic model.

The time of the whole compilation is less than a tenth of a

second. Finally, the DESIRE output of our network is shown in
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-- CONTINUOUS SYSTEM RLC

STATE C1Se LISf L2$f
DER dC1Se dLl$f dL2$f
OUTPUT yl
PARAMETERS and CONSTANTS:

R=200.0
C=0.lE-6
L1SI=I.5E-3
L2SI=I.OE-3
-- INITIAL VALUES OF STATES:
CISe=O
LISf=O
L2Sf=0

TMAX=50.0E-6 I DT=50.0E-9 I NN=IOI
scale = I
XCCC = 1
label TRY

drunr I if XCCC<O then XCCC = -XCCC I scale = 2*scale I go to TRY
else proceed

DYNAMIC

-- Submodel: RLC
B3Sx = L2Sf + LISf
-- Submodel: RI
RISe = R*B3Sx
-- Submodel: CI
d/dt CISe = L2Sf/C
-- Submodel: RLC
BISx = 20.0
B4Sx = BI$x - RI$e

Figure 4.13 Generated DESIRE Program
(continued on next page)
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-- Submodel: Ll
d/dt Ll$f = B4$x/Ll$l
-- Submodel: RLC
L2$e = B4$x - Cl$e
-- Submodel: L2
d/dt L2$f = L2$e/L2$l

OUT
yl=L2$e
dispt yl

/--
/PIC 'rlc.PRC
/--

Figure 4.13 Generated DESIRE program (continued)

RLC B3.x = L2.f + Ll.f
Rl e = R*B3.x
Cl dere = L2.f/CRLC Bl.x = 20.0

B4.x = Bl.x - Rl.e
Ll derf = B4.x/l
RLC L2.e = B4.x Cl.e
L2 derf = e/l

Figure 4.14 State-space representation of the network
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Figure 4.15 DESIRE output
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the last figure of this chapter (Figure 4.15). Several other

runs can be performed but the ones presented are the most

important. For further details, the reader should consult the

seventh chapter in Cellier's book (Cellier, 1990a).
The same procedure is used in the next chapter for

simulating the solar heated house.
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CHAPTER 5
CASE STUDY

MODELING-SIMULATING A SOLAR-HEATED HOUSE

The main goal of this thesis is presented in this

chapter. Having studied the bond graph methodology, DYMOLA,

and seen how these two tools can be combined together, we are

ready to model and then to simulate our solar-heated house.
Being a relatively complicated system, it is appropriate for
modeling purposes to divide it into several parts, that is,
into a hierarchically described structure. Each part is

presented by its bond graph converted into its DYMOLA code as

well. Finally, all the parts are combined together resulting

in the whole model of the solar-heated house.

5.1 Overview
scientists throughout the years have investigated the

exploitation of solar radiation for space heating. A solar

heating system like the investigated one is any collection of

equipment designed primarily to use the sun's energy for

heating purposes.
The above system is a relatively complicated one

involving many different types of energy. Various methods

were used throughout the years for modeling and simulating

such a system with mixed results. It is expected that using
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the method described in this thesis, that is, the bond graph
modeling methodology as well as DYMOLA for generating a
simulating program for DESIRE, the physical behavior of such
systems can be modeled, simulated and evaluated in a
convenient, robust, and fast manner.

The investigated configuration consists of a flat-
plate solar collector, a solid body storage tank and the
habitable space. They are connected with "water loops" circu-
lating water through pipes. Each part is thoroughly studied
and analyzed illustrating the energy flow through each sub-
system and across the barrier between sUbsystems. Each one is
transformed into a bond graph representation and is then
directly coded into DYMOLA which not only generates a DESIRE
program but can also provide us with a set of first order
differential equations (a state-space representation). The
various parameters used for the simulation were taken from
various sources as mentioned before (see last portion of this
chapter) .

5.2 Solar Heating
A popular conception of solar heating is to use the

solar radiation more or less directly without any natural
intermediate steps such as photosynthesis. This can be
primarily accomplished by collectors which are devices
collecting solar radiation arriving from the sun and



73

converting this radiant energy to a more desirable one such

as heat. This converted energy can be transferred by a fluid

(usually hot water) and either utilized immediately or stored

for later use. This heat can be used for a simple space

heating. A general solar heating system is shown in
Figure 5.1.

Let us describe in general terms the collectors and

the storage tank as well as the habitable space.

Collectors are the heart of any solar heating system,

collecting and then converting the solar radiation. The

simplest and cheapest one (see Figure 5.2 in section 5.4) is
called the flat plate collector. It is a flat sheet of dark
surfaced metal possessing one or more layers of glass above

and a layer of common insulation below. The metal sheet is

heated by sunlight which comes through the glass. The amount

of heat that can escape and dissipate can be reduced by the

glass and insulation; therefore, the metal sheet becomes very
hot. In order to obtain this heat for utilizing it, there are

two ways to do it. Either air can be passed above the metal

or a fluid can be passed through tubes bonded to the metal.

Therefore, the sunlight heats either air or water which are

transferred to other convenient locations for use.

When the collector supplies the heated air or water,
one of two things must be done--either it can be used at once
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Figure 5.1 A solar heated house
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or it can be stored for later use. Particularly, the hot
water can be stored in tank systems designed in such a way

that cooler water from the bottom can be sent through the

collector for heating and then returned to the upper part of

the tank. It is not practical to store hot air. The storage
tanks are heavy and usually are set below ground.

Having heat either from collectors or the storage
tank, we have to use it; for example, for space heating

(habitable space). Hot water passes through a heat pump

(might be cooling or heating device) and a heat exchanger in

which the air blows around the hot water coils from the heat

storage tank. Thereby, the habitable space is heated\
Above, the procedure has been described in which

solar radiation is converted to a form of energy for heating

a house. We are ready now to model the basic parts, that is

the collector, the storage tank, the water loops (collector

and heater water loop) and the habitable space. The collector

water loop (CWL) is connected between the collector and the
storage tank; whereas, the other one (heater water loop:

HWL) is connected between the storage tank and the heater

(heat exchanger). In modeling our solar house, we have been

careful to make our system causal, that is, to satisfy all

causality conditions. To start with, we have to know some
basic thermodynamic concepts which are presented in the next

section.
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5.3 Basic Thermodynamic and General Concepts
The first thing needed is to define entropy and the

first law of thermodynamics. So, entropy (S) is defined as

S - Q- T (5.1)

where Q is heat (in Joules) and T is temperature (in Kelvin).

The first law of thermodynamics states that the total
energy Et, being a constant, equals to the sum of free energy
Ef and the thermal energy Q.

(5.2)
Also entropy flow can be defined as

dS _ .1 QQ
dt - T dt (5.3)

and when multiplied by the temperature T gives heat flow
which is power needed to construct the bond diagrams.

Moreover, the heat equation

(5.4)

describes both the thermal conductive and convective flow of
heat.

In thermodynamics, we need to familiarize ourselves

with three separate physical phenomena providing mechanisms

for heat transfer or heat flow. They are conduction, convec-

tion, and radiation.

In heat conduction, thermal energy is transported by

the interactions of its molecules in spite of the fact that
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molecules do not move themselves. For instance, when one end
of a rod is heated, the lattice atoms in the heated end
vibrate with greater energy than those at the cooler end so
that this energy is transferred along the rod. In the case
of a metal rod, the transport of thermal energy is aided by
free electrons which are moving throughout the metal and they
collide with the lattice atoms.

In convection, heat is transported by a direct mass
transfer. For instance, warm air near the floor expands and
rises because it possesses lower density. Thermal energy in
this warm air is transferred from the floor to the ceiling
along with the mass of warm air.

The last mechanism of heat transfer is through
thermal radiation in which energy is emitted and absorbed by
all bodies in the form of electromagnetic radiation. If a
body is in thermal equilibrium with the environment, it emits
and absorbs energy at the same rate. However, when it is
warmed to a higher temperature than its environment, it
radiates away more energy than it absorbs so that it cools
down as the surroundings get warmer. As a result, in Arizona
people avoid having dark painted cars because they
emit/absorb light much more strongly than light ones.

As we saw in the third chapter, DYMOLA provides a
modularized hierarchically structured model description.
Thus, the entire solar house has been divided into five major
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hierarchical structures being the ones as mentioned before.
Each of these consists of smaller hierarchical structures
(submodels). For instance, the solar collector consists of
the loss and the spiral submodels. Furthermore, the spiral
comprises of two other smaller submodels being the heat
exchanger and the one-dimensional cell. This hierarchy
continues even further with the one-dimensional cell
consisting of two other submodels, the modulated conductive
source (mGS) and the modulated capacitance (mC). All these
are described in detail later in this chapter.

All these hierarchical structures provide the
researcher a convenient way to study the physical behavior of
each particular part of the solar house in greater detail.

In the last portions of the previous section,
the term causal was mentioned, i.e., to satisfy all causality
conditions. To achieve this, we have to avoid the so-called
algebraic loops and the structural singularities. This has
been done by choosing the proper elements in assigning
causalities and not to have any free choice as depicted in
Figure 2.7 and by not overspecifying in the description of
each particular model. Thus, our solar-heated house will be
a causal system and will possess a uniquely determined
causality.

Now we are ready to proceed with the modeling
procedure starting in the next chapter.
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5.4 Flat Plate Solar-Collector Modeling
We shall start modeling the entire solar house by

modeling its flat plate collector. A simpler description than
the previous given one for the solar collector is to imagine

it as a black body accumulating solar heat through radiation

so that the temperature raises inside. The collectors (may be

one or several ones) are usually filled by air possessing a
large heat capacity. Inside them, a winding water pipe goes
back and forth between the two ends in order to maximize the

pipe surface. Let's call this a water spiral. The heating of

the water in the pipe occurs when a mostly conductive heat

exchange takes place between the collector chamber and the

water pipe. We shall describe the collector water loop as a
pump which circulates the water from the collectors to the
storage tank. As a result, the heat transfer occurs in a
mostly convective manner. The water spirals can be connected

either in parallel or in series and the pump is driven by a

solar panel. The solar light is converted into electricity

inside the panel. As a result, the pump circulates the water
only on a sunny day, which is meaningful. Furthermore, the
water pipe is protected by a freeze protection device which
also switches the pump on when the temperature falls below

5°C outside.

A model depicting such a flat plate solar collector

is shown in Figure 5.2. The efficiency of the solar collector
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Figure 5.2 Model of a flat-plate collector
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depends upon several factors such as climatic conditions
(ambient temperature, wind), number of covers and their
radiative properties, incident solar angle, radiative
properties of absorber plate, spacing of covers and absorber,
fluid type and insulation of collector enclosure. The
following assumptions were made before modeling the
collector:

(a) The heat flow into the collector is basically a
radiative heat flow, modeled by a flow source
which is dependent on three factors, day of the
year, time of the day and weather.

(b) There is loss from the collector to the
surroundings which has conductive, convective
and radiative elements with the first two more
dominant. It is basically modeled as a tempera-
ture source and as a modulated conductance
characterized by the absorber and environment.

(c) There exists conductive heat exchange between
the collector space and the hydraulic spiral.
And finally,

(d) There is convective heat transport in the
spiral.

The water spiral introduced previously will be
represented as a series of one-dimensional cells. The bond
diagram and the DYMOLA model type of such a cell are depicted
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in Figures S.3a and S.3b, respectively, with the causalities

correctly marked. The mGS element is a modulated conductive

source modulated with temperature and, furthermore, it is
modulated with the water velocity in the pipe as shown in
Figure S.3c. This element (one-dimensional cell) has been

modeled through its conductance rather than through its

resistance because the conductance changes linearly with the

water velocity.

The bond graph of the one-dimensional cell favors
heat flow from the left to the right; therefore, it is not
symmetrical. Our decision to represent the heat (entropy)

flow in such a way is just an approximation. If, for example,

the mGS element is split into two equal parts, one turning

left and the other right, this choice is not desirable

because of the introduction of algebraic loops identified

with the choices of causalities (Cellier, 1990a).

The next step is to develop the heat exchanger model

being used to describe the exchange of heat across the border

of two media. In this particular case, the heat exchanger is

used to model the heat transport from the collector chamber

to the water spiral. Its bond diagram as well as its DYMOLA

model type are shown in the following two figures (S.3d and

S.3e) .
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Figure 5.3a Bond diagram of a one-dimensional cell

{bond graph for one dimensional cell}

model type oneD
submodel(MGS) Gcell(a=1.5,b=O.72)
submodel(MC) Ccell(gamma=72.0)
submodel(bond) Bl,B2,B3
node nl,n2

terminal vwater
cut Cx(ex/fx), Ci(ei/ -fi)
main path P<Cx - Ci>

connect B1 from Cx to n1
connect B2 from n1 to n2
connect Gcell from n2 to Ci
connect B3 from n1 to Ci
connect Ccell at Ci

Gcell.vel=vwater
end

Figure 5.3b DYMOLA model type of a one-dimensional cell
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Figure 5.3c Modulated conductive source
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Figure 5.3d Bond diagram of a heat exchanger

{bond graph for Heater(heat exchanger)}

model type HE
submodel(MRS) RIH(theta=8.0E+2),R2H(theta=8.0E+2)
cut A(el/fl),B(e2/ -f2)
main cut C[A B]
main path P<A - B>
connect RIH from A to B
connect R2H from B to A
end

Figure 5.3e DYMOLA model type of a heat exchanger
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After modeling the one-dimensional cell model and the
heater model, we are ready to proceed with the modeling of
the water spiral which is a distributed parameter system. We
have decided to represent the water spiral with three one-
dimensional cells connected in series and heat exchangers
attached in between. Obviously, our decision is an approxi-
mation of a process with distributed parameters. The bond
graph of a water spiral which is a 3-port element is depicted
next (see Figure 5.3f). Furthermore, its corresponding DYMOLA
model type is shown in Figure 5.3g.

The final element to be developed for the complete
collector model is the loss element from the collector
chamber to the surroundings. This loss is partly conductive
and partly convective and its bond diagram is shown in
Figure S.3h. It is a I-port element. Its DYMOLA model type
is also shown (Figure 5.3i). The effort source denotes the
outside environment, whereas the mG element denotes the heat
dissipation to the environment. The dissipated heat is
proportional to the difference in temperatures between the
inside and the outside. The mG element is a modulated
conductance which is very similar to the mGS element found
earlier. It is modeled with the temperature as well, but this
time, the modulation is with respect to the wind velocity
instead of the water velocity.
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Figure 5.3f Bond diagram of a water spiral
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{bond graph Spiral}

model type Spi
5ubmodel(HE) HEI,HE2,HE3,HE4
5ubmodel(oneD) oneDl,oneD2,oneD3
node nl,n2
terminal vwater
cut inwaterl(el/fl),outwaterl(e2/ -f2),C(e3/f3)
main cut D[inwaterl outwaterl]
main path P<inwaterl - outwaterl>

connect HEI from C to inwaterl
connect oneDl from inwaterl to nl
connect HE2 from C to nl
connect oneD2 from nl to n2
connect HE3 from C to n2
connect oneD3 from n2 to outwaterl
connect HE4 from C to outwaterl

oneDI.vwater=vwater
oneD2.vwater=vwater
oneD3.vwater=vwater

end

Figure 5.3g DYMOLA model type of a water spiral
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Figure 5.3h Bond diagram of thermic loss

{bond graph for LOss}

model type Loss
submodel (SE) outtemp
submodel (MG) Gloss(a=1.5, b=O.72)
submodel (bond) Bl,B2,B3
node n,nG,nS

main cut A(e/f)
terminal Tout, vwind

connect Bl from A to n
connect B2 from n to nG
connect Gloss at nG
connect B3 from n to nS
connect out temp at nS

outtemp.EO = Tout
Gloss.vel = vwind
Gloss.Tout = Tout
end

Figure 5.3i DYMOLA model type of thermic loss
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For the one-dimensional cell, the mGS element is used

because the energy is not lost. The energy is simply trans-

ported right away to the next node. This is the reason that

a new bond graph element called a resistive source (RS) has

been introduced (Thoma, 1975). Obviously the GS element is

l/RS. On the other hand, the mG element is used in the loss
because the behavior is like the electrical case where the
resistances (conductances) dissipate heat and lose energy.
Notice that in thermodynamics, the RS (R) and C elements are
nonlinear. In DYMOLA, they are modeled by two new bond graph

elements, mRS and mC, respectively.

The overall bond diagram for the collector can now be

drawn as shown in the Figure 5.3j. The mC element which is
modulated with temperature is the heat capacitance of the
collector chamber. The SF element is the heat input from

solar radiation which must be modeled separately.

We can use the hierarchical cut concept of DYMOLA to

combine the two cuts into an aggregated bond graph represen-

tation pictorially represented by a double bond. The two cuts
can be named as inwater and outwater and the hierarchical cut

can be named as water. The disadvantage of the double bond
representation is that causalities cannot be shown any

longer.

Finally, the DYMOLA model type of the collector can

be developed as depicted in the next figure (Figure 5.3k).
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Figure 5.3j Bond graph of the collector

{bond graph for Collector}

model type COLL
submodel(MC) Ccoll
submodel(SF) SDOT
submodel(Spi) CollSpiral
submodel(Loss) CollLoss
terminal SO,Tout,vwind,vwater

cut inwater(el/fl), outwater(e2/ -f2)
main cut water[inwater outwaterl

connect SDOT at CollSpiral:C
connect Ccoll at CollSpiral:C
connect CollLoss at CollSpiral:C

SDOT.FO=SO
CollLoss.Tout = Tout
CollLoss.vwind = vwind
CollSpiral.vwater = vwater
end

Figure 5.3k DYMOLA model type of the collector
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In using the four elements, i.e., mC, mG, mGS and

mRS, there are some physical concepts which must be men-

tioned. Cellier provides a very comprehensive analysis for

these physical concepts and, therefore, it is used in this
thesis (Cellier, 1990a).

We can write the capacity of a body transporting heat

in a dissipative manner as

llT = 8 QQ=
dt (8 . T) dSdt (5.5)

where
~T = temperature difference

8 = thermal resistance
S = entropy

Q = heat

The above equation looks like Ohm's law and it can be

written also as

dS
~T = R dt' R = 8 . T (5.6)

The thermal resistance can now be written

8 = (~) . (~) (5.7)

where

A = specific thermal conductance of the material
A = area of cross section

i. = length
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The three elements mG, mGS and mRS, are modeled based

on the above concepts and their DYMOLA model types are

illustrated at the end of this section along with the me
element.

NOw, the capacity of the body to store heat can be
written as

dT~Q' = -y dt (5.8)

where -y = thermal capacitance.
The previous equation can also be written as:

~S' = C dTdt (5.9)

where C = ::t.T'

The terms "thermal resistance" and "thermal

capacitance" are introduced because of the traditional

relationship between temperature and heat although throughout

this thesis entropy is used extensively.
Continuing, the thermal capacitance of a body can be

described as
-y = c . m (5.10)

where

m = mass of the body
c = specific thermal capacitance of the material

Mass can further be written as

m = p • V (5.11)
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where

p = density

v = volume

and
v = A . dx

Now from (5.10) we have

c = ~ = ~c~'~e~~A~_'~n=xT T (5.12)

The time constant can now be determined:

T = R • C = 8 • '"Y = c . e
x (5.13)

The last equation provides us with the capability of deter-
mining the dimensions of both the resistive and capacitive
elements in our bond graph.

Let us illustrate the modeling by means of the i-th

computational cell. The equations describing such a cell were

developed to be:

dTi 1
nSf (5.14)=dt C

nTi = Ti-1 - Ti (5.15)

Sf -1
=1. nTi (5.16)R

S~x = Sf -1
nTi (5.17)
Ti

nSf = S f-1 + S~x - S~ (5.18)
where Ti-1 is the temperature of the computational cell to the

left and Sf is the entropy flow to the computational cell to



{bond graph modulated conductance}

model type MG
main cut A(e/f)
terminal vel,Tout
parameter a=l.O, b=l.O
local G, Gl
GI = a*vel + b
G = Gl/Tout
G*e = f
end

Figure 5.31 DYMOLA model type of mG
(modulated with T and Vwind)

{bond graph conductance source for one dimensional cell}

model type MGS
cut A(el/fl),B(e2/-f2)
main cut e[A B)
main path P<A - B>
terminal vel
parameter a=l.O,b=l.O
local G,GI
GI=a*vel+b
G=f2*GI
G*el=fl
fl*el=f2*e2
end

Figure 5.3m DYMOLA model type of mGS
(modulated with T and Vwater)
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{ Bond Graph of a heat modulated resistive source )

model type MRS
cut A(el/fl), B(e2/ -f2)
main cut C[A B]
main path P<A - B>
parameter theta=l.O
local R
R = e2*theta
R*fl = el
el*fl = ·e2*f2

end

Figure 5.3n DYMOLA model type of mRS
(modulated with T and 8)

{ Bond Graph modulated capacitor/compliance}

model type MC
cut A (e / f)
parameter gamma=I.O
local C
C=gamma/e
C*der(e) = f

end

Figure 5.30 DYMOLA model type of mC
(modulated with T and 7)

{bond graph for a resistive source}

model type RS

cut A(el/fl) B(e2/-f2)
main cut C[A B]
main path P<A - B>
parameter R=l. 0

R*fl = el
el*fl = e2*f2

end
Figure 5.3p DYMOLA model type of RS

(electrical primary side)
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the right (please see the bond diagram on Figure 5.3a to
follow the above equations).

One clarification should be made which is the
following: The RS elements may have both sides, primary and
secondary, as thermal ones and they are modeled as shown in
Figure 5.3n. On the other hand, if their primary side is
electrical then their DYMOLA model type is different and is
shown in Figure 5.3p. We are going to meet this case when
designing the electrical backup device for the storage tank
(see next section).

5.5 Heat storage Tank Modeling
After the collector model was made available, the

immediate next step is to model the heat storage tank.
Frequently, the storage tank is realized as a large

and well insulated water heater. However, in order to model
a water heater correctly, we must take the mixing thermo-
dynamics into account. This makes the model ing procedure
difficult. Therefore, a solid body storage tank was used
together with another water spiral so that the water from the
collector loop and from the heater loop never mix. One water
spiral deposits heat in the storage tank, while the other
picks it up again.

Inside the storage tank there is a second water
spiral which represents the heater water loop picking up the
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heat from the storage tank. Whenever the storage tank
temperature falls below a critical value, an installed
electrical heater heats the storage tank electrically up to
the minimum maintenance temperature.

Another pump drives the heater water loop and this
pump is switched on whenever the room temperature falls below
20°C during the day or 18°C during the night. It is switched
off whenever the room temperature raises beyond 22°C during
the day or 20°C during the night.

Summarizing, the storage tank contains two water
spirals, one belonging to the collector water loop and the
other one belonging to the heater water loop. This is
depicted in Figure 5.4a. Moreover, an electrical backup
device is installed and it is turned on only if the tempera-
ture in the storage tank falls below its critical value. It
is used only during evening hours when the price of elec-
tricity is lower. The overall bond diagram for the storage
tank is shown in Figure 5.4b. The mC element represents the
heat capacity of the storage tank, whereas the flow source
together with the RS element denote the backup device. The
primary side of this resistive source is electrical while the
secondary side is thermic.

As we notice, the storage tank is a 4-port element.
When writing its DYMOLA model type, we combine the cut
inwaterl with the cut outwaterl to the hierarchical cut
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Figure 5.4a The storage tank with the collector water loop
and heater water loop
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Figure 5.4b Bond graph of the storage tank
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inwater, whereas we combine the cut outwater2 with the cut

inwater2 to the hierarchical cut outwater. By declaring a

main path water, a logical bridge has been created from the

hierarchical cut inwater to the hierarchical cut outwater.

This is depicted in the following figure (Figure 5.4c).

5.6 water Loop Modeling
An example of a convective mechanism in our solar

house is the transport of the heat from the solar collector

to the water heater connected by a pipe containing water. The

water is circulated from the water heater (storage tank) to

the collector and back by a pump.

We have already seen two water loops, the collector
water loop and the heater water loop, and both are modeled
exactly in the same way.

Each of the pipes is modeled by three one-dimensional

cells connected in series as illustrated in the bond diagram

(see Figure 5.5a). The one-dimensional cell has been
developed previously. We shall assume that the pipes are

thermically well insulated, that is, there is not any lost
heat to the surroundings on the way. As shown, it is another

4-port element. In developing its DYMOLA model type, we shall

combine the cut inwater1 with the cut outwater2 to the

hierarchical cut inwater. In addition, we shall combine the

cut outwaterl with the cut inwater2 to the hierarchical cut



{bond graph storage tank}

model type ST
submodel(SF) SOOT
submodel(RS) Rl(R=lO.O)
submodel(MC) Ctank(gamma=9.0E+4)
submodel(Spi) Spitankl,Spitank2
terminal SO,vwater

cut inwaterl(el/fl), outwaterl(e2/ -f2)
cut inwater2(e3/f3), outwater2(e4/ -f4)
main cut inwater[inwaterl outwaterl]
main cut outwater[outwater2 inwater2]
main path water<inwater - outwater>

connect Spitankl:C at Spitank2:C
connect Ctank at Spitankl:C
connect Rl from SOOT to Spitankl:C
SDOT.FO=SO
Spitankl.vwater = vwater
Spitank2.vwater = vwater
end

Figure 5.4c DYMOLA model type of the storage tank
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Figure 5.5a Bond diagram for water loop

{bond graph water loop (heater+collector)}

model type WL
5ubmodel(oneD) oneDl,oneD2,oneD3,oneD4,oneDS,oneD6
node nl,n2,n3,n4
terminal vwater

cut inwaterl(el/fl), outwaterl(e2/ -f2)
cut inwater2(e3/f3), outwater2(e4/ -f4)
main cut inwater[inwaterl outwater2]
main cut outwater[inwater2 outwaterl]
main path water<inwater - outwater>

connect oneDl from inwaterl to nl
connect oneD2 from nl to n2
connect oneD3 from n2 to outwaterl
connect oneD4 from inwater2 to n3
connect oneD5 from n3 to n4
connect oneD6 from n4 to outwater2

oneDl.vwater=vwater
oneD2.vwater=vwater
oneD3.vwater=vwater
oneD4.vwater=vwater
oneDS.vwater=vwater
oneD6.vwater=vwater

end

Figure 5.5b DYMOLA model type for water loop
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outwater. Moreover, we declare a main path water creating a
logical bridge from the hierarchical cut inwater to the
hierarchical cut outwater (see Figure 5.5b).

Assuming that there is no air in the pipe and the
water in it is totally incompressible, several implicit
physical simplifications can be taken into consideration.
This leads to the conclusion that the water flow via the
whole pipe has a constant velocity Vw• The hydraulic flow is
expressed in m3s-1 denoted by ~v and the volume of water in a
one-dimensional cell is V = A . fiX. Thus, the amount of
entropy leaving the i-th cell per time unit to the right is
given by

, ~v
8 i out = fl8i V (5.19)

which can also be written as

8 f out = (c . ~v) T i (5.20)

During the same time, a similar amount of heat is transported
into the cell from its left neighbor being

8 f in = (C . ~v) Ti-1 (5.21)

Combing the previous two equations, we conclude that
8 f conv = G conv flTi

and

G conv = C ~v
V

(5.22)
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Consequently, convection is simply a second convective

resistance being connected in parallel with the conductive

resistance. Therefore, convection augments the thermal

conductivity.
As mentioned before, several simplifications were

made. In reality, there is friction between the liquid and

the wall, and friction within the liquid. We would notice

that in this case the liquid flows faster at the center of

the pipe and slower near the wall. The hydraulic friction is
a dissipative process producing more heat and thereby more
entropy sources should be applied to the thermal unit.

Furthermore, if the assumption of incompressibility

were not made, then the whole situation would be much more

complicated. In this case, we would need to take into con-

sideration the pneumatic process besides the thermal process.

The pneumatic process generates a time- and space-dependent

flow rate ~v(t,x} which can be used to modulate the convective
resistance of the thermal unit. Overall, the whole situation

becomes very involved.

5.7 Habitable Space Modeling

It was decided that the habitable space (house) would

be a cube with dimensions 10m x 10m x 10m (see Figure 5.6c),

mainly for reasons of simplicity.
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However, before starting to model the house, a three-

dimensional cell as well as a two-dimensional cell have been

developed. The concept of a one-dimensional cell which has

been developed previously can be extended to the two- and

three-dimensional case. So, let us assume that each three-
dimensional cell consists of one capacitor and three
resistors, one to its left, one to its front and one below as

depicted in Figure S.6a together with its bond diagram. It

can also be seen from the figure that the necessity to attach

every element to a-junctions for DYMOLA modeling has been
taken into consideration. The DYMOLA model type "CEL"
describing the three-dimensional cell has been developed as

well and it is depicted in Figure S.6b. The two-dimensional

case consists of two resistors (xy, yz, xz directions) and a

capacitor.

We shall assume that the entire house consists of one

room only and that a single large radiator is used for
heating purposes. The radiator exchanges heat with the room

in a partly conductive and partly convective manner. It is

attached to the left wall of the house somewhere close to the

floor so that the heat input takes place at the left low

outside center three-dimensional cell. Because the dimensions

of the radiator are much smaller than those of the house, a
decision was made not to model the radiator. Therefore, the

outwaterl of the heater water loop has been simply connected
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with the inwater2 of the heater water loop. Moreover, another

heat exchanger has been attached at this node with the

responsibility of exchanging the heat between the heater

water loop and the house.

From Figure S.6c, it can be seen that the house has
27 nodes. At these nodes one-, two- and three-dimensional
cells are placed with the exception of the first node. So,
nodes 2 and 3 are one-dimensional in x direction, 4 and 7 are

one-dimensional in y direction, 10 and 19 are one-dimensional

in z direction. The two-dimensional cells are located at
nodes 5, 6, 8, 9 (xy direction), 11, 12, 20, 21 (xz direc-

tion) and 13, 16, 22, 25 (yz direction). Finally three-
dimensional cells are placed at the remaining nodes, i.e.,

14, 15, 17, 18, 23, 24, 26, 27. These nodes are connected

through their paths accordingly as depicted in Figure 5.6d.

We need also to place our heat source and one additional

capacitor at the first node which is actually the ex point of

the second node. The house loses heat through the four walls
and through the roof, but not through the floor so that at

nodes 5 and 14 there are no losses. The previously developed

loss elements are attached to each of the a-junctions as

appropriate. In the case of a cell adjacent to two or three
outside walls, we attach one combined loss element to the
corresponding node only because of the emergence of algebraic

loops. Therefore, nodes 2, 4, 6, 8, 11, 13, 15, 17, 23 have
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Figure 5.6a Three-dimensional diffusion cell
(RS elements are actually mRS elements)
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(bond graph for a three dimensional cell)

model type CEL
submodel (MRS) Rx(theta=O.5),Ry(theta=O.5),->

Rz(theta=O.5)
submodel (MC) C(gamrna=l52310.0)
submodel (bond) Bxl,Bx2,Bxa,Byl,By2,Bya,Bzl,Bz2,Bza
node Nx,Nxa,Ny,Nya,Nz,Nza

cut Cx(ex/fx), Cy(ey/fy), Cz(ez/fz), Ci(ei/-fi)
path Px<Cx - Ci>, Py<Cy - Ci>, Pz<Cz - Ci>

connect Bxl from Cx to Nx
connect Byl from Cy to Ny
connect Bzl from Cz to Nz
connect Bx2 from Nx to Ci
connect By2 from Ny to Ci
connect Bz2 from Nz to Ci
connect Bxa from Nx to Nxa
connect Bya from Ny to Nya
connect Bza from Nz to Nza
connect Rx from Nxa to Ci
connect Ry from Nya to Ci
connect Rz from Nza to Ci
connect C at Ci

end

Figure 5.6b DYMOLA model type of a three-dimensional cell
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Figure 5.6c The house room represented as a 10x10x10 cube
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model SPACE
submodel(SF) Tsp
submodel(MC) C(gamma=152310.0)
submode1(LS1) 12,14,16,18,111,113,115,117,123
submode1(LS2) 11,13,17,19,110,112,116,118,120,122,124,126
submodel(LS3) 119,121,125,127
submodel(CXD) d2,d3
submode1(CYD) d4,d7
submode1(CZD) dl0,d19
submode1(XYC) d5,d6,d8,d9
submode1(XZC) d11,d12,d20,d21
submode1(YZC) d13,d16,d22,d25
submode1(CEL) d14,d15,d17,d18,d23,d24,d26,d27

input Tout, vwind, SO
output yl

connect (Px) d2-d3,d5-d6,d8-d9,->
dll-d12,dI4-d15,d17-d18,->
d20-d21,d23-d24,d26-d27

connect (Py) d4-d7,d5-d8,d6-d9,->
dI3-dI6,d14-dI7,dI5-dI8,->
d22-d25,d23-d26,d24-d27

connect (pz) dl0-dI9,d11-d20,dI2-d21,->
d13-d22,d14-d23,dI5-d24,->
dI6-d25,d17-d26,d18-d27

connect 11 at d2:Cx
connect 12 at d2:Ci
connect 13 at d3:Ci
connect 14 at d4:Ci
connect 16 at d6:Ci
connect 17 at d7:Ci
connect 18 at d8:Ci
connect 19 at d9:Ci
connect 110 at dlO:Ci
connect 111 at dll :Ci
connect 112 at d12:Ci
connect 113 at dl3:Ci
connect 115 at dl5:Ci
connect 116 at d16:Ci
connect 117 at d17:Ci
connect 118 at d18:Ci

Figure 5.6d DYMOLA model type of the SPACE (house)
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connect 119 at d19:Ci
connect 120 at d20:Ci
connect 121 at d21:Ci
connect 122 at d22:Ci
connect 123 at d23:Ci
connect 124 at d24:Ci
connect 125 at d25:Ci
connect 126 at d26:Ci
connect 127 at d27:Ci

connect Tsp at d2:Cx
connect C at d2:Cx

connect d5:Cx at d4:Ci
connect dB:Cx at d7:Ci
connect dll:Cx at dl0:Ci
connect dl4:Cx at d13:Ci
connect d17:Cx at dl6:Ci
connect d20:Cx at dl9:Ci
connect d23:Cx at d22:Ci
connect d26:Cx at d25:Ci
connect d4:Cy at d2:Cx
connect d5:Cy at d2:Ci
connect d6:Cy at d3:Ci
connect dl3:Cy at dIO:Ci
connect dl4:Cy at dll:Ci
connect dl5:Cy at dl2:Ci
connect d22:Cy at dl9:Ci
connect d23:Cy at d20:Ci
connect d24:Cy at d21:Ci
connect dIO:Cz at d2:Cx
connect dl1:Cz at d2:Ci
connect dl2:Cz at d3:Ci
connect dl3:Cz at d4:Ci
connect dl4:Cz at d5:Ci
connect dl5:Cz at d6:Ci
connect d16:Cz at d7:Ci
connect d17:Cz at dB:Ci
connect dlB:Cz at d9:Ci

II.Tout = Tout
I2.Tout = Tout
I3.Tout = Tout
14.Tout = Tout
16.Tout = Tout
17.Tout = Tout
IB.Tout = Tout

Figure 5.6d (Continued)
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19.Tout = Tout
110.Tout = Tout
I1I.Tout = Tout
112.Tout = Tout
113.Tout = Tout
115.Tout = Tout
116.Tout = Tout
117.Tout = Tout
118.Tout = Tout
119.Tout = Tout
120.Tout = Tout
121.Tout = Tout
122.Tout = Tout
123.Tout = Tout
124.Tout = Tout
12S.Tout = Tout
126.Tout = Tout
127.Tout = Tout

11.vwind = vwind 117.vwind = vwind
12.vwind = vwind 118.vwind = vwind
13.vwind = vwind 119.vwind = vwind
14.vwind = vwind 120.vwind = vwind
16.vwind = vwind 121. vwind = vwind
17.vwind = vwind 122.vwind = vwind
18.vwind = vwind 123.vwind = vwind
19.vwind = vwind 124.vwind = vwind
110.vwind = vwind 125.vwind = vwind
111. vwind = vwind 126.vwind = vwind
112.vwind = vwind 127.vwind = vwind
113. vwind = vwind
115. vwind = vwind Tsp.FO = SO
116.vwind = vwind yl = d7.ei

end

Figure 5.6d (Continued)
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a l*MG loss element, nodes 1, 3, 7, 9, 10, 12, 16, 18, 20,

22, 24, 26 have a 2*MG loss element and nodes 19, 21, 25, 27

have a 3*MG loss element. (The reader might go back to Figure

5.3h and see the loss element.) The corresponding DYMOLA
model type for the house has been named SPACE and it is

depicted in Figure 5.6d.

This concludes the modeling of all the parts of the
solar house.

5.8 The Total Solar-Heated House
The overall system is a series connection of the

previously presented aggregated bond graph elements, that is,

the collector, the collector water loop, the storage tank,

the heater water loop, the heat exchanger and the house. This
is depicted in Figure 5.7.

(COll..:!::aWL~ST~ WL~HE --l.House)

Figure 5.7 Aggregated bond graph of the overall system
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5.9 Choosing Appropriate Parameters for Analyzing

the Effectiveness of Our System

until now, the modeling of the total solar house has
been discussed. Now we are ready to test the versatility of
DYMOLA to describe such a complex physical system after it
has been modeled by the bond graph methodology.

The best approach to simulate is to start from the
habitable space (house itself) as indicated in the total
aggregated figure. We shall imagine that there is an
arbitrary heat source heating the house, assuming that the
initial temperature inside the house is lSDC (2SSDK). Our
goal is to determine the time that it takes for the tempera-
ture to reach its steady-state value in various locations
inside the house.

The DYMOLA model type SPACE (model SPACE in this case
because the house is our main system now) has been used to
generate the DESIRE program. The same procedure as described
in Chapter 4 has been used. However, the PC was unable to
generate the DESIRE program because it was exceeding its
memory (heap) capability.

Therefore, a decision was made to use the VAX. Using
the VAX, we were able to generate a SIMNON program (cur-
rent1y, the VAX version does not provide a DESIRE program
generation capability yet). However, the conversion of the
SIMNON program into a DESIRE program is not a difficult
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procedure. After doing that, we are ready to simulate the
house (habitable space).

The following elements must be calculated before
proceeding: the modulated resistive source (theta), the
modulated capacitance (gamma) being inside the one-, two- and
three-dimensional cells. These values will be the same
everywhere in the house. Moreover, the modulated conductance
in the loss elements (a and b) must be evaluated. Please
refer to Figures 5.3n, 5.30 and 5.31 where the parameter
values for these elements are specified in parentheses.

A logical and economical heat source (entropy source)
is found to be 20 J/K. Our intuition was based on an average
monthly utility bill that people spend for heating their
house during winter time.

It is found that the a, b and theta parameter values
affect the overall heating of the house. Figure 5.3c helps
us to find a, b. The angle must be kept small around 25° and
b is approximately one-half of the tangent of that angle.
These a and b values determine how well the house is insu-
lated. Moreover, the value of theta depends on the air inside
the house. Formula 5.7 determines the value of theta but the
physical constant A for air is not reliable. We have used
some flexibility in deciding the value of theta which is
about 0.5 sec.K/J.
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Finally, the value of gamma can be found using

formula 5.12 and it is found to be 152310 JjK (not to be
confused with entropy).

Having found all the necessary parameters, the
simulation can now be performed. We simulated the house, and
displayed the temperature in the vicinity of the heat source,
and also at farther away nodes. The farthest one, node 27,
caused the most problems and did not give satisfactory
results.

Various results are in the following table: (see
Appendix A for graphs with y1, y2, y3, y4 and y5 correspond-
ing to nodes 16, 20, 22, 9 and 26 respectively. Notice that
y2 is the same as y3 because of symmetry of the nodes,
therefore only one of their graphs is shown).

Node # Tsteady-state ( 0 C) Time (see)

3 77 1.40E+5
9 24 2.00E+5

14 63 1.50E+5
16 3S 1.50E+5
17 29 1.SOE+5
20 32 1.50E+5
22 32 1.50E+5
26 15 1.SOE+5
27 10 1.70E+5

Figure 5.S Table of some results
The outside temperature was assumed to be O·C.
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From the above results, we can observe that the temperature
in most of the nodes of the house is not consistent. In the
vicinity of the heat source, the temperatures are very high,
whereas in the farthest nodes of the house, the temperatures
are low. This makes us believe that the heat dissipation
through the house (e.g. by means of convection) is not
modeled correctly.

The temperature at every node reaches its steady-
state value in a little over a day. This makes sense. It
takes a long time to heat the house to its steady-state
temperature with an economical heater such as the one we
used.

The next step was to add the heater water loop and
constant temperature source at the storage tank to produce
the 20 J/K entropy (heat) source. Nevertheless, combining all
the DYMOLA model types together, the whole program will
become very large so we decided to stop the simulation
analysis. It is true, however, that by having a computer with
enough heap (memory) that can handle such large programs, the
whole simulation analysis can be performed until we reach the
collector. At the end, we will have a very large DYMOLA
program with all the hierarchical structures of the solar
house connected together.
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CHAPTER 6
CONCLUSION

This thesis touches on a modern and advanced
modeling-simulation technique applied to a large and complex
physical system--the solar heated house.

The bond graph modeling methodology has been studied
extensively as well as a software tool called DYMOLA designed
to implement bond graphs. How well they work together was
demonstrated in Chapter 4.

Bond graphs were successful in providing us with a
complete and easily comprehensible model of the solar house,
a relatively complicated system. Furthermore, DYMOLA proved
to be a suitable software tool for implementing the
hierarchical bond graphs encountered in the system. Both
tools, like SPICE, can be combined together for studying the
behavior of several less complex systems such as electrical
and mechanical ones.

On the negative aspect, bond graphs as they are
developed today, are not suitable for modeling distributed
parameter systems in several space dimensions. As all other
graphical techniques, bond graphs become clumsy when applied
to distributed parameter problems in more than one space
dimension.
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There are many opportunities for research. Both bond

graphs and DYMOLA can be further developed so that the study

of complex systems can become more feasible and attractive to

the researcher.

This thesis has provided new insight into the process

of modeling complex physical systems. For the first time, the
bond graph modeling technique was expanded to hierarchical
model descriptions. It has been shown that the general
purpose continuous-system modeling language DYMOLA can be

effectively used to describe hierarchical nonlinear bond

graphs.
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APPENDIX
GRAPHS
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Simulation results at various nodes
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