
Master Thesis

Support for Dymola in the Modeling
and Simulation of Physical Systems with

Distributed Parameters

ETH Zürich
Department of Computer Science

Institute of Computational Science

Farid Dshabarow

Adviser: Prof. François E. Cellier
Responsible: Prof. Walter Gander

June 18, 2007

1

Contents

1 Preface 4

2 Partial Differential Equations 5
2.1 Introduction . 5
2.2 Constructing PDEs with Blocks . 9

3 Computational Fluid Dynamics 10
3.1 Introduction . 10
3.2 Euler Equations . 13

3.2.1 The Continuity Equation . 13
3.2.2 The Momentum Equation . 15
3.2.3 The Energy Equation . 17

3.3 Navier-Stokes and Euler Equations . 18
3.4 Conservation Laws . 20

4 Method of Lines 24
4.1 Introduction . 24
4.2 Discretization . 26
4.3 Interpolation . 27
4.4 Solving ODEs . 35
4.5 Boundary Conditions . 35
4.6 MOL Implementation in Modelica . 36
4.7 Examples . 38

4.7.1 Advection Equation . 38
4.7.2 Wave Equation . 41
4.7.3 Vibrating String Equation . 44
4.7.4 Shock Wave Equation . 45
4.7.5 Diffusion Equation . 50
4.7.6 Transmission Line Equation . 51
4.7.7 Burger´s Equation . 54
4.7.8 Buckley-Leverett Equation . 55
4.7.9 Simple Supported Beam Equation 56
4.7.10 Poisson Equation . 58

5 Adaptive Method of Lines 60
5.1 Introduction . 60
5.2 Implementation . 62

6 Finite Volume Method 63
6.1 Introduction . 63
6.2 Unstable Method . 65
6.3 Lax-Friedrichs Method . 65
6.4 Implementation . 66

2

6.5 System of Equations . 66
6.6 The Riemann Problem . 69
6.7 Godunov´s Method for Linear Systems . 75
6.8 Boundary Conditions . 80

6.8.1 Periodic Boundary Conditions . 81
6.8.2 Inflow and Outflow Boundary Conditions 81

6.9 High Resolution Methods . 84
6.10 Piecewise Linear Reconstruction . 85

6.10.1 Flux Limiters . 90
6.10.2 Flux Limiter Implementation . 92

6.11 Limiter-Free Third Order Logarithmic Reconstruction 98
6.11.1 LDLR Implementation in Modelica 100
6.11.2 LDLR Implementation of the Euler System with Lax-Friedrichs Flux103
6.11.3 Roe´s Flux . 105
6.11.4 LDLR Implementation of the Euler System with Roe´s Flux . . . 108

6.12 Examples . 110
6.12.1 Advection Equation . 111
6.12.2 Diffusion Equation . 113
6.12.3 Burger´s Equation . 115
6.12.4 Euler with Lax-Friedrichs and Roe´s Fluxes 116
6.12.5 Buckley-Leverett Equation . 117

6.13 General Block . 118
6.14 Courant-Friedrich-Lewy Condition . 120

7 Conclusion 123

8 Bibliography 124

3

1 Preface

The thesis title ”Support for Dymola in the Modeling and Simulation of Physical Systems
with Distributed Parameters” could appear a little bit confusing. In short, the goal of the
master thesis is to provide Dymola with a Partial Differential Equations (PDE) Package,
with which it will be possible to simulate physical systems for example. The PDE area
is huge and it is therefore not possible to implement everything. For instance, the
methods of solving PDEs are many, ranging from analytical to semianalytical to fully
numerical. The methods implemented in PDE Package are Method of Lines (MOL)
and Finite Volume Methods (FVM). Among many types of PDEs we considered only
time-dependent PDEs, because Dymola was conceived mainly to simulate the quantities
in time. Recently, however, a time independent problem, the Poisson equation, was
also implemented and works well. The PDE Package provides necessary blocks for
the implementation of PDEs, such as integrators and space derivatives blocks. Many
examples were implemented with both MOL and FVM to show the use of PDE Package.
Some examples are implemented together with the corresponding analytical solution so
that the user can see the error of the approximation. To make everything transparent to
the user the methods are implemented in such a way that user must not understand the
details of the numerical methods that solve the PDEs. What is required from the user
is that he knows the complete problem (PDE, initial condition, ...) that he wants to
implement. The blocks necessary for the implementation of the problem are provided,
and explanations of how to use them is described in the corresponding documentation.
As already said, many PDEs, ranging from simple, like advection equation, to more
complex, like Euler equations, are implemented to show the user the correct use of the
package.

4

2 Partial Differential Equations

Partial differential equations are the main topic of this thesis. In the following a very
short introduction is given with the purpose to show some important aspects of these
huge field. In the next Chapters two numerical methods, the Method of Lines and the
Finite Volume Methods for solving these equations will be discussed more deeply.

2.1 Introduction

Many phenomena in nature are described by PDEs. Some examples are [4]:

• Navier-Stokes equations

The Navier-Stokes equations describe the fluid behavior by prescribing the re-
lationships among its velocity, density, pressure and viscosity.

∂ρ

∂t
+∇ · (ρV) = 0 (1)

∂ρvx

∂t
+∇ · (ρvxV) = −∂p

∂x
+
∂τxx

∂x
+
∂τyx

∂y
+
∂τzx

∂z
+ ρfx (2)

∂ρvy

∂t
+∇ · (ρvyV) = −∂p

∂y
+
∂τxy

∂x
+
∂τyy

∂y
+
∂τzy

∂z
+ ρfy (3)

∂ρvz

∂t
+∇ · (ρvzV) = −∂p

∂z
+
∂τxz

∂x
+
∂τyz

∂y
+
∂τzz

∂z
+ ρfz (4)

∂

∂t
(ρ(e+

V 2

2
)) +∇ · (ρ(e+

V 2

2
)V) = (5)

ρq̇ +
∂

∂x
(k
∂T

∂x
) +

∂

∂y
(k
∂T

∂y
) +

∂

∂z
(k
∂T

∂z
)−

∂vxp

∂x
− ∂vyp

∂y
− ∂vzp

∂z
+
∂vxτxx

∂x
+
∂vxτyx

∂y
+
∂vxτzx

∂z
+

∂vyτxy

∂x
+
∂vyτyy

∂y
+
∂vyτzy

∂z
+

∂vzτxz

∂x
+
∂vzτyz

∂y
+
∂vzτzz

∂z
+ ρf · V

Later we will see how these equations are derived and how to simulate them.

5

• Schrödinger´s equation

This equation of quantum mechanics describes the wave function of a particle
by prescribing the relationships among its mass, potential energy, and total en-
ergy. The time independent Schrödinger equation is

− h̄2

2m
(
∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2
) + V ψ = Eψ (6)

and the time dependent Schrödinger equation is

− h̄2

2m
(
∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2
) + V ψ = ih̄

∂ψ

∂t
(7)

where i =
√
−1, m is the mass of the particle, E its energy, V the potential, ψ the

wave function, h̄ = h
2π and h is the Planck constant (h = 6.626076 · 10−34J · s).

• Maxwell´s equations

Describe the behavior of an electromagnetic field by prescribing the relationships
among the electric and magnetic field strengths, magnetic flux density, and electric
charge and current densities.

∇ · E =
%

ε0
(8)

∇ ·B = 0 (9)

∇× E = −∂B
∂t

(10)

∇×B = µ0j + µ0ε0
∂E

∂t
(11)

where B is the magnetic field, E the electric field, % the electric charge, j the
current density, µ0 magnetic permeability and ε0 the dielectric constant.

In an ordinary differential equation the unknown function depends on only one vari-
able. In PDE, the unknown function depends on several variables. Example: the one-
dimensional heat equation:

qt − qxx = 0 (12)

Here we are searching the unknown function q(x, t) that depends both on space and
time.

6

Definition PDE [4]:

A partial differential equation is an equation involving partial derivatives of an unknown
function with respect to more than one independent variable.

PDEs can be classified according to order, linearity, homogeneity, and so on. In Figure
1 (taken from Farlow) the main classifications of PDEs are illustrated. Another classifi-

Figure 1: PDE classification

cation that is very important concerns the linear equations of the form

Aqxx +Bqxy + Cqyy +Dqx + Eqy + Fq = G (13)

where A, B, C, D, E, F , G are functions of x, y or just constants. This kind of equations
can be classified according to the value of B2 − 4AC:


parabolic, if B2 − 4AC = 0
hyperbolic, if B2 − 4AC > 0
elliptic, if B2 − 4AC < 0

(14)

The names come from the conic sections theory (Figure 2), where the general equation
for a conic section is

ax2 + bxy + cy2 + dx+ ey + f = 0 (15)

and the conic is 
parabolic, if b2 − 4ac = 0
hyperbolic, if b2 − 4ac > 0
elliptic, if b2 − 4ac < 0

(16)

7

Examples of such equations are:

parabolic PDE: ut = α2uxx (Diffusion equation)

hyperbolic PDE: utt = c2uxx (Wave equation)

elliptic PDE: ∇2u = 0 (Laplace´s equation)

Figure 2: Conic sections (picture taken from Wikipedia

There are many methods to solve a partial differential equation. Some are analytical,
some semi-analytical and some numerical. In practice, there are few PDEs that have an
analytical solution, many interesting PDEs that arise in science don´t have an analytical
solution. In the following some of the methods to solve PDEs are listed:

Separation of Variables

This method transforms a PDE in n variables into n ODEs, that can be then solved
with ODE solvers.

Integral equations

Transforms a PDE to an integral equation which is then solved by various techniques.

Calculus of Variation Methods

8

The PDE equation is reformulated as a minimization problem. The minimum of the
obtained expression is equal to the solution to the PDE.

Numerical Methods

There are many numerical methods to solve PDEs. Finite Difference Methods, Finite
Element Methods and Finite Volume Methods are only some examples. We will later
see a more detailed view of some of the most used numerical methods, in particular the
Finite Volume Methods and the Method of Lines.

2.2 Constructing PDEs with Blocks

One of the goal of this master thesis is to construct basic blocks with which it is possible
to construct almost any partial differential equation. As analogy let us take the example
of the Lego game (Figure 3). In this game we have many building blocks of different

Figure 3: Lego analogy

types with which it is possible to construct complex objects, such as castles, planes, and
so on. In the case of the partial differential equation the situation is more complicated,
but the idea is the same: we have blocks like ∂

∂x , (∂
∂x)2, integrators and so on and we

want construct the PDE.

9

3 Computational Fluid Dynamics

3.1 Introduction

When studying fluids (liquids and gases), we are interested in how the properties of the
fluid, such as velocity or pressure, change in space and time. To find a solution means
to find the space-time change of these properties. When trying to describe the behavior
of the gas in a tube for example, we must think of what ingredients are necessary to
describe such a system. And here comes physics into play. We can start by saying that
mass must be conserved for sure. This is right, but not enough. What are the other
actors in this system? Well, it can maybe be surprising, but the fundamental equations
to describe such a system are based on conservation laws:

1. Conservation of mass

2. Conservation of momentum

3. Conservation of energy

Fluids are governed by these conservation laws. The system of equations (PDEs), that
result from these conservation laws, gives the ”Euler equations” for gas dynamics. Be-
cause there is no analytical solution to this problem, it must be solved numerically. This
is the task of computational fluid dynamics. As said in [8]: Computational fluid dynam-
ics (CFD) is the art of replacing such PDE systems by a set of algebraic equations that
can be solved using digital computers. For what is the CFD useful? For aerodynamics

Figure 4: CFD visualization of vortices created by leading edge extensions on the F-18

10

purpose for example (Figure 4). By knowing the behavior of the flow around the airplane
we can study and perfectionate the aerodynamics of the plane.
Sometimes we can perform simulations in a laboratory, by doing experiments, but there
are many simulations that are not possible to do, or that are too expensive to perform
in a laboratory. Say for example that an architect wants to know how, in the case of an
accident, the fire will propagate through the building. This knowledge would allow the
architect to decide for example where to position the windows and fire extinguishers.
The distribution of the temperature will allow to differentiate regions with high temper-
ature and influence maybe the choice of materials for the construction of those regions.
Many other issues come into play. This kind of simulation cannot of course be done in
reality. Nobody will position temperature sensors in the whole building and then burn
it down.
CFD allows us to simulate situations that would otherwise be impossible to do, and give
us a qualitative and quantitative description of the simulation. Of course, we must face
problems that we have not in reality, such as the boundary conditions. By constructing
the building in the virtual world by using for example the commercial CAD (Computer
Aided Design) programs, we must specify the boundary conditions. This is a very dif-
ficult task, because there are no guidelines for this kind of problem, and the variety of
materials and other factors are crucial for the simulation. In reality we would not have
such problems, because the nature ”knows” the boundary conditions whereas computers
do not.
Before starting to derive the equations that describe the conservation laws, we must
apply these physical principles to some model. There are two different ways of studying
the problems in mechanics: Eulerian and Lagrange approach.

Eulerian Description

The Eulerian description tells us how the property changes at some place at some time.
Say for example that we are interested in the behavior of the velocity field V at the
point (xp, yp, zp). Then the Eulerian description will describe the behaviour of the ve-
locity field at this particular point over time: V (xp, yp, zp, t) (Figure 5).

Lagrangian description

If instead of the velocity at the particular point we are interested in the behavior of
the velocity of the particle as it moves through the flow, then we are talking about the
Lagrangian description (Figure 6).

In describing the Eulerian and Lagrangian approach we have considered the veloc-
ity field. This field is very important, because its knowledge allow us to determine many
other properties of the fluid. In the following we list some of these properties that can
be derived using the velocity, V:

11

Figure 5: Eulerian approach: Velocity field

Displacement vector

x =
∫
V dt (17)

Acceleration

a =
dV

dt
(18)

Angular velocity

ω =
1
2
∇× V (19)

where ∇ is the nabla operator.
Until now, we have considered only the density, pressure and velocity of the fluid. Inter-
nal energy, enthalpy, entropy and specific heat are other properties that become impor-
tant when dealing with energy, work and heat. Additionally, the coefficient of viscosity

12

Figure 6: Lagrangian approach: Velocity field

and the thermal conductivity govern the friction and heat conduction. These nine ther-
modynamic properties are listed below:

1. Density

2. Pressure

3. Temperature

4. Internal energy

5. Entropy

6. Enthalpy

7. Specific heat

8. Viscosity

9. Thermal Conductivity

These quantities can be determined by the thermodynamic state of the fluid. For
example for some substances, knowing the pressure and temperature is enough to de-
termine the value of all the other quantities. We shall now concentrate on deriving the
equations of conservations laws. As a model we choose an infinitesimally small fluid
element that is fixed in space.

3.2 Euler Equations

3.2.1 The Continuity Equation

Consider the flow of the fluid through an infinitesimal small fluid element that is fixed
in space (Figure 7). Let ρ be the fluid density and v its velocity. By using the Taylor

13

expansion (and neglecting higher order terms) we can derive the mass outflow for each
space component:

Figure 7: Mass outflow out of infinitesimal small fluid element

(ρvx +
∂ρvx

∂x
dx)dydz − ρvxdydz =

∂ρvx

∂x
dxdydz (20)

(ρvy +
∂ρvy

∂y
dy)dxdz − ρvydxdz =

∂ρvy

∂y
dxdydz (21)

(ρvz +
∂ρvz

∂z
dz)dxdy − ρvzdxdy =

∂ρvz

∂z
dxdydz (22)

Hence the total mass outflow is given by

(
∂ρvx

∂x
+
∂ρvy

∂y
+
∂ρvz

∂z
)dxdydz (23)

Since the mass of the infinitesimally small fluid element is ρdxdydz, the change of mass
over time inside the fluid element is

∂ρ

∂t
dxdydz (24)

The mass conservation law, applied to the infinitesimal small fluid element fixed in space,

14

states that the total mass outflow of the element must be equal to decrease of mass in
time inside the element. By using the expressions we derived above, this could be writ-
ten as:

(
∂ρvx

∂x
+
∂ρvy

∂y
+
∂ρvz

∂z
)dxdydz = −∂ρ

∂t
dxdydz (25)

or

∂ρ

∂t
+∇ · (ρv) = 0 (26)

This is the partial differential equation of the mass conservation law, called the continuity
equation.

3.2.2 The Momentum Equation

We all know Newton´s second law

F = ma (27)

which in the case of the fluid element states that the net force applied to the fluid el-
ement equals the mass of the element times its acceleration. Because we consider only
one dimension, we write

Fx = max (28)

What kind of forces can act on a fluid element? There are two kind of forces [Andrew]:

• Body forces

This kind of forces act directly on the volumetric mass of the fluid element. Ex-
ample of these forces are gravitational and magnetic forces.

• Surface forces

Act directly on the surface of the fluid element. They are due to only two sources:

– Pressure

The pressure distribution acting on the surface, imposed by the outside fluid
surrounding the fluid element.

15

– Viscous

The shear and normal stress acting on the surface.

The schematic representation of these forces is presented in Figure 8. In Figure 9 a
detailed view of forces acting on an infinitesimally small fluid element is illustrated.

Figure 8: Forces that act on a fluid element

Let us denote the body force per unit mass acting on the fluid element in x-direction by
fx. Then we have:

Body force = ρfxdxdydz

As explained in [9]: The shear and normal stresses in a fluid are related to the time
rate of change of the deformation of the fluid element. The shear stress, τxy, is related
to the time rate of change of the shearing deformation of the fluid element, whereas the
normal stress, τxx, is related to the time rate of change of volume of the fluid element.
As a result, both shear and normal stresses depend on velocity gradients in the flow. The
notation τij denotes a stress in the j direction exerted on a plane perpendicular to the i
axis. The net surface force in x direction is

(p− (p+
∂p

∂x
dx))dydz + ((τxx +

∂τxx

∂x
dx)− τxx)dydz+ (29)

((τyx +
∂τyx

∂y
dy)− τyx)dxdz + ((τzx +

∂τzx

∂z
dz)− τzx)dxdy

The total force in x direction, Fx, is the sum of the body force and the net surface force:

16

Figure 9: Forces acting on an infinitesimal small element

Fx = (−∂p
∂x

+
∂τxx

∂x
+
∂τyx

∂y
+
∂τzx

∂z
)dxdydz + ρfxdxdydz

For the term ma in the Newton´s second law we have

∂ρvx

∂t
+∇ · (ρv2

x) (30)

And so Newton´s second law assumes the following form for the fluid element

∂ρvx

∂t
+∇ · (ρv2

x) = (−∂p
∂x

+
∂τxx

∂x
+
∂τyx

∂y
+
∂τzx

∂z
)dxdydz + ρfxdxdydz (31)

This is the momentum equation. If we neglect viscous effects and body forces, the equa-
tion simplifies to:

∂ρvx

∂t
+∇ · (ρv2

x) = −∂p
∂x
dxdydz (32)

This is exactly the second equation in our Euler system.

3.2.3 The Energy Equation

The first law of thermodynamics says that energy is conserved. In the following we shall
apply this principle to the fluid element: The rate of change of energy inside the fluid

17

element is equal to the net flux of heat into the element plus the rate of work done on the
element due to body and surface forces [9]. In Figure 10 we consider again the scheme
illustrating the principal actors for the derivation of the energy equation.

Figure 10: Energy in infinitesimal small fluid element

Here q̇ is the rate of volumetric heat addition per unit mass. After following the same
approach as for the continuity and momentum equation, we find the energy equation:

∂

∂t
(ρ(e+

V 2

2
)) +∇ · (ρ(e+

V 2

2
)V) = ρq̇+ (33)

∂

∂x
(k
∂T

∂x
) +

∂

∂y
(k
∂T

∂y
) +

∂

∂z
(k
∂T

∂z
)−

∂vxp

∂x
− ∂vyp

∂y
− ∂vzp

∂z
+
∂vxτxx

∂x
+
∂vxτyx

∂y
+
∂vxτzx

∂z
+

∂vyτxy

∂x
+
∂vyτyy

∂y
+
∂vyτzy

∂z
+

∂vzτxz

∂x
+
∂vzτyz

∂y
+
∂vzτzz

∂z
+ ρf · V

3.3 Navier-Stokes and Euler Equations

The equations derived so far govern the viscous flow. In the viscous flow the transport
phenomena of friction, thermal conduction, and mass diffusion are included. To sum-
marize what we have derived and by adding the other components not considered in
the derivation we obtain the governing equations for an unsteady, three-dimensional,

18

compressible, viscous flow, called the Navier-Stokes equations:

∂ρ

∂t
+∇ · (ρV) = 0 (34)

∂ρvx

∂t
+∇ · (ρvxV) = −∂p

∂x
+
∂τxx

∂x
+
∂τyx

∂y
+
∂τzx

∂z
+ ρfx (35)

∂ρvy

∂t
+∇ · (ρvyV) = −∂p

∂y
+
∂τxy

∂x
+
∂τyy

∂y
+
∂τzy

∂z
+ ρfy (36)

∂ρvz

∂t
+∇ · (ρvzV) = −∂p

∂z
+
∂τxz

∂x
+
∂τyz

∂y
+
∂τzz

∂z
+ ρfz (37)

∂

∂t
(ρ(e+

V 2

2
)) +∇ · (ρ(e+

V 2

2
)V) = ρq̇+ (38)

∂

∂x
(k
∂T

∂x
) +

∂

∂y
(k
∂T

∂y
) +

∂

∂z
(k
∂T

∂z
)−

∂vxp

∂x
− ∂vyp

∂y
− ∂vzp

∂z
+
∂vxτxx

∂x
+
∂vxτyx

∂y
+
∂vxτzx

∂z
+

∂vyτxy

∂x
+
∂vyτyy

∂y
+
∂vyτzy

∂z
+

∂vzτxz

∂x
+
∂vzτyz

∂y
+
∂vzτzz

∂z
+ ρf · V

If however, we neglect the dissipative transport phenomena of viscosity, mass diffusion,
and thermal conductivity, then we obtain from the equations above the equations for
an inviscid flow. The resulting equations describe an unsteady, three-dimensional, com-
pressible inviscid flow:

∂ρ

∂t
+∇ · (ρV) = 0 (39)

∂ρvx

∂t
+∇ · (ρvxV) = −∂p

∂x
+ ρfx (40)

∂ρvy

∂t
+∇ · (ρvyV) = −∂p

∂y
+ ρfy (41)

∂ρvz

∂t
+∇ · (ρvzV) = −∂p

∂z
+ ρfz (42)

∂

∂t
(ρ(e+

V 2

2
)) = ρq̇ − ∂(vxp)

x
− ∂(vyp)

y
− ∂(vzp)

z
+ ρf · V (43)

These are the Euler equations.

19

3.4 Conservation Laws

In Chapter 3.2 we derived the conservation laws composing the Euler system. In this
chapter we will look at another way of deriving these equations (for simplicity we shall
consider only the continuity equation), which is more suitable for the understanding of
the finite volume method. Let us take as example a thin tube with section area A,
along which a fluid can flow. Consider now some portion of the tube [x1, x2] of length L
(Figure 11). We are interested in how the fluid quantity changes in this portion of the

Figure 11: Tube

tube. Let d be the three dimensional density of the fluid. Multiplying it by the section
area A we get the density q(x, t), which tells us the quantity of the fluid per meter. If we
take now the small volume in the section [x1, x2] with the length dx, the fluid quantity in
the volume A∗dx will be equal to q(x, t)∗dx. The total quantity in the section will be then∫ x2

x1

q(x, t)dx (44)

How does this quantity change? If we assume that the fluid is neither created nor de-
stroyed in the section, then the quantity of the fluid in the section can only change due
to fluxes through the points x1 and x2. Let F (xi, t) be the flux at the point xi at time
t. Then we can write:

d

dt

∫ x2

x1

q(x, t)dx = F (x1, t)− F (x2, t) (45)

This is the integral form of the conservation law. It says that the rate of change of the
total mass is due only to fluxes through the endpoints. It is important to note that al-
though in this example q is the mass density, we can consider in general q as the density
of some quantity.
If we assume that q and f(q) are sufficiently smooth, we can derive the differential form
of the conservation law by using the integral form.

20

d

dt

∫ x2

x1

q(x, t)dx = F (x1, t)− F (x2, t) (46)

d

dt

∫ x2

x1

q(x, t)dx = −
∫ x2

x1

∂

∂x
f(q(x, t))dx (47)

∫ x2

x1

(
∂

∂t
q(x, t)dx+

∂

∂x
f(q(x, t)))dx = 0 (48)

Since this integral must be zero for all values of x1 and x2, it follows that the integrand
must be identically zero

∂

∂t
q(x, t)dx+

∂

∂x
f(q(x, t)) = 0 (49)

and we obtain the differential form of the conservation law. It is important to note that
if q has a discontinuity at some point, like in the case of shock waves, then the differential
form of the conservation law does not hold. The integral form of the conservation law,
however, continues to hold. This is the basic idea of the finite volume method, which is
based on the integral form instead of the differential form that is used for example in
the finite-difference method.
It remains to establish the relation between the flux function and the density.
In the case of fluid flow, the flux at any point x at time t is simply the product of the
density q(x, t) and the velocity v(x, t):

flux(x, t) = v(x, t)q(x, t) (50)

Since the velocity v(x, t) tells us at which velocity the particles move through the point
x, say m/s, and the density q(x, t) tells us the quantity of mass in a meter of fluid,
say g/m,then the product v(x, t)q(x, t) gives us the the rate at which the mass is pass-
ing through the point x. Consider for example the tube in Figure 12. In time ∆t
the particles moved a distance v(x1, t)∆t from the point x1. The volume of the red
piece is Av(x1, t)∆t. Hence the mass contained in this piece is d(x, t)Av(x1, t)∆t. Since
d(x, t)A = q(x, t), we have q(x, t)v(x1, t)∆t, and if we take ∆t = 1 (unit of time), we ar-
rive finally at q(x, t)v(x1, t) which tells us the rate at which the mass is passing through
the point x1. In the particular case where the velocity is constant, v(x, t) = v, the flux
at the point x in time t is

flux(x, t) = f(q) = vq(x, t) (51)

Thus the flux at the point x at time t depends in this case directly on the conserved

21

Figure 12: Tube: red volume contains the quantity of mass entered through the point
x1 in time ∆t

quantity q at that point and time. In this case the equation is called autonomous.
So far we assumed that the cross-sectional area is constant. In Figure 13 we see an ex-
ample of a tube with four different cross-sectional areas. In this case the cross-sectional

Figure 13: Tube

area varies with space. This has an impact on the velocity of the fluid, which will be
now different in different regions of the tube. In the following we shall not consider this
case but the interested reader can consult the chapter 9 of the Randall LeVecque book
[2].
By following the same approach we can find the momentum flux and energy flux and
obtain in the end the following system of equations:

ρt + (ρv)x = 0
(ρv)t + (ρv2 + p)x = 0
Et + ((E + p)v)x = 0

(52)

where

22

• Mass flux: ρv

• Momentum flux: ρv2 + p

• Energy flux: (E + p)v

Thus we are searching the unknown functions ρ, v, p and E that satisfies simultaneously
the three equations. In other words, at each time, at every location in the domain the
three conservation laws must be all satisfied.
The system just obtained has four unknowns ρ, v, p and E and only three equations. In
order to complete the problem we need the fourth equation. This can be obtained from
the equation of state of ideal gases. For example, for the polytropic gas we have:

p = (γ − 1)(E − ρ
v2

2
) (53)

where γ = 1.4 for air. In polytropic gases internal energy is simply proportional to the
temperature. With the fourth equation we have now the complete system:

ρt + (ρv)x = 0
(ρv)t + (ρv2 + p)x = 0
Et + ((E + p)v)x = 0
p = (γ − 1)(E − ρv2

2)

(54)

In the following chapters we will solve this system with the Method of Lines and Finite
Volume Methods.

23

4 Method of Lines

4.1 Introduction

The Method of Lines (MOL) technique solves numerically a PDE by discretizing the
space variable but leaving the time variable continuous. By doing so we obtain a system
of ordinary differential equations (ODEs). The MOL method converts thus a PDE into
a set of ODEs. This is advantageous because efficient ODE solvers are known. Consider
for example the one dimensional heat equation problem:

∂u

∂t
= σ · ∂

2u

∂x2
(55)

u(x, 0) = cos(πx) (56)

u(0, t) = e
−t
10 (57)

∂u

∂x
(1, t) = 0 (58)

where σ is a constant value in this problem. The solution to this equation is a function
u(x, t). The MOL technique discretizes the spatial variable and looks at the solutions
u(xi, t). In Figure 14 the basic idea of the MOL approach is illustrated: the solution is
computed along a series of lines, resulting in cross sections of the solution surface. We
replace the second-order derivative by a finite difference

∂2u

∂x2
≈ ui+1 − 2ui + ui−1

δx2
(59)

where δx is the grid width. Inserting into equation 55 we obtain

dui

dt
= σ · ui+1 − 2ui + ui−1

δx2
(60)

Thus we changed the PDE in u into a set of ODEs in u.
In the case of five grid points we have:

u1 = exp
−t
10 (61)

u2 =
n2

10π2
(u3 − 2u2 + u1) (62)

u3 =
n2

10π2
(u4 − 2u3 + u2) (63)

u4 =
n2

10π2
(u5 − 2u4 + u2) (64)

24

Figure 14: MOL solution of heat equation (picture taken from [4])

u5 =
n2

10π2
(u6 − 2u5 + u4) (65)

u6 =
n2

5π2
(−u6 + u5) (66)

with the initial conditions:

ui = cos(
(i− 1)π

i
) (67)

for i = 2, ..., 5. With this boundary and initial conditions, we can now apply ODE
solvers to find the solution.
In Figure 15 the Modelica solution of this problem is illustrated. The system of ODEs
we obtain above can be written in matrix form

ut =
σ

(δx)2


−2 1 0 . . . 0
1 −2 1 . . . 0
...

.
...

0 . . . 0 1 −2

u = Au (68)

25

Figure 15: Modelica solution of the heat equation to the six grid points

The Jacobian of the matrix A of this system has eigenvalues in the range [−4σ
(∆x)2

], which
makes the ODE very stiff as the grid size ∆x decreases. This stiffness, which is typical
of ODEs derived from a parabolic PDE in this way, must be taken into account in
choosing an appropriate ODE method for solving the semidiscrete system. Although it
seems that the MOL and finite-difference techniques are completely different, because
the former does not discretize the time variable, whereas the latter does, there is no
real difference between the two approaches, because the time variable is discretized in
both methods. Whereas in MOL approach it is the ODE software package that has the
task to appropriately choose the time step in order to maintain stability and achieve the
desired accuracy, in finite difference technique the task of choosing the time step is left
to the user. In Figure 16 the basic MOL steps are illustrated. Let us see these points in
more details.

4.2 Discretization

In 1D the discretization step is easy, we must only decide how many grid points we need,
say n, and the domain will be partitioned into n − 1 intervals of length 1

n−1 . It is also
possible to subdivide the domain non uniformly, or better, discretize the domain during

26

Figure 16: The MOL process

the simulation run according to some criteria. This way regions which are interesting
could be subdivided finer. This topic is discussed in chapter 5. In the following we will
adopt the uniform discretization.

4.3 Interpolation

In the above example we used the second-order central difference formula to approx-
imate the second-order derivative. What if we need a more accurate approximation?
We could interpolate by using more points. Consider for example the Newton-Gregory
polynomials and say that we want to fit a polynomial of the fourth order. From algebra
we know that five points are needed to fit the fourth order polynomial. If we use the
central differences, this means that we fit the polynomial through the five points xi−2,
xi−1, xi, xi+1 and xi+2.
If we use Newton-Gregory backward polynomials, we need to write the polynomial
around the most right point, which in our example is xi+2. After some calculations
we obtain the following discretization formula for the second-order derivative at point
xi:

∂2u

∂x2
|x=xi=

−ui+2 + 16ui+1 − 30ui + 16ui−1 − ui−2

12δx2
(69)

which is the fourth-order central difference approximation. Let us first take a quick look
at how Newton interpolation works. Newton polynomial has the following form:

Pn(x) = b0 + b1(x− x0) + b2(x− x0)(x− x1) + ...+ bn(x− x0) · ... · (x− xn−1) (70)

27

Because this polynomial must fit the points x0, ..., xn , we have the system of equations:

f(x0) = b0 (71)

f(x1) = b0 + b1(x1 − x0) (72)

f(x2) = b0 + b1(x2 − x0) + b2(x2 − x0)(x2 − x1) (73)

...

Solving for bi we obtain:

b0 = f(x0) =: f [x0] (74)

b1 =
f(x1)− f(x0)

x1 − x0
=: f [x0x1] (75)

b2 =
f [x0x2]− f [x0x1]

x2 − x1
=: f [x0x1x2] (76)

...

Thus we obtain the following polynomial:

P (x) = f [x0] +
n∑

k=1

f [x0...xk](x− x0) · ... · (x− xk−1) (77)

which is called Newton´s interpolatory divided-difference formula. This polynomial as-
sumes a simpler form if x0, ..., xn are spaced equally, that is, if h = xi+1 − xi for each
i = 0, ..., n− 1:

P (x) = P (x0 + sh) = f [x0] +
n∑

k=1

(
s

k

)
k!hkf [x0...xk] (78)

The polynomial is further simplified by introducing the forward difference ∆f(xk) =
f(xk+1)− f(xk) notation which substitute f [x0...xk] by

f [x0...xk] =
1

k!hk
∆kf(x0) (79)

and enables us to write the polynomial in the following form

P (x) = f [x0] +
n∑

k=1

(
s

k

)
∆kf(x0) (80)

which is called the Newton forward-difference formula. If the interpolating nodes are

28

written as xn, ..., x0 we can write

P (x) = f [xn] + ...+ f [x0...xn](x− xn) · ... · (x− x1) (81)

If the interpolating nodes are equally spaced, with x = xn + sh the polynomial can be
written as

P (x) = f [xn] + ...+ s(s+ 1) · ... · (s+ n− 1)hnf [x0...xn] (82)

and by introducing the backward difference ∇f(xk) = f(k)− f(k− 1) we can substitute
f [xn−k...xn] by

f [xn−k...xn] =
1

k!hk
∇kf(xn) (83)

and write the polynomial in the form

P (x) = f [xn] +
n∑

k=1

(−1)k

(
−s
k

)
∇kf(xn) (84)

which is called the Newton backward-difference formula.
Having the polynomial we can compute its first derivative. For the Newton backward
difference formula this is

Ṗ (x) =
d

dt
P (x) =

∂

∂s
P (s) · ds

dt
≈ (85)

1
h

(∇P (x0) + (s+
1
2
)∇2P (x0) + (

3s2 + 6s+ 2
6

)∇3P (x0) + ...)

and the second derivative is

P̈ (x) ≈ 1
h2

(∇2P (x0) + (s+ 1)∇3P (x0) + (
s2

2
+

3s
2

+
11
12

)∇4P (x0) + ...) (86)

We can now use this information to solve the heat equation. If we desire a second-order
central difference approximation, then we need to fit the polynomial through the three
points xi−1, xi and xi+1. By using the Newton-Gregory backward polynomial, we write
the polynomial around the point xi+1 and obtain for the second derivative

P̈ (x) ≈ 1
h2

(∇2P (xi+1) + (s+ 1)∇3P (xi+1)) (87)

To evaluate the second derivative around the point xi we have to set s = −1 and we

29

obtain

∂2P

∂x2
|x=xi ≈

1
h2

(∇2P (xi+1)) =
1
h2

(P (xi+1)− 2P (xi) + P (xi+1)) (88)

Say that we want now a fourth-order central difference approximation. In this case we
need to fit the polynomial through the five points xi−2, xi−1, xi, xi+1 and xi+2. If we
use the Newton-Gregory backward polynomial, we need to write the polynomial around
the point xi+2. The second derivative will then be:

P̈ (x) ≈ 1
h2

(∇2P (xi+2) + (s+ 1)∇3P (xi+2) + (
s2

2
+

3s
2

+
11
12

)∇4P (xi+2) + ...) (89)

and if we want to evaluate the second derivative at the point xi, we just set s = −2 and
obtain

∂2P

∂x2
|x=xi ≈

1
h2

(∇2P (xi+2)−∇3P (xi+2)−
1
12
∇4P (xi+2)) = (90)

1
h2

((P (xi+2)− 2P (xi+1) + P (xi))− (P (xi+2)− 3P (xi+1) + 3P (xi)− P (xi−1))

− 1
12

(P (xi+2)− 4P (xi+1) + 6P (xi)− 4P (xi−1) + P (xi−2))) =

1
12h2

(−P (xi+2) + 16P (xi+1)− 30P (xi) + 16P (xi+1)− P (xi−2))

Let us now consider the boundaries of the domain. If we use the second-order central
difference scheme, then we see that the formula we derived above does not apply for the
points x1 and xn because in either cases we need points that lie outside the domain.
The same applies to the fourth-order central difference scheme where the ”special” points
are x1, x2, xn−1 and xn. In this case we can use biased formulas. For the fourth-order
central difference scheme we can find the formulas for the point x1 by using the Newton-
Gregory polynomial around the point x5 and then set s = −4 and for x2 set s = −3.
The same ideas apply to the other points. Finally we obtain

∂2P

∂x2
|x=x1 =

1
12h2

(−11P (x5)− 56P (x4) + 114P (x3)− 104P (x2) + 35P (x1)) (91)

∂2P

∂x2
|x=x2 =

1
12h2

(−P (x5) + 4P (x4) + 6P (x3)− 20P (x2) + 11P (x1)) (92)

∂2P

∂x2
|x=xn−1 =

1
12h2

(11P (xn)− 20P (xn−1) + 6P (xn−2) + 4P (xn−3)− P (xn−4)) (93)

∂2P

∂x2
|x=xn =

1
12h2

(35P (xn)−104P (xn−1)+114P (xn−2)−56P (xn−3)+11P (xn−4)) (94)

In the following we will use the notation ui, indicating the value of the function u at

30

the grid point xi. The approximation to the second-derivative discussed so far is imple-
mented in uxx block (Figure 17). We can proceed the same way to find the formulas for

Figure 17: Portion of uxx block code

the first-derivative. If we wish to obtain the second-order central difference scheme, we
use the formula (94) to write the polynomial around the point xi+1 and set s = −1. In
this way we obtain

Ṗ (x) =
1
h

(∇P (xi+1)−
1
2
∇2P (xi+1)) = (95)

1
h

(ui+1 − ui −
1
2
(ui+1 − 2ui + ui−1)) =

ui+1 − ui−1

2h

For the boundary point x1 we use the biased formula by interpolating around u3 and
then setting s = −2:

Ṗ (x1) =
1
h

(∇P (x3)− (
2s+ 1

2
)∇2P (x3)) = (96)

1
h

(∇P (x3)−
3
2
∇2P (x3)) =

1
h

(u3 − u2 −
3
2
(u3 − 2u2 + u1)) =

−u3 + 4u2 − 3u1

2h

In the same way we obtain the biased formula for the boundary point xn:

Ṗ (xn) ≈ 3un − 4un−1 + un−2

2h
(97)

31

In the same way we obtain the fourth-order central difference scheme

∂P

∂x
|x=x1 =

−3u5 + 16u4 − 36u3 + 48u2 − 25u1

12h
(98)

∂P

∂x
|x=x2 =

u5 − 6u4 + 18u3 − 10u2 − 3u1

12h
(99)

∂P

∂x
|x=xi =

−ui+2 + 8ui+1 − 8ui−1 + ui−2

12h
(100)

∂P

∂x
|x=xn−1 =

3un + 10un−1 − 18un−2 + 6un−3 − un−4

12h
(101)

∂P

∂x
|x=xn =

25un − 48un−1 + 36un−2 − 16un−3 + 3un−4

12h
(102)

and the sixth-order central difference scheme

∂P

∂x
|x=x1 =

265u7 − 478u6 + 50u5 + 400u4 − 450u3 + 360u2 − 147u1

60h
(103)

∂P

∂x
|x=x2 =

−3463u7 + 13845u6 − 20740u5 + 13760u4 − 3315u3 − 77u2 − 10u1

60h
(104)

∂P

∂x
|x=x3 =

−u7 + 8u6 − 30u5 + 80u4 − 35u3 − 24u2 + 2u1

60h
(105)

∂P

∂x
|x=xi =

ui+3 − 9ui+2 + 45ui+1 − 45ui−1 + 9ui−2 − ui−3

60h
(106)

∂P

∂x
|x=xn−2 =

−2un + 24un−1 + 35un−2 − 80un−3 + 30un−4 − 8un−5 + un−6

60h
(107)

∂P

∂x
|x=xn−1 =

10un + 77un−1 − 150un−2 + 100un−3 − 50un−4 + 15un−5 − 2un−6

60h
(108)

∂P

∂x
|x=xn =

147un − 360un−1 + 450un−2 − 400un−3 + 225un−4 − 72un−5 + 10un−6

60h
(109)

For the first-order derivative, the second-order central difference scheme together with
second-order biased formula for the boundary points are implemented in block uxCD2B2
(Figure 18 shows some portion of the uxCD2B2 block code), whereas the fourth-order
central difference scheme with fourth-order biased formula and the sixth-order central
difference scheme with sixth-order biased formula are implemented in blocks uxCD4B4
(Figure 19 shows some portion of the uxCD4B4 block code) and uxCD6B6 (Figure 20
shows some portion of the uxCD6B6 block code) respectively. These three blocks are
combined together in Derivator block (Figure 21). Which one will be used is specified
by the user in the WorldModel1 block through the parameter qss: qss = 1 for the
uxCD2B2, qss = 2 for uxCD4B4 and qss = 3 for uxCD6B6.

32

Figure 18: Portion of uxCD2B2 block code

Figure 19: Portion of uxCD4B4 block code

33

Figure 20: Portion of uxCD6B6 block code

Figure 21: Derivator block

34

4.4 Solving ODEs

The system of ODEs we obtained above for the heat diffusion problem can be written
in a more compact form:

ẋ = A · x+ b · u (110)

where

A =
n2

10π2



−2 1 0 0 . . . 0 0 0
1 −2 1 0 . . . 0 0 0
0 1 −2 1 . . . 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 . . . 1 −2 1
0 0 0 0 . . . 0 2 −2


(111)

b · u =


exp(−t

10)
0
...
0

 (112)

The matrix A is a band-structured matrix and its eigenvalues are real and strictly neg-
ative. In general, all parabolic PDEs converted to a set of ODEs by using the method
of lines have this property. If we consider the stiffness ratio, defined as

Stiffness =
max|ei|
min|ej |

(113)

then it turns out that this ratio depends on the number of segments, more precisely it
grows quadratically with the number of segments. The more accurate we wish to solve
the diffusion equation, the stiffer the corresponding ODE problem will become. Since
the diffusion problems are usually quite smooth, the BDF algorithms are optimal for the
simulation of the resulting set of ODEs. [1]
How can we solve the system of ODEs just obtained? Well, there is a reason why we
transformed the heat PDE into a set of ODEs: Dymola provides many methods to solve
ODEs. For instance, I used the DASSL method to solve all of the examples of PDEs in
this thesis. DASSL implements the backward difference formula (BDF) of orders one to
five and is the default simulation algorithm in Dymola. For more details about DASSL
see [1].

4.5 Boundary Conditions

Generally a PDE has many solutions and some additional information must be specified
to define the solution uniquely. Besides the initial condition, boundary conditions are

35

needed. There are many possibilities to specify boundary conditions:

• Dirichlet

The solution u of the function at the boundary point is specified.

• Neumann

The derivative du/dx of the function at the boundary point is specified.

• Robin

a combination of the solution and derivative values of the function u at the bound-
ary point is specified.

The inputs BL and BR in the integrator block accept either constant values or time
dependent values. Both can be specified by the source block in Modelica− > Blocks− >
Sources (see Examples). The Neumann type of boundary condition can be specified
directly in the derivative block. Setting bcl or bcr to −1 activates the Neumann boundary
condition du/dx = 0 at the left or at the right part of the domain respectively. Of
course the Package does not offer a complete treatment of boundary conditions. Some
problems would for example need boundary conditions that ”appear” or ”disappear”.
This boundary condition, called nonlinear boundary condition, says that at some time
we either have a boundary condition at the corresponding grid point or not. If we have
one, then its value is specified by the boundary condition, if not, we have an equation
for this grid point. Depending on the method, we need special formulas for either one
or more grid points at each end of the domain. So the boundary grid points are treated
in a special way. In the FVM Chapter, we will see another way of implementing the
boundary conditions that does not require this special treatment.

4.6 MOL Implementation in Modelica

As mentioned in Chapter 2, one of the main goals of the thesis was to provide Modelica
with basic blocks that enable the construction of the PDEs along with the numerical
solution. The kind of the numerical method used should be transparent to the user. In
the present thesis two numerical methods are implemented: Method of Lines and finite
volume method. This chapter is only concerned with the method of lines. In order
to solve a PDE with the method of lines, the Integrator block was built (Figure 22).
This block could be seen, as many others, as a black box that takes some inputs and
provides outputs. What is happening inside the box must not concern the user. When
constructing some specific PDE, we must connect correctly the inputs with outputs and
initialize the block parameters. If everything is done correctly, we can start with the
simulation. In Figure 23 some portion of the integrator block code is shown. As can be
seen, the boundary conditions are checked and initialized, the initial conditions are set
in the ”initial equation” section. Under ”equation” the values at the grid points at each

36

Figure 22: MOL Integrator

Figure 23: Portion of integrator block code

37

time step are computed.
The integrator block computes the equations of the form

ut = f(u, ux, uxx, ...) (114)

If the equation has another form, we must reduce it to this form before giving it to the
integrator. The vector of grid points is given as output by the integrator. We can use
it to construct the right part of the equation and at the end give the whole to the R
input of the integrator (see for example the heat equation in Figure 24). We will now
see many examples of how to use these blocks in order to construct PDEs.

Figure 24: MOL construction of the heat equation in Modelica

4.7 Examples

In the previous chapter we illustrated how to implement the heat equation with the
method of lines. Many other examples were implemented and they can be found under
PDE → MOL→ Examples. In the following we shall illustrate some of them. Let us
start with the advection equation.

4.7.1 Advection Equation

The advection equation is one of the most simple PDEs. Nevertheless, it plays an im-
portant role as we will see in the Finite Volume Method chapter. Given a speed c, the

38

advection equation has the form

∂u

∂t
= −c∂u

∂x
(115)

If we have as initial condition some function u(x, 0), then the advection equation will
just shift this function with the speed c without changing its shape. Thus the solution
of the advection equation is

u(x - ct, t)

In Figure 25 the MOL implementation of the advection equation with speed c = 0.1 can
be seen.

Figure 25: Advection equation with MOL

The initial and boundary conditions that were used are:

Initial condition: cos(x)

Boundary condition: cos(−ct)

Note that only one boundary condition suffices (the one that is upwind). What is
amazing is that already with only ten cells we have a very good approximation (Figure
26). The greatest error values are reached in the seventh cell (Figure 27). The maximum
error is of order 10−3.

39

Figure 26: Advection equation: numerical versus analytical solution (10 grid points were
used)

Figure 27: Advection equation: error of the 7-th grid point (10 grid points were used)

40

4.7.2 Wave Equation

The wave equation is the hyperbolic PDE

∂2u

∂t2
= c2

∂2u

∂x2
(116)

At first glance it seems that we cannot solve this equation with our integrator block.
We can however transform this second-order PDE into two first-order PDEs:

∂u

∂t
= v (117)

∂v

∂t
= c2

∂2u

∂x2
(118)

Now we have reached the form that is appropriate for our integrator block. The com-
plete problem, that is implemented in Modelica, together with the initial and boundary
conditions is listed below:

∂u

∂t
= v (119)

∂v

∂t
=
∂2u

∂x2
(120)

u(x, 0) = sin(
π

2
x) (121)

∂u

∂t
(x, 0) = 0.0 (122)

u(x1, t) = 0.0 (123)

∂u

∂x
(xn, t) = 0.0 (124)

The process of solving this system of equations is the same as described above, we start
with discretizing the spatial derivative and in the end we reach the set of ODEs:

u1 = 0.0 (125)

u̇2 = v2 (126)

u̇3 = v3 (127)

... (128)

u̇n = vn (129)

v1 = 0.0 (130)

41

v̇2 = n2(u3 − 2u2 + u1) (131)

v̇3 = n2(u4 − 2u3 + u2) (132)

... (133)

v̇n = n2(un−1 − un) (134)

and the initial conditions are

u2 = sin(
π

2n
) (135)

u3 = sin(
π

n
) (136)

... (137)

un = sin(
(n− 1)π

2n
) (138)

v2 = 0.0 (139)

v3 = 0.0 (140)

... (141)

vn = 0.0 (142)

In Figure 28 we see how the wave equation is implemented in Modelica. Figure 29 shows
the implementation of the initial condition for the first equation. The good news are
that for this problem there is an analytical solution

u(x, t) =
1
2
sin(

π(x− t))
2

) +
1
2
sin(

π(x+ t))
2

) (143)

The analytical solution is implemented in Modelica too. In Figure 30 the graphs of the
two first and two last grid points are shown. The analytical solution can be seen in red
and the solution provided by the method of lines in blue. As can be seen, if we discretize
the domain with only ten grid points, we have already a good approximation (error of
order 10−2).

42

Figure 28: Wave equation in Modelica

Figure 29: Initial conditions

43

Figure 30: Comparison of the analytical and numerical solution of the wave equation.
The solution of the first two and last two grid points is shown (10 grid points
were used).

4.7.3 Vibrating String Equation

Another interesting problem is that of the vibrating string. The finite vibrating string
of length L is described by the wave equation together with special boundary and initial
conditions. The complete problem is

∂2u

∂t2
= c2

∂2u

∂x2
(144)

u(0, t) = 0 (145)

u(L, t) = 0 (146)

u(x, 0) = sin(
πx

L
) +

1
2
sin(

3πx
L

) (147)

ut(x, 0) = 0 (148)

The MOL implementation of this problem can be seen in Figure 31. The analytic solu-

44

Figure 31: Vibrating string equation in Modelica

tion to this problem is given by

u(x, t) = sin(
πx

L
)cos(

πct

L
) +

1
2
sin(

3πx
L

)cos(
3πct
L

) (149)

Figure 32 shows the numerical together with analytical solution for the second grid
point and the point in the middle of the domain. The approximation in not satisfactory
enough. With 40 cells (Figure 32 below) better results are achieved. The error of the
solution for the second grid point with 10 and 40 cells can be seen in Figure 32. As can
be seen from graphs, the error decreases dramatically if we increase the number of cells
from 10 to 40.

4.7.4 Shock Wave Equation

Let us now consider a more complicated example taken from [1]: Euler equations. Prob-
lem description:

A thin tube is located at sea level, i.e, the surrounding atmosphere has a pressure of
p0 = 1 atm. The current temperature is T = 300 K. At time zero, the tube is opened at
one of its two ends. We wish to determine the pressure, velocity and density at various

45

Figure 32: Vibrating string equation: Comparison of errors for the second grid point
with 10 and 40 grid points

places inside the tube as functions of time.

The problem is described by the following system of PDEs:

∂ρ

∂t
= −v · ∂ρ

∂x
− ρ · ∂v

∂x
(150)

∂v

∂t
= −v · ∂v

∂x
− a

ρ
(151)

∂p

∂t
= −v · a− γ · p · ∂v

∂x
(152)

a =
∂p

∂x
+
∂q

∂x
+ f (153)

q =

{
β · δx2 · ρ · (∂v

∂x)2 if ∂v
∂x < 0.0

0.0 if ∂v
∂x ≥ 0.0

(154)

f =
α · ρ · v · |v|

δx
(155)

where

• ρ: gas density

46

• v: gas velocity

• p: gas pressure

• q: pseudo viscous pressure

• f: frictional resistance

• γ: ratio of specific heat constants (cp

cv
= 1.4)

• α, β: fudge factors

The initial conditions are

ρ(x, 0) = ρi (156)

v(x, 0) = 0.0 (157)

p(x, 0) = pi (158)

where ρi is determined by the equation of state for ideal gases:

ρi =
piMair

RT
(159)

where T = 300K, R = 8.314 J
Kmole and Mair = 28.96 g

mole .
and the boundary conditions are

v(0, t) = 0.0 (160)

ρ(1, t) = ρ0 (161)

 v(1, t) = −
√

2(p0−p(1,t))
ρ(1,t) , ifv(1, t) < 0.0

p(1, t) = p0, ifv(1, t) ≥ 0.0
(162)

Implementing this kind of boundary condition involve checking at each time the condition
v(1, t) < 0.0 and changing accordingly the boundary conditions. This would require
together for each boundary condition input in the integrator block, the boolean input,
that tells whether the condition is satisfied or not. Depending on this condition the
boundary condition input will receive either a value or the equation. For this reason we
will use, for simplicity, the boundary condition

p(1, t) = p0 (163)

The implementation of the Euler equations is shown in Figure 33. Here we used as initial
conditions

47

ρ0 = 1.0
v0 = 0.0
p0 = 1.0

and boundary conditions

ρ(xn, t) = 0.125
v(x1, t) = 0.0
p(xn, t) = 0.1

Figure 33: Shock wave equation in Modelica

The pseudo viscous pressure and the frictional resistance are implemented in v and f
blocks respectively (Figure 34 and 35) The viscosity together with the friction term are
integrated into the a block (Figure 36). The analytical solution to this problem does
not exist. In Figure 37 the numerical solution of the density, velocity and pressure in
the second and middle grid point, where 10 grid points were used, is shown.

48

Figure 34: Pseudo viscous pressure block

Figure 35: Frictional resistance block

49

Figure 36: a block

4.7.5 Diffusion Equation

We have already seen how to construct the diffusion equation in Modelica. In the fol-
lowing we will consider the diffusion equation with the initial condition

u(x, 0) = sin(πx) +
1
2
sin(3πx) (164)

and boundary conditions

u(x1, t) = 0.0 (165)

u(xn, t) = 0.0 (166)

The diffusion equation with this initial and boundary conditions has the analytical so-
lution

u(x, t) = e−(π
√

σ)2tsin(πx) +
1
2
e−(3π

√
σ)2tsin(3πx) (167)

In Figure 38 the numerical solution is compared with the analytical solution. The
parameter σ is set to 0.1.

50

Figure 37: Numerical solution for density, velocity and pressure to the second and middle
grid points (10 grid points were used)

4.7.6 Transmission Line Equation

Transmission line equation is a PDE

utt = c2uxx − hut − ku (168)

The name derives from the equation that describes the electric current along a wire

CLitt = ixx − (CR+GL)it −GRi (169)

where

• C = capacitance/unit length of wire

51

Figure 38: Numerical (blue) and analytical (red) solution of diffusion equation for the
second and middle grid points (40 grid points were used)

• L = self-inductance/unit length of wire

• R = resistance/unit length of wire

• G = leakage conductance/unit length of wire

• current along the wire

The Modelica implementation of the transmission line equation can be seen in Figure
39. As already seen for the wave equation, transmission line equation was converted into
two ODEs:

ut = v (170)

vt = c2uxx − hut − ku (171)

The following initial and boundary conditions were used

u(x, 0) = sin(πx) (172)

∂u

∂t
= 0 (173)

u(x1, t) = 0.0 (174)

u(xn, t) = 0.0 (175)

The analytical solution is not implemented. In Figure 40 the solution for the grid point
in the middle of the domain with 10 and 40 cells is shown.

52

Figure 39: Transmission line equation in Modelica

Figure 40: Transmission line equation: Solution for the grid point in the middle of the
domain with 10 (blue) and 40 (red) grid points.

53

4.7.7 Burger´s Equation

The Burger equation is a nonlinear PDE

ut + (
u2

2
)x = εuxx (176)

If we neglect the viscosity we obtain the inviscid form of the Burger equation

ut + (
u2

2
)x = 0 (177)

The complete problem together with initial and boundary conditions is

ut + (
u2

2
)x = 0 (178)

u(x, 0) = x
u(x1, t) = 0
u(xn, t) = 0

The analytical solution of this problem is

u(x, t) =
x

1 + t
(179)

The MOL implementation of the Burger equation is shown in Figure 41. In Figure 42

Figure 41: Burger´s equation in Modelica

the comparison of the analytical and numerical solution is shown. Already with 10 cells
we have satisfactory results. The biggest error is of order 10−4.

54

Figure 42: Burger´s equation: analytical vs numerical solution for second and sixth grid
points, together with their respective errors (10 grid points were used)

4.7.8 Buckley-Leverett Equation

Buckley-Leverett equation is a nonlinear PDE

ut + (
4u2

4u2 + (1− u)2
)x = 0 (180)

This equation can be found in PDE− > MOL− > Examples. In Figure 43 MOL
implementation of the Buckley-Lever equation is shown.

Figure 43: MOL implementation of the Buckley-Leverett equation

The initial condition used is
u(x, 0) = 1.0 (181)

55

and boundary conditions are
u(x1, t) = 0.0 (182)

u(xn, t) = 0.0 (183)

In Figure 44 we can see the solution of Buckley-Leverett equation for the second and
middle grid point respectively, where ten grid points were used.

Figure 44: Numerical solution of the Buckley Leverett equation for the first (left) and
middle (right) grid points (10 grid points were used)

4.7.9 Simple Supported Beam Equation

Simple supported beam PDE is an interesting problem because it involves the fourth
space derivative of the unknown function:

utt + uxxxx = 0 (184)

The initial conditions are

u(x, 0) = sin(πx) +
1
2
sin(3πx) (185)

ut(x, 0) = 0 (186)

and boundary conditions are
u(x1, t) = 0 (187)

uxx(x1, t) = 0 (188)

u(xn, t) = 0 (189)

uxx(xn, t) = 0 (190)

To solve the beam problem with the PDE Package, we must transform it in another

56

form. Through the variable transformation v = ut and w = uxx we reach the system of
equations:

vt = −wxx (191)

wt = vxx (192)

The complete problem is implemented in PDE →MOL→ Examples (Figure 45). The

Figure 45: MOL implementation of the simple supported beam problem in Modelica

analytical solution to this problem is also implemented and is

u(x, t) = cos(π2t)sin(πx) +
1
2
cos(9π2t)sin(3πx) (193)

The numerical solution for the first and middle grid points, with 10 and 60 grid points
respectively, can be seen in Figure 46. As can be seen, ten grid points give a very poor
approximation. To reach good approximations we need to partition the domain with at
least 60 grid points. However, small oscillations at the pics still remain. Higher order
discretization schemes, such as the fourth-order central difference approximation, do not
help.

57

Figure 46: Numerical versus analytical solution of the simple supported beam problem
for the second (left) and middle (right) grid points with 10 (above) and 60
(below) grid points

4.7.10 Poisson Equation

In the following we consider the problem

uxx = −sin(πx) (194)

u(x1) = 0 (195)

u(xn) = 0 (196)

This is the Poisson problem. Poisson problem is a time independent PDE, which means
that the solution to this problem does not change with time. For instance, the solution
to the above problem is

u(x) =
1
π2
sin(πx) (197)

Until now we considered only PDEs that are time dependent. But how can we implement
time independent PDEs such as the Poisson problem above? Is it possible still to use

58

the integrator block? The answer is yes, but we must transform our time independent
problem in a time dependent problem that reach with time a steady state corresponding
to the solution of the time independent problem. The time dependent version of the
problem above is

ut = uxx + sin(πx) (198)

u(x1, t) = 0 (199)

u(xn, t) = 0 (200)

and additionally we have now the initial condition

u(x, 0) = sin(3πx) (201)

This can be interpreted in the following way: we start with the function sin(3πx) that
reach with time the steady state 1

π2 sin(πx), that is the solution of the time independent
Poisson problem. The implementation of the problem above can be seen in Figure 47.
In Figure 48 the analytical and numerical solution of the Poisson problem is shown.

Figure 47: MOL implementation of the Poisson problem in Modelica

As expected, the time dependent Poisson solution approaches the solution of the time
independent Poisson problem. Poisson problem is the only time independent problem
implemented in the PDE package.

59

Figure 48: Numerical (blue) versus analytical (red) solution of the poisson problem for
the second (left) and middle (right) grid points (20 grid points were used

5 Adaptive Method of Lines

5.1 Introduction

In many practical problems we must refine the grid in order to achieve the required
accuracy. Unfortunately this has high storage and computation costs. Sometimes we
need the high accuracy only in regions of interest and it would be ideal to refine the grid
in this region of interest while keeping the grid size in other regions coarse. This is the
idea of adaptive grid refinement. Adaptive grids are often used in practice and give good
results. In Figure 49 we see an example of adaptive grid: Delaunay triangulation around
an airfoil. (The grid is finer near the airfoil because this is the region of interest). Many
grid generation algorithms exists, but most companies try to keep the secret of certain
algorithms for themselves. Nevertheless, there are open source projects, such as

www.openmesh.org
www.cgal.org

that allow to download software and documentation and encourage their further devel-
opment. In practice usually the Delaunay Triangulation is used to generate the grid. In
2D Delaunay Triangulation partitions the domain in triangles while in 3D in tethrae-
dras. When generating an adaptive grid, we need some criteria that tell us where the
grid must be refined. So, during the simulation time, these criteria must be checked,
and when satisfied, grid refinement must take place. In contrast, if the refined region is

60

Figure 49: 2D Delaunay Triangulation (picture from www.cerfacs.fr/mueller)

not interesting anymore, that is the refinement criteria are not satisfied, then we would
like to eliminate the refinement. This is an important point in adaptive grid refinement,
which tells us that the process is not static but dynamic: refinement is ”created” or
”eliminated” at simulation time. It remains now the question of which criteria must be
satisfied. In the following we shall describe the process in 1D. Mack Hyman proposed
in [10] the following approach: we operate on a fixed grid but we pay attention that the
following criteria are satisfied at all times:

δxi(t) · |
∂u

∂x
(xi, t)| ≤ kmax (202)

This suggests that we must decrease δxi(t) if at time t the absolute spatial gradient
at point xi is big enough so that the criteria 202 are not satisfied anymore. We do
that by introducing a new grid point between two existing grid points and initializing
its value (initial condition) by using spatial interpolation. The process is illustrated in
Figure 50. Note that by introducing a new grid point, we introduce a new differential
equation for this point and by eliminating a grid point we eliminate the differential
equation associated with this point. The generation/elimination of the auxiliary grid
points happens during simulation time and is fully transparent to the user. At the end
of the simulation only the solution for the grid points that the user specified in the
beginning of the simulation is given.

61

Figure 50: Grid refinement: the auxiliary points (in red) are created. The arrows shows
the grid points used for interpolation

5.2 Implementation

As already said, the nature of the adaptive grid refinement algorithms require that
the auxiliary points are created/removed dynamically at run time. This creates a big
problem in Dymola because it is not allowed to create/destroy instances at run time in
Dymola. To overcome this problem, we can try the following ways:

1. Declare an array with known size (as a parameter variable in Modelica), so that
the user can modify the size of the array at the beginning of each simulation.
Problem: the user doesn´t know how many auxiliary points would be necessary
for the simulation. It is possible to declare a big array in order to be sure that
there is enough space for auxiliary points, but this requires high storage.

2. Write an external function that solves the problem of creating the auxiliary points
and computing their solutions. Problem: external help is needed.

Although the second idea solves the problem of adaptivity, the process doesn´t happen
in Dymola. It is as trying to ask somebody else for help. For this reason the adaptive
grid refinement wasn´t implemented at all in this thesis. Yet future research projects
will hopefully solve this problem in Dymola and maybe in the future it will be possible
to implement adaptive grid refinement directly in Dymola, without the need of external
help.

62

6 Finite Volume Method

6.1 Introduction

In one dimension, the finite volume method consists in subdividing the spatial domain
into intervals, ”finite volumes” (or cells), and approximate the integral of the function
q over each of these volumes at each time step [2]. Denote the i-th finite volume by

Ci = (xi−1/2, xi+1/2) (203)

Then the approximation to the average of q in the cell Ci at time t, which we denote
with Qt

i, is

Qt
i ≈

1
4x

∫
Ci

q(x, t)dx (204)

Remains the question of how to find this approximation. If we think about the conser-
vation law, we note that the average within the cell can only change due to the fluxes at
the boundaries (if we assume that no source or sink is present in the cell). The integral
form of the conservation law is

d

dt

∫
Ci

q(x, t)dx = f(q(xi−1/2, t))− f(q(xi+1/2), t) (205)

If we integrate this expression in time from t to t+ ∆t, we obtain∫
Ci

q(x, t+ ∆t)dx−
∫

Ci

q(x, t)dx =
∫ t+∆t

t
f(q(xi−1/2, t))dt−

∫ t+∆t

t
f(q(xi+1/2), t)dt

(206)

and dividing by ∆x we reach the form

1
∆x

∫
Ci

q(x, t+∆t)dx =
1

∆x

∫
Ci

q(x, t)dx− 1
∆x

(
∫ t+∆t

t
f(q(xi+1/2, t))dt−

∫ t+∆t

t
f(q(xi−1/2, t))dt)

(207)

which gives us an explicit time marching algorithm. This is more clearly seen if we
rewrite the expression using the notation we introduced above:

Qt+∆t
i = Qt

i −
∆t
∆x

(F t
i+1/2 − F t

i−1/2) (208)

where F t
i−1/2 approximates the average flux along the interface xi−1/2:

F t
i−1/2 ≈

1
∆t

∫ t+∆t

t
f(q(xi−1/2, t))dt (209)

63

As can be seen from the equation 208, in order to find the average at the next time step
we need to find the fluxes at the interfaces. The flux at the interface xi−1/2 for example,
depends on q(xi−1/2, t), which changes with time along the interface and for which we do
not know the analytical solution. For this reason we need to find some approximation
to these fluxes in order to calculate the averages at the next time step. Let us now see
some simple flux approximations.

Advection Equation
Consider the advection equation qt + ūqx = 0, where ū is the fluid velocity. We have
seen in the previous chapters, that the flux of the contaminant at some point x, at some
time t, could be written as ūq(x, t). Consider now the flux through the interface xi−1/2.
If ū > 0 then the flux will be ūQi−1, otherwise, if ū < 0, the flux will be ūQi. Inserting
it into the average update rule, we obtain the finite volume method for the advection
equation:

Qt+∆t
i = Qt

i −
ū∆t
∆x

(Qt
i −Qt

i−1) (210)

if ū > 0, and

Qt+∆t
i = Qt

i −
ū∆t
∆x

(Qt
i+1 −Qt

i) (211)

if ū < 0.

Diffusion Equation
In the advection equation, the flux depends on q: f(q) = uq. The flux in the diffusion
equation depends on the derivative of q:

f(qx) = −βqx (212)

where β is the conductivity. If β is space dependent then the flux will depend on space
too (f(x, qx) = −β(x)qx). In the following we will assume for simplicity that β is con-
stant.
Now remains the question of how to approximate numerically the diffusion flux. One
possibility might be:

??Fi−1/2 = −β(
Qi −Qi−1

∆x
) (213)

By inserting this flux approximation into the average update rule 208, we obtain:

Qt+∆t
i = Qt

i +
∆t
∆x2

β(Qt
i−1 − 2Qt

i +Qt
i+1) (214)

It is interesting to note, that after some algebraic manipulations, we can write the aver-
age update rule in the form

64

Qt+∆t
i −Qt

i

∆t
= − 1

∆x
(F t

i+1/2 − F t
i−1/2) (215)

which is equivalent to the finite difference discretization of the conservation law equa-
tion qt + f(q)x = 0. As said in [2]: Many methods can be equally well viewed as finite
difference approximations to this equation or as finite volume methods.
Another form of the average update rule is

d

dt
Qi = − 1

∆x
(F t

i+1/2 − F t
i−1/2) (216)

which gives us an ODE for each average cell. This form is more suitable for the imple-
mentation in Dymola, and all Finite Volume Method blocks are based on this form of
update rule.

6.2 Unstable Method

The unstable flux just takes the arithmetic average of the fluxes based on either side of
the interface xi−1/2:

F t
i−1/2 =

1
2
(f(Qt

i−1) + f(Qt
i)) (217)

By using this flux, the average update rule becomes:

Qt+∆t
i = Qt

i −
∆t

2∆x
(f(Qt

i+1)− f(Qt
i−1)) (218)

This method is generally unstable.

6.3 Lax-Friedrichs Method

The Lax-Friedrichs flux is defined as:

F t
i−1/2 =

1
2
(f(Qt

i−1) + f(Qt
i))−

∆t
2∆x

(Qt
i −Qt

i−1) (219)

inserting it into the average update rule, we obtain the Lax-Friedrichs method:

Qt+∆t
i =

1
2
(Qt

i−1 +Qt
i+1)−

∆t
2∆x

(f(Qt
i+1)− f(Qt

i−1)) (220)

If we take a closer look at the Lax-Friedrichs flux, we notice that it is similar to the

65

unstable flux, but with the addition of some correction term. This correction term looks
like the diffusion flux ?? with

β =
(∆x)2

2∆t
(221)

The Lax-Friedrichs flux can thus be interpreted as the unstable flux plus a numerical
diffusion. This numerical diffusion dampens the instabilities that arise in the unstable
method, however, it dampens it too much. Later we will see another method, the Lax-
Wendroff method, that adds less diffusion.

6.4 Implementation

The finite volume method in its general form is implemented in the ”FVMIntegrator”
block (Figure 51). In Figure 52 the principal code of this block is shown: The treatment

Figure 51: FVM integrator block

of boundary conditions (at the beginning of the code) will be explained later. For now,
the important thing to say is that each entry i of the array q is the i-th average. The
parameters vb and ve, as well as icb and ice are specified by the user.

6.5 System of Equations

Until now we have seen how to solve one equation with the finite volume method. Many
interesting problems in practice are described as a system of equations. The Euler sys-
tem of equations that we described in the previous Chapter is an example of such a
system:

66

Figure 52: FVM integrator code


ρt + (ρv)x = 0
(ρv)t + (ρv2 + p)x = 0
Et + ((E + p)v)x = 0

(222)

The Euler system is a nonlinear hyperbolic system. There are other systems that are
much simpler. We can have for example a system with linear constant coefficients. An
example of such a system are the acustics equations:{

pt +K0vx = 0
vt + px

ρ0
= 0 (223)

where p is the pressure, v the velocity and K0, ρ0 are constant values.
Consider in general a system of the form

qt +Aqx = 0 (224)

where A is an m × m matrix. Such a system is called hyperbolic if the matrix A is
diagonalizable and has real eigenvalues.
For example in the acoustics system considered above we have

A =

(
0 K0
1
ρ0

0

)
(225)

67

The matrix A is diagonalizable and has real eigenvalues

λ1 = −c0 (226)

λ2 = c0 (227)

where c0 =
√

K0
ρ0

is the speed of sound in the gas.
In the following we will study hyperbolic system of equations. The remarkable property
of the hyperbolic system is that we can rewrite it in a way which is simpler to solve.
If a system is hyperbolic then we can rewrite it as

qt +Aqx = 0 (228)

qt +RΛR−1qx = 0 (229)

R−1qt + ΛR−1qx = 0 (230)

With a simple variable transformation

w = R−1q (231)

the system can be rewritten now as

wt + Λwx = 0 (232)

where Λ is the eigenvalue matrix.
This is a very important fact, because now from a coupled system 224 we obtained,
through variable transformation, a decoupled system 232. Moreover, the individual
equations of the new system are advection equations! Because we now have a system of
decoupled equations, we can solve each equation separately

wi
t + Λwi

x i = 1, ...,m (233)

and combine the solutions wi(x, t) into a vector w(x, t). The solution to the i-th advec-
tion equation is, as already seen in Chapter 4,

wi(x, t) = wi(x− λit, 0) (234)

Finally, we obtain, through the variable transformation

q(x, t) = Rw(x, t) (235)

68

the solution q(x, t). If we write the solution q(x, t) in the form

q(x, t) = Rw(x, t) =


r11 . . . rm

1
...

. . .
...

r1m
... rm

m


 w1(x, t)

...
wm(x, t)

 = (236)

 r11w
1(x, t)+ . . . +rm

1 w
m(x, t)

...
. . .

...
rm
1 w

1(x, t)+ . . . +rm
mw

m(x, t)

 =

 r11
...
r1m

 · w1(x, t) +

 rm
1
...
rm
m

 · wm(x, t) =
m∑

i=1

wi(x, t)ri

we see that the solution q(x, t) can be expressed as the linear combination of the right
eigenvectors r1, ..., rm at each point in space-time, and hence as a superposition of waves
propagating at velocities λi [2].

6.6 The Riemann Problem

Consider the piecewise constant data with a single jump discontinuity:

q(x) =

{
ql if x < 0
qr if x > 0

(237)

The Riemann problem consists of this data as initial data, plus a hyperbolic equation.
Example: Let us take the scalar advection equation

qt + uqx = 0 (238)

For this example, the Riemann problem is this equation together with the discontinuity
237. The solution is the discontinuity qr − ql that propagates along the characteristic
with the speed u, that is:

q(x, t) = q0(x− ut) (239)

The same reasoning applies to the system of equations. Let us decompose the ql and qr as:

ql =
m∑

i=1

wi
lr

i (240)

69

qr =
m∑

i=1

wi
rr

i (241)

With this decomposition we have for the i-th advection equation:

wi
0 =

{
wi

l , if x < 0
wi

r, if x > 0
(242)

and this jump propagates with speed λi. The solution is thus

wi(x, t) =

{
wi

l , if x− λit < 0
wi

r, if x− λit > 0
(243)

If we let P(x, t) be the maximum value of i for which x− λit > 0 then [2]

q(x, t) =
P (x,t)∑
i=1

wi
r(x, t)r

i +
m∑

i=P (x,t)+1

wi
l(x, t)r

i (244)

Consider the example of Figure 53 in which w1 = w1
r and w2 = w2

l . The solution at the
point (xp, tp) is then

q(xp, tp) = w1
rr

1 + w2
l r

2 (245)

Figure 53: Riemann problem at (xp, tp)

The different regions are colored with different colors. The value of q in each region is
constant, but as we cross the i-th characteristic, we have a jump from wi

l to wi
r.

70

Since

qr − ql =
m∑

i=1

wi
rr

i −
m∑

i=1

wi
lr

i =
m∑

i=1

(wi
r − wi

l)r
i (246)

we see that across the i-th characteristic the solution jumps with the jump in q given by

(wi
r − wi

l)r
i ≡ αiri (247)

and this tell us that the jump in q is an eigenvector of the matrix A. This condition is
called the Rankine-Hugoniot jump condition.
As said in [2]: For the case of a linear system, solving the Riemann problem consists
of taking the initial data (ql, qr) and decomposing the jump qr−ql into eigenvectors of A:

qr − ql = α1r1 + ...+ αmrm (248)

This requires solving the linear system of equations

Rα = qr − ql (249)

for the vector α.
Since αiri is the jump in q across the i-th wave in the solution to the Riemann problem,
we introduce the notation

W i = αiri (250)

for these waves. The solution q(x, t) can then be written in terms of waves in two
different forms:

q(x, t) = ql +
∑

i:λi<x/t

W i = qr −
∑

i:λi≥x/t

W i (251)

Let us look at an example. Figure 55 and 54 illustrates an example with three charac-
teristics that part at the origin with λ1 < 0 and λ2 > 0, λ3 > 0. Consider the point
(xp, tp) as illustrated in the figure. What is q(xp, tp)? We can answer this question in
two ways:

• The value of q(xp, tp) is ql plus all the jumps that are on the way from ql (yellow
region) to q(xp, tp) (Figure 54).

• The value of q(xp, tp) is qr minus all the jumps that are on the way from qr (blue
region) to q(xp, tp) (Figure 55).

71

Figure 54: From ql to q(xp, yp)

Figure 55: From qr to q(xp, yp)

72

Example (taken from [2]): Coupled acoustics and advection

 p
v
φ


t

=

 v0 k0 0
1
ρ0

v0 0
0 0 v0


 p
v
φ


x

(252)

The matrix A has eigenvalues

λ1 = v0 − c0 (253)

λ2 = v0 (254)

λ3 = v0 + c0 (255)

and eigenvectors

r1 =

 −Z0

1
0

 , r2 =

 0
0
1

 , r3 =

 Z0

1
0

 (256)

To find the solution to the Riemann problem we must thus solve

 pr − pl

vr − vl

φr − φl

 = α1

 −Z0

1
0

+ α2

 0
0
1

+ α3

 Z0

1
0

 (257)

By solving this system we find

α1 =
1

2Z0
(−(pr − pl) + Z0(vr − vl)) (258)

α2 = φr − φl (259)

α3 =
1

2Z0
((pr − pl) + Z0(vr − vl)) (260)

So far we have seen what influence the initial data has at some point x0 on the solution
q(x, t). At any particular time, the data at this point will affect the solution along the
characteristics at some set of points (Figure 56). This set of points is called the range
of influence of the point x0 [2]. Consider now the inverse problem: we have a point
(xp, tp) and we are interested in which initial values influence the value of q at this point
(Figure 57). In the figure we see that three points influence the point value at the point
(xp, tp). This can be seen algebraically too, if we write q(x, t) in terms of the initial data.
This set of points is called domain of dependence of the point (xp, tp) [2]. The initial
values at other points have no influence on the value at the point (xp, tp). In general,
for hyperbolic equations, the domain of dependence is always a bounded set.

73

Figure 56: Range of influence

Figure 57: Domain of influence

74

6.7 Godunov´s Method for Linear Systems

Until now we discussed how to approximate fluxes at the interfaces. But how does
the entire process work? The answer to this question is the reconstruct-evolve-average
(REA) algorithm. At each time step, we repeat the following process [2]:

Reconstruct-Evolve-Average Algorithm

1. Reconstruct a piecewise polynomial function q̃t(x, t) defined for all x, from the cell
averages Qt

i.

2. Evolve the hyperbolic equation exactly (or approximately) with this data to obtain
q̃t(x, t+ ∆t) a time ∆t later.

3. Average this function over each grid cell to obtain new cell averages

Qt+∆t
i =

1
∆x

∫
Ci

q̃t(x, t+ ∆t)dx (261)

Until now we have seen the simplest case, in which the average is constant across the
cell. Other approximations are often used in practice, such as the linear approximation
(see Flux Limiter Chapter). In this thesis we will use additionally another average re-
construction scheme, the local double logarithmic reconstruction. We shall start in the
following with the constant reconstruction.
If we take as q̃t(x, t) a piecewise constant function, we can use the Riemann problem
theory seen so far in order to solve the hyperbolic equation in step 2 of the REA algo-
rithm.
For this purpose, we need to determine the flux at the boundaries. Remember from
section 6.1 that the numerical flux F t

i−1/2 approximates the time average of the flux at
xi−1/2 over the time step ∆t.

F t
i−1/2 ≈

1
∆t

∫ t+∆t

t
f(q(xi−1/2, t))dt (262)

The density q(xi−1/2, t) in general varies in time and we do not know this variation of
the exact solution [2]. If we choose constant piecewise reconstruction as q̃t(x, t) in the
REA algorithm, however, we can compute then this integral exactly. For better under-
standing, consider the Riemann problem centered at xi−1/2 in the case of the example
shown in Figure 58.
Because the interface xi−1/2 is situated in a region between the characteristics and we
know that q(x, t) is constant in each region between characteristics, then consequently
q̃t(x, t) is constant at the interface xi−1/2 over the time interval (t, t+ ∆t). If we denote

75

Figure 58: Godunov

this value by q↓(Qt
i−1, Q

t
i) we can write the numerical flux F t

i−1/2 as

F t
i−1/2 =

1
∆t

∫ t+∆t

t
f(q↓(Qt

i−1, Q
t
i))dt =

1
∆t

f(q↓(Qt
i−1, Q

t
i))
∫ t+∆t

t
dt = (263)

1
∆t

f(q↓(Qt
i−1, Q

t
i))∆t = f(q↓(Qt

i−1, Q
t
i))

The Godunov method becomes then [2]

• Solve the Riemann problem at xi−1/2 to obtain q↓(Qt
i−1, Q

t
i)

• Define the flux F t
i−1/2 = f(q↓(Qt

i−1, Q
t
i))

• Apply the average update rule Qt+∆t
i = Qt

i − ∆t
∆x(Fi+1/2 − Fi−1/2)

We will now look in detail how to develop formulas for Godunov´s method on linear sys-
tems of equations. For this purpose consider the example in Figure 59. In this example
we have two waves, one propagating with the velocity λ1 < 0 and one with the velocity
λ2 > 0. By using the notation introduced above, we can write the jump in q given by
each wave as

W 1
i−1/2 = α1

i−1/2r
1 (264)

W 2
i−1/2 = α2

i−1/2r
2 (265)

As can be seen from the figure, only the right-going wave from xi−1/2 interface and the

76

Figure 59: Waves

left-going wave from xi+1/2 interface affect the cell average Qi. After time step ∆t the
W 1 wave has moved a distance λ1∆t or a portion λ1∆t

∆x of the cell and W 2 a distance
λ2∆t or a portion λ2∆t

∆x of the cell.
The W 1 wave changes thus the cell average value by the amount

−λ
1∆t
∆x

W 1
i−1/2 (266)

and the wave W 2 by

−λ
2∆t
∆x

W 2
i+1/2 (267)

The process is visualized in Figure 60, where we took a positive velocity u. The total
change in the cell average is just the sum of these independent changes contributed by
each wave.

Qt+∆t
i = Qt

i −
λ1∆t
∆x

W 1
i−1/2 −

λ2∆t
∆x

W 2
i+1/2 = (268)

Qt
i −

∆t
∆x

(λ1W 1
i−1/2 + λ2W 2

i+1/2)

This can be generalized to arbitrary hyperbolic systems of m equations. If we introduce
the notation

λ− = min(λ, 0) (269)

λ+ = max(λ, 0) (270)

we can write 268 as

77

Figure 60: Waves

Qt+∆t
i = Qt

i −
∆t
∆x

(
m∑

j=1

(λj)+W j
i−1/2 +

m∑
j=1

(λj)−W j
i+1/2) (271)

Only the right-going waves from the xi−1/2 interface and the left-going waves from the
xi+1/2 interface affect the cell average Qi. We introduce the symbols:

A−∆Qi−1/2 =
m∑

j=1

(λj)−W j
i−1/2 (272)

A+∆Qi−1/2 =
m∑

j=1

(λj)+W j
i−1/2 (273)

In this way we can rewrite 271 as

Qt+∆t
i = Qt

i −
∆t
∆x

(A+∆Qi−1/2 +A−∆Qi+1/2) (274)

The symbols A+∆Qi−1/2 and A−∆Qi−1/2 should be interpreted as the net effect of all
right-going waves, respectively left-going waves, from the interface xi−1/2.
Define now the matrices

78

Λ+ =


(λ1)+ 0 . . . 0

0 (λ2)+
...

.
...

0 . . . 0 (λm)+

 , Λ− =


(λ1)− 0 . . . 0

0 (λ2)−
...

.
...

0 . . . 0 (λm)−

 (275)

and

A+ = RΛ+R−1 (276)

A− = RΛ−R−1 (277)

we find that

A+ +A− = R(Λ+ + Λ−)R−1 = RΛR−1 = A (278)

Thus we can split the matrix A in A+ + A−. Why is it useful? To answer the question
we go now further and do the following:

A+∆Qi−1/2 = RΛ+R−1(Qi −Qi−1) = RΛ+αi−1/2 =
m∑

j=1

(λj)+αj
i−1/2r

j = N+∆Qi−1/2

(279)

In the same manner we find that

A−∆Qi−1/2 = N−∆Qi−1/2 (280)

What does it tell us? It states that for the linear constant-coefficient hyperbolic system,
the net effect of all right going waves from the interface xi−1/2 can be calculated by
simply multiplying the matrix A+ by the jump in Q. Similarly, we can find the net
effect of all left-going waves from the interface xi−1/2 by multiplying the matrix A− by
the jump in Q.
Let us now look at the numerical flux function. We know that the value of q in the
Riemann solution along the interface xi−1/2 is

Q↓i−1/2 = q↓(Qi−1, Qi) = Qi−1 +
∑

j:λj<0

W j
i−1/2 (281)

Because in the linear case f(Q↓i−1/2) = AQ↓i−1/2, we have

F t
i−1/2 = AQi−1 +

∑
j:λj<0

AW j
i−1/2 = AQi−1 +

m∑
j=1

(λj)−W j
i−1/2 (282)

79

Proceeding the same way we find F t
i+1/2 and inserting both in the average update rule

we obtain

Qt+∆t
i = Qt

i −
∆t
∆x

(F t
i+1/2 − F t

i−1/2) = (283)

Qt
i −

∆t
∆x

(
m∑

j=1

(λj)−W j
i+1/2 −

m∑
j=1

(λj)+W j
i−1/2)

Note that if we use A = A+ +A− in

F t
i−1/2 = AQi−1 +

∑
j:λj<0

AW j
i−1/2 = AQi−1 +

m∑
j=1

(λj)−W j
i−1/2 (284)

we obtain

F t
i−1/2 = A+Qi−1 +A−Qi (285)

This shows us the important difference between taking the average of AQi−1and AQi as
in the unstable method and the average in which we take the part of AQi−1 correspond-
ing to right-going waves and combine it with the part of AQi corresponding to left-going
waves in order to obtain the flux in between [2].

6.8 Boundary Conditions

In our derivation of the cell average update rule we used information from the neighbor-
ing cells. In the upwind method, we need the information from the cells Qi and Qi−1 if
the velocity is positive and we need cells Qi and Qi+1 if the velocity is negative. So if our
domain consists of n cells Q1, ..., Qn, then to update the first average cell for example
we would need information from the previous cell if the velocity is positive. But there
is no previous cell. We do not have information outside the domain. So to complete
the problem, we need this information at the boundary of the domain, the boundary
conditions. In the Method of line chapter we used special formulas or assigned values
for the cells at the boundaries, that is, we treated them in a special way. Finite Volume
Method follows another philosophy: extend the domain with additional cells, the ghost
cells (Figure 61). As the name already suggests, ghost cells are not part of the domain,
they are only used to provide necessary information for the computation of the bound-
ary cells. By introducing ghost cells, we do not have to write special formulas for the
boundary cells, we just use the same formula for all cells in the domain. At the start
of each time step we have the average values for the cells in the domain obtained either
from the previous time step or from the initial condition if t = 0 and we fill the ghost
cells with the boundary values before applying the method on the next time step. What

80

Figure 61: Boundary conditions: ghost cells and domain cells

kind of boundary values can we have? In the following we will consider some of the most
used boundary conditions.

6.8.1 Periodic Boundary Conditions

Assume that we are using a 3-point stencil method. In this case we only need one ghost
cell at each end of the boundary. Periodic boundary conditions set the value of the left
ghost cell to the value of the last domain cell and the value of the right ghost cell to the
value of the first domain cell (Figure 62).

Figure 62: Periodic boundary conditions

In this way what leaves the domain at the right, enters the domain from the left. The
same for the other direction. The same reasoning applies to the higher order stencil
method.

6.8.2 Inflow and Outflow Boundary Conditions

In the following we will analyze the inflow and outflow boundary conditions by taking as
an example the advection equation. This is a reasonable choice since as already seen, a
linear constant-coefficient hyperbolic system can be transformed into a decoupled system
of advection equations. We will begin with the outflow boundary condition. In practice
usually the domain cells are used to assign the boundary condition. The simplest way
is to extrapolate by a constant function, a ”zero-order” extrapolation:

81

Qt
N+1 = Qt

N (286)

Qt
N+2 = Qt

N (287)

The ”zero-order” extrapolation works well in practice and is preferred to ”first-order”
extrapolation, where a linear function is used, which can lead to instabilities.
Let us now discuss the inflow boundary condition. For this purpose we consider the
advection equation with the positive velocity. Say, that we have at the left boundary a
boundary condition that changes with time:

q(a, t) = g0(t) (288)

How can we compute the flux at the boundary x1/2? One possibility would be to com-
pute it exactly by using the formula for the flux:

F t
1/2 =

1
∆t

∫ t+∆t

t
f(q(x1/2, t))dt (289)

Since f(q(x, t)) for the advection equation is vq(x, t), we have

F t
1/2 =

1
∆t

∫ t+∆t

t
vq(a, t)dt =

v

∆t

∫ t+∆t

t
g0(t)dt (290)

Now that we have the flux at the interface x1/2 we can use the average update rule.
What if we have more than one ghost cell at the left side of the domain? We would need
the flux at the interface x−3/2 too. At a first glance it seems impossible to compute this
value, because the solution is not defined outside the domain. But if we consider the
fact that we have some function that enters the domain and is simply advected, then
we could use this information to find out the value of the function outside the domain.
Consider an x in the interval [a − ∆x, a]. Because we are dealing with the advection
equation, the value of q(x, t) at the point x is

q(x, t) = q(a, t+
a− x

v
) = g0(t+

a− x

v
) (291)

and the average Qt
0 can then be computed as

Qt
0 =

1
∆x

∫ a

a−∆x
g0(t+

a− x

v
)dx =

v

∆x

∫ t+∆x
v

t
g0(τ)dτ (292)

Now we have enough information to pass to the system of equations. Let us take as an
example, the acoustic system

pt + k0vx = 0 (293)

82

ρ0vt + px = 0 (294)

This system has the characteristic variables:

w1(x, t) =
1

2Z0
(−p+ Z0v) (295)

w2(x, t) =
1

2Z0
(p+ Z0v) (296)

where Z0 is a constant value (impedance). The problem that we encounter here is that
the acoustic system has both negative and positive eigenvalues. This means that each
boundary will have both incoming and outgoing characteristics. How can we set the
boundary conditions in this case? Well, in the ideal case we would wish that waves that
leave the domain, do not influence waves that enter the domain. This way we avoid
back propagation of the spurious reflections into the domain. Boundary conditions that
achieve this task are called absorbing boundary conditions.
It turns out that we can implement absorbing boundary conditions by just using the
zero-order extrapolation, that is by setting

Qt
0 = Qt

1 (297)

Qt
−1 = Qt

1 (298)

Other boundary conditions that we could have are the incoming waves. In our example,
say that we have some incoming signal that varies with time:

w2(a, t) = g(t) (299)

and we set nonreflection boundary conditions, that is no reflection of any outgoing sig-
nal. In the acoustics example the incoming signal comes from the second characteristic
variable. By decomposing the average cell value Q1 into

Q1 = W 1
1 r1 +W 2

2 r2 (300)

and using w2(a, t) = g(t) we have that the incoming wave at the interface x1/2 is g(t)r2

and by using the property of the advection equation we obtain for the average Q0:

Q0 = W 1
1 r1 + g(t+

∆x
2c0

)r2 (301)

83

6.9 High Resolution Methods

Consider the linear constant-coefficient system qt + Aqx = 0. If we expand q(x, t+ ∆t)
in a Taylor series, we obtain:

q(x, t+ ∆t) = q(x, t) +4tqt(x, t) +
1
2
(4t)2qtt(x, t) + ... (302)

From the equation qt +Aqx = 0 we know that

qt = −Aqx (303)

and differentiating qt with respect to time, we also find

qtt = (−Aqx)t = (−Aqt)x = (−A(−Aqx))x = A2qxx (304)

Inserting now qt and qtt in the Taylor expansion gives

q(x, t+ ∆t) = q(x, t)−4tAqx(x, t) +
1
2
(4t)2A2qxx(x, t) + ... (305)

If we truncate the series from the fourth term and substitute the spatial derivatives
with the central difference scheme, we obtain a second order accurate method, called the
Lax-Wendroff method:

Qt+1
i = Qt

i −
4t

24x
A(Qt

i+1 −Qt
i−1) +

1
2
4t
4x

2

A2(Qt
i−1 − 2Qt

i +Qt
i+1) (306)

Although we used a finite difference method to derive the Lax-Wendroff method, we can
rewrite it in the flux-differencing form with the flux

F t
i−1/2 =

1
2
A(Qt

i−1 +Qt
i)−

1
2
4t
4x

A2(Qt
i −Qt

i−1) (307)

This looks like the unstable flux plus a diffusive flux, like in the Lax-Friedrichs flux,
but this time the diffusion chosen exactly matches what appears in the Taylor series
expansion [2].
Lax-Wendroff approximates well the smooth functions, but not the discontinuous ones.
In fact, the Lax-Wendroff Method leads to an oscillatory solution near the discontinu-
ities. This can be explained if we consider again the Taylor series expansion. Because
we truncated the expansion from the fourth term, the dominant error results from the
fourth term:

qttt = −A3qxxx (308)

84

which is the dispersive term that causes the oscillations.

6.10 Piecewise Linear Reconstruction

Until now we have reconstructed a piecewise constant function from the cell averages.
By applying the REA algorithm with this reconstruction we derived the upwind method.
This approach is, however, first-order accurate. In order to achieve better accuracy we
must use another reconstruction. In the following we will explain the piecewise linear
reconstruction.
Given the cell averages Qi at some time t, we can use these averages to construct a
piecewise linear function

q̃t(x, t) = Qt
i + σt

i(x− xi) (309)

where xi−1/2 ≤ x < xi+1/2, xi is the center of the grid cell and σi is the slope on the
i-th cell (Figure 63). It is important to note that over the cell Ci the value of q̃t(x, t) is

Figure 63: Linear reconstruction

Qi. Once we have the reconstruction, it remains to solve the hyperbolic equation with
this reconstruction and to compute the new cell averages. In the following we consider
the scalar advection equation in which the velocity is positive, v > 0. In this case we have

q̃t(x, t+ ∆t) = q̃t(x− v∆t, t) (310)

And the new cell averages can be computed in the following way

85

Qt+∆t
i =

v∆t
∆x

(Qt
i−1 +

1
2
(∆x− v∆t)σt

i−1) + (1− v∆t
∆x

)(Qt
i −

1
2
v∆tσt

i) = (311)

Qt
i −

v∆t
∆x

(Qt
i −Qt

i−1)−
1
2
v∆t
∆x

(∆x− v∆t)(σt
i − σt

i−1)

To understand this equation, consider Figure 64.

Figure 64: Linear cell average reconstruction

The new cell average, Qt+∆t
i , is the sum of the two parallelepipeds QI and QII

Qt+∆t
i =

QI +QII

∆x
(312)

QI =
((Qt

i−1 + σi−1(1
2∆x)) + (Qt

i−1 + σi−1(1
2∆x+ v∆t)))v∆t

2
= (313)

(Qt
i−1 + (

1
2
(∆x+ v∆t))σi−1)v∆t

QII =
((Qt

i + σi(−1
2∆x)) + (Qt

i + σi(1
2∆x− v∆t)))(∆x− v∆t)

2
= (314)

(Qt
i −

1
2
v∆tσi)(∆x− v∆t)

and thus

Qt+∆t
i =

v∆t
∆x

(Qt
i−1 +

1
2
(∆x− v∆t)σt

i−1) + (1− v∆t
∆x

)(Qt
i −

1
2
v∆tσt

i) (315)

We have seen how to compute the new cell averages, but what about the new slopes

86

σt+∆t
i ? How can we compute them? The simplest choice would be to set σt+∆t

i to zero,
which would lead us to Godunov´s method seen in the previous chapters. Thus this
choice would give us first-order accuracy. To achieve second-order accuracy we choose
the nonzero slopes such that they approximate the derivative over the i-th grid cell.

σt
i =



Qt
i+1−Qt

i−1

2∆x Fromm

Qt
i−Qt

i−1

∆x Beam−Warming

Qt
i+1−Qt

i

∆x Lax-Wendroff

(316)

The cell average update rules that result from the application of these slopes are

Fromm´s Method

Qt+∆t
i = Qt

i −
1
4
v∆t
∆x

(Qt
i+1 + 3Qt

i − 5Qt
i−1 +Qt

i−2)−
1
4
(
v∆t
∆x

)2(Qt
i+1 −Qt

i −Qt
i−1 +Qt

i−2)

(317)

Beam-Warming Method

Qt+∆t
i = Qt

i −
1
2
v∆t
∆x

(3Qt
i − 4Qt

i−1 +Qt
i−2) +

1
2
(
v∆t
∆x

)2(Qt
i − 2Qt

i−1 +Qt
i−2) (318)

Lax-Wendroff Method

Qt+∆t
i = Qt

i −
1
2
v∆t
∆x

(Qt
i+1 −Qt

i−1) +
1
2
(
v∆t
∆x

)2(Qt
i−1 − 2Qt

i +Qt
i+1) (319)

Although more accurate, the second-order approximations create oscillations near the
discontinuities.
To understand this better, let us consider the following example (Figure 65). If we ap-
ply Lax-Wendroff to choose the slopes on this data, then we obtain the piecewise linear
function in Figure 66. The situation in the next time step is illustrated in Figure 67. As
can be seen, the oscillations are created near the region of the discontinuity.
This observation shows that the slopes proposed above give second-order accuracy for
the smooth data, but create oscillations near the discontinuities. We could avoid this
problem if we set the slope to zero in the above example, but this will take us back
to the first-order accuracy. We are now in front of a dilemma: we want second-order
accuracy for the smooth data and we do not want oscillations near discontinuities that
the second-order accuracy methods create. A solution could be to apply methods like
Lax-Wendroff and Beam-Warming in regions where the solution is smooth and limit the

87

Figure 65: Initial data

Figure 66: Lax-Wendroff applied to the initial data

Figure 67: Lax-Wendroff: situation at the next time step

88

slope in regions where we have the discontinuities in order to avoid oscillations. Methods
that incorporate this ideas are called ”slope limiters”, because they limit the slope. Re-
mains the question of how much to limit the slope. This leads us to the ”total variation”
concept, which we will not develop further. To summarize it shortly, the total variation
measures oscillations in the solution. For the grid function, it is

+∞∑
i=−∞

|Qi −Qi−1| (320)

It turns out that the REA algorithm does not increase the total variation, provided that
the first step of the algorithm, the reconstruction step, does not increase it. This is be-
cause the evolving and averaging steps do not increase the total variation. Thus we can
focus our attention on the reconstruction step. One of the slope-limiter methods that is
second-order accurate for smooth functions and does not increase the total variation is
the ”minmod slope”:

σt
i = minmod(

Qt
i −Qt

i−1

∆x
,
Qt

i+1 −Qt
i

∆x
) (321)

where the minmod function is defined as

minmod(x, y) =


x if |x| < |y| and xy > 0
y if |x| > |y| and xy > 0
0 if xy ≤ 0

(322)

Although the minmod slope method gives us what we desire, it limits the slope too
much. The superbee method allows sharper resolution near a discontinuity while still
giving second-order accuracy in the smooth regions. The superbee method compares
each one-sided slope with twice the opposite one-sided slope and chooses the maxmod
function to decide which slope to take:

σ1
i = minmod(

Qt
i+1 −Qt

i

∆x
, 2(

Qt
i −Qt

i−1

∆x
)) (323)

σ2
i = minmod(2(

Qt
i+1 −Qt

i

∆x
),
Qt

i −Qt
i−1

∆x
) (324)

σt
i = maxmod(σ1

i , σ
2
i) (325)

The superbee limiter approximates the solution sharper near discontinuities in compar-
ison to the minmod slope method.

89

6.10.1 Flux Limiters

We have derived in the previous section the average update rule

Qt+∆t
i = Qt

i −
v∆t
∆x

(Qt
i −Qt

i−1)−
1
2
v∆t
∆x

(∆x− v∆t)(σt
i − σt

i−1) (326)

This formula can be manipulated to obtain the flux F t
i−1/2 so that we can write the

formula in the form

Qt+∆t
i = Qt

i −
∆t
∆x

(F t
i+1/2 − F t

i−1/2) (327)

Alternatively, we can compute F t
i−1/2 by using the definition of the flux. In either case

we obtain for the advection equation

F t
i−1/2 =

{
vQt

i−1 + 1
2v(∆x− v∆t)σt

i−1 if v ≥ 0
vQt

i − 1
2v(∆x+ v∆t)σt

i if v ≤ 0
(328)

Until now we associated the slope with the cell. Another idea would be to associate the
slope with the interface. Since across the interface xi−1/2 we have the jump

∆Qt
i−1/2 = Qt

i −Qt
i−1 (329)

we can approximate qx by dividing the jump by ∆x. In this way we can rewrite the flux
formula just seen as

F t
i−1/2 = v+Qt

i−1 + v−Qt
i +

1
2
|v|(1− |v∆t

∆x
|)δt

i−1/2 (330)

where δt
i−1/2 is a limited version of ∆Qt

i−1/2. It is interesting to note, that if δt
i−1/2 =

∆Qt
i−1/2 then we obtain the Lax-Wendroff method. Other second-order methods can

be obtained from 330 by an appropriate choice of δt
i−1/2. The slope limiter methods can

then be reinterpreted as flux-limiter methods by choosing δt
i−1/2 to be a limited version

of ∆Qt
i−1/2 [2].

What we need now is some smoothness measure, θ. There are many possibilities to
define it, one of which is

θt
i−1/2 =


∆Qt

i−3/2

∆Qt
i−1/2

if v > 0
∆Qt

i+1/2

∆Qt
i−1/2

if v < 0
(331)

δt
i−1/2 = φ(θt

i−1/2)∆Q
t
i−1/2 (332)

90

In this way θt
i−1/2 ≈ 1 near smooth data (exception made for the case in which we have

extrema) and far from 1 near a discontinuity. The function φ(θ) is called the flux-limiter
function. In general we wish to have φ(θ) ≈ 1 for smooth data and values far from
1 near a discontinuity. If we play around with the values of φ(θ) we find interesting
results. Suppose for example φ(θ) = 0. In this case we obtain the upwind method. In
the following, some methods are shown that result from assigning particular values to
φ(θ):

Linear Methods

• Upwind method: φ(θ) = 0

• Lax-Wendroff method: φ(θ) = 1

• Beam-Warming method: φ(θ) = θ

• Fromm method: φ(θ) = 1
2(1 + θ)

High Resolution Methods

• Minmod method: φ(θ) = minmod(1, θ)

• Superbee method: φ(θ) = max(0,minmod(1, 2θ),min(2, θ))

• van Leer: φ(θ) = θ+|θ|
1+|θ|

The flux-limiter method with the notation introduced above could be written as{
Qt+∆t

i = Qt
i − ν(Qt

i −Qt
i−1)− 1

2ν(1− ν)(φ(θt
i+1/2)(Q

t
i+1 −Qt

i)− φ(θt
i−1/2)(Q

t
i −Qt

i−1)) if v > 0
Qt+∆t

i = Qt
i − ν(Qt

i+1 −Qt
i) + 1

2ν(1 + ν)(φ(θt
i+1/2)(Q

t
i+1 −Qt

i)− φ(θt
i−1/2)(Q

t
i −Qt

i−1)) if v < 0
(333)

where ν = v∆t
∆x is the Courant number.

We can extend the flux limiter method to systems of equations. First let us take the
Lax-Wendroff method and rewrite its flux as

Fi−1/2 = (A+Qi−1 +A−Qi) +
1
2
|A|(I − ∆t

∆x
|A|)(Qi −Qi−1)) (334)

This can be viewed as the upwind method together with an additional correction term.
Our attention is now focused on how to limit the magnitude of this term according to
the data variation.
This is achieved by decomposing the jump

Qi −Qi−1 (335)

91

into a sum of jumps according to the eigencomponents

m∑
j=1

αj
i−1/2r

j (336)

and limit each component separately

α̃j
i−1/2r

j = φ(θj
i−1/2)α

j
i−1/2r

j (337)

where

θj
i−1/2 =


αj

i−3/2

αj
i−1/2

if λj > 0

αj
i+1/2

αj
i−1/2

if λj < 0
(338)

In this way we obtain the limited flux function

Fi−1/2 = A+Qi−1 +A−Qi + F̃i−1/2 (339)

where

F̃i−1/2 =
1
2
|A|(1− ∆t

∆x
|A|)

m∑
i=1

α̃j
i−1/2r

j (340)

This can be rewritten as

F̃i−1/2 =
1
2

m∑
i=1

|λj |(1− ∆t
∆x

|λj |)α̃j
i−1/2r

j (341)

which results from the definition of the eigenvectors (|A|rj = |λj |rj).
Conclusion: each wave is limited independently of other wave families.

6.10.2 Flux Limiter Implementation

The PDE package implements the flux-limiter methods for constant-coefficient linear
system. At first glance we can say that what we need is to compute the matrices A+, A−

and |A| once and then use them in the formulas given above. However, because we need
to decompose the jump ∆Qi−1/2 into waves αj

i−1/2r
j and we need the λj too, then it

is reasonable to use these informations to compute the new cell averages. The average

92

update rule can be rewritten, after some algebraic manipulations, as

Qt+∆t
i = Qt

i −
∆t
∆x

(A+∆Qi−1/2 +A−∆Qi+1/2)−
∆t
∆x

(F̃i+1/2 − F̃i−1/2) (342)

As can be seen from this formula, what we need is A+∆Qi−1/2, A−∆Qi−1/2 and F̃i−1/2.
All of these terms can be computed by using only W j

i−1/2 and λj :

A+∆Qi−1/2 =
m∑

j=1

(λj)+W j
i−1/2 (343)

A−∆Qi−1/2 =
m∑

j=1

(λj)−W j
i−1/2 (344)

F̃i−1/2 =
1
2

m∑
i=1

|λj |(1− ∆t
∆x

|λj |)W̃ j
i−1/2 (345)

Now we shall explain how everything is implemented in the package by following the
bottom up approach. We start by computing ∆Q and then give it together with the
eigenvector matrix R as input to the Riemann block, which will compute the α for each
interface (Figure 68). Note that the eigenvector matrix R and the eigenvalues λj are

Figure 68: Blocks ∆Q and Riemann

given by the user. Once we have α, we can compute θ according to λj . This is done by
the θ block (Figure 69). Once θ has been computed it remains to choose the method
that we wish to use. If we wish to use the upwind method, we pass then θ to the
Upwind block, which will give us φ(θ) as output (Figure 70). The upwind method and
many others are incorporated into a FluxLimiterSolver block (Figure 72). As in the
Derivatives blocks in the MOL package, the choice of the method is triggered through
the parameter variable, fls, in the WorldModel block which tells to this block which
method we wish to use (Figure 71). Per default the upwind method is used. With this
information it is possible to compute the limited alpha, α̃ and later the corresponding
waves, which is done by the blocks LimitedAlpha and WaveP , respectively (Figure 73).
Finally, we pass the waves and eigenvalues to the FluxLimited block and the output to
the Fluctuation block (Figure 74). After summing the + outputs and the − outputs of

93

Figure 69: θ block

Figure 70: Upwind and other method blocks

Figure 71: Portion of FluxLimiterSolver block code

94

Figure 72: FluxSolver block

Figure 73: α̃ and Wave blocks

95

Figure 74: Fluctuation block

the Fluctuation blocks, we can pass them to the + and − input of the FLIntegrator
block (Figure 75) respectively, together with the flux and initial and boundary condi-
tions. To illustrate the use of the blocks, a complete example of the acoustic system is

Figure 75: FLIntegrator block

implemented (Figure 76). To understand better the example, three yellow regions are
visualized in the figure. In region 1 the Riemann problem is solved. Region 2 computes
the two fluctuations and finally, region 3 computes the flux. In this example the eigen-
vector matrix and eigenvalues are constant and provided by the user. In Euler system
eigenvector matrix and eigenvalues changes with time and space. In order to use the
FluxLimiter package we might try to provide new eigenvalues and eigenvectors at each
time step . For the Euler system of equations the eigenvalues are

96

Figure 76: Acoustics example

λ1 = v − c (346)

λ2 = v (347)

λ3 = v + c (348)

and the eigenvector matrix R is

R =

 1 1 1
v − c v v + c
h− vc 1

2v
2 h+ vc

 (349)

where c =
√

γp
ρ and h = E+p

ρ . Unfortunately the blocks implemented in FluxLimiter

package cannot be used, because the eigenvector matrix R changes also in space and we

97

have consequently a different matrix R for each interface that changes with time. For this
purpose blocks implemented in FluxLimiter package are modified accordingly and can
be found, together with Euler example, in PDE → FiniteV olume → FluxLimiter →
Examples→ EulerSystem. FluxLimiter package is not required for this master thesis
and because of lack of time Acoustics and EulerSystem were not tested in depth.

6.11 Limiter-Free Third Order Logarithmic Reconstruction

In previous chapters we have approximated the cell averages by constant functions or by
linear functions with nonzero slope (Figure 77). Other possibilities were to use polynomi-

Figure 77: Constant and linear cell average reconstruction

als. However, polynomials are not an optimal choice for hyperbolic problems. As said in
[7]: ”polynomials are unable to take on very large slopes followed by a flat region, which
frequently occur in the piecewise smooth solutions to hyperbolic conservation laws. It
is thus reasonable to consider other approximating functions.”
In this chapter we consider the reconstruction of an unknown smooth function with local
double logarithmic reconstruction (LDLR) method. It is local because it uses informa-
tion from only the central cell and its neighbors and it is double logarithmic because it
uses two logarithmic functions to reconstruct the unknown function. In particular, we
reconstruct the values of the flux at the interface xi+1/2 in the following way:

u−(xi+1/2) = ui + c3hη
+(c1) + c4hη

+(c2) (350)

u+(xi+1/2) = ui+1 + c3hη
−(c1) + c4hη

−(c2) (351)

98

where

η+(x) = − log(1− x) + x

x2
(352)

η−(x) =
(x− 1)log(1− x)− x

x2
(353)

c1 = (1− tol)(1 + tol − 2|d1|q|d2|q + tol

|d1|2q + |d2|2q + tol
) (354)

c2 =
c1

c1 − 1
(355)

c3 =
(c1 − 1)(d2(1− c2)− d1)

c2 − c1
(356)

c4 = d1 − c3 (357)

with tol = 0.1hq and typically q = 1.4. The lateral derivatives are obtained in the
following way:

d1 =
ui − ui−1

h
, d2 =

ui+1 − ui

h
for u−(xi+1/2) (358)

d1 =
ui+1 − ui

h
, d2 =

ui+2 − ui+1

h
for u+(xi+1/2) (359)

Once we have reconstructed the values at the interfaces, we can pass these values for
example to the unstable numerical flux procedure

f̂i+1/2 =
1
2
(f(u−(xi+1/2, t)) + f(u+(xi+1/2, t))) (360)

to obtain the flux at the boundaries and at the end use the average update formula

dui(t)
dt

= −1
h

(f̂i+1/2 − f̂i−1/2) (361)

99

to compute the average ui at the next time step. As already seen, the unstable numerical
flux is unstable. For this reason, a modified version of it is used, Lax-Friedrichs flux,
where some correction term with a parameter α is inserted in order to avoid spurious
oscillations.

f̂i+1/2 =
1
2
(f(u−(xi+1/2, t))+f(u+(xi+1/2, t)))−

1
2
α(u+(xi+1/2, t)−u−(xi+1/2, t)) (362)

The parameter α is not given and must be estimated, which turns out to be a diffi-
cult task. This additional term is the so called numerical diffusion and serves to dampen
the instabilities that arise in the unstable flux. Although this numerical diffusion is used
to avoid instabilities, it introduces much more diffusion than required. This has as a
consequence smeared numerical results. However, this problem vanishes when the grid
is sufficiently fine.

6.11.1 LDLR Implementation in Modelica

Now that we have seen how the LDLR method works, we can start with the description
of the implementation done in Modelica. As already seen the starting point for the com-
putation are the lateral derivatives d1 and d2. The lateral derivative D1minus block for
the average u− is shown in Figure 78. As input the D1minus block takes the average

Figure 78: Computing lateral derivatives: D1minus block

vector along with the ghost cells and as output we obtain an n + 1 vector of d1 values
at each interface. A similar procedure is applied to the blocks D1plus, D2minus and
D2plus. Once we have the lateral derivatives, we can compute the constants c1, c2, c3

100

and c4, which is done by the corresponding blocks (Figure 79). The functions η− and

Figure 79: c1, c2, c3 and c4 blocks

η+ are implemented by the blocks n− and n+ respectively (Figure 80). With blocks

Figure 80: n− and n+ blocks

Rminus and Rplus we compute

c3hη
+(c1) + c4hη

+(c2) (363)

and
c3hη

−(c1) + c4hη
−(c2) (364)

respectively and the reconstruction is completed with the blocks uminus and uplus
(Figure 81). In order to simplify the construction, additional blocks are implemented:

101

Figure 81: u− and u+ blocks

LDLRminus and LDLRplus. At the end we can pass the fluxes and reconstructed values
to the Lax-Friedrichs flux block for example (see next section).

102

6.11.2 LDLR Implementation of the Euler System with Lax-Friedrichs Flux

Let us now look in detail how to implement the Euler equation with the LDLR method.
We start with the first equation, the continuity equation. In the continuity equation
the average of interest is density ρ and the flux is ρv. We first reconstruct by using
LDLR the values ρ− and ρ+ by using the blocks u− and u+ respectively. We do the
same for the momentum. After we have reconstructed the densities ρ− and ρ+ and
velocities v− and v+ at the interfarce xi+1/2 we can compute the two fluxes ρ−v− and
ρ+v+ at this interface. The reconstruction value process is shown in Figure 82. With

Figure 82: LDLR Reconstruction of density and momentum

the reconstructed value we can construct the fluxes, which are passed together with the
reconstructed density values to the Lax-Friedrich block (Figure 83) For the momentum
equation we have ρv2 + p as flux. The reconstruction process of the momentum flux is
shown in Figure 84. To compute the values of the pressure p+ and p− we use the formulae

p+ = (γ − 1)(E+ − ρ+ (v+)2

2
) (365)

p− = (γ − 1)(E− − ρ−
(v−)2

2
) (366)

Finally, we reconstruct the energy flux (E+p)v (Figure 85). Now that we have the fluxes,
we pass them to the Lax-Friedrichs flux blocks along with the corresponding averages
and connect the output of the Lax-Friedrichs flux blocks to the corresponding average

103

Figure 83: LDLR: Continuity flux

Figure 84: LDLR: Momentum flux

104

Figure 85: Energy flux

integrator. The construction of the Euler system is now complete (Figure 86) and we
can start to simulate it.

6.11.3 Roe´s Flux

We have seen in the previous section how to solve the Euler system by using the Lax-
Friedrich flux. Many other flux methods could be used instead.
In the following we will use another numerical flux: Roe´s flux. We have already seen
that when decomposing a hyperbolic system of equations with eigenvalue decomposition,
we obtain a system of decoupled advection equations each with the velocity λi. This
information can be used to implement upwind schemes. In Roe´s flux method the flux
difference at xi+1/2 is decomposed in the following way

f̂+ − f̂− = W+ +W− (367)

where the traveling waves are decomposed according to velocities λi as

W+ =
∑
λi>0

aiWi (368)

W− =
∑
λi≤0

aiWi (369)

for i = 1, ..., 3 and the strengths ai together with waves Wi are computed as

105

Figure 86: Euler system with LDLR reconstruction and Lax-Friedrichs flux

a1 =
1

2ã2
(4p− ρ̃ã4u) (370)

a2 =
1
ã2

(ã24ρ−4p) (371)

a3 =
1

2ã2
(4p+ ρ̃ã4u) (372)

W1 =

 1
ṽ − ã

h̃− ṽã

 (373)

106

W2 =

 1
ṽ

1
2 ṽ

2

 (374)

W3 =

 1
ṽ + ã

h̃+ ṽã

 (375)

where

4p = p+ − p− (376)

4ρ = ρ+ − ρ− (377)

4v = v+ − v− (378)

and

λ1 = ṽ − ã (379)

λ2 = ṽ (380)

λ3 = ṽ + ã (381)

and the Roe´s averages ρ̃, ṽ, h̃ and ã are found by

ρ̃ =
√
ρ+ρ− (382)

ṽ =
√
ρ+v+ +

√
ρ−v−√

ρ+ +
√
ρ−

(383)

h̃ =
√
ρ+h+ +

√
ρ−h−√

ρ+ +
√
ρ−

(384)

ã =
√

(γ − 1)(h̃− 1
2
ṽ2) (385)

The logarithmic reconstruction procedure can be summarized in Figure 87.

107

Figure 87: Logarithmic Reconstruction

6.11.4 LDLR Implementation of the Euler System with Roe´s Flux

In the Roe´s flux we start by computing the averages ρ̃, ṽ, h̃ and ã. This is done by the
Daverage, V average, Haverage and Aaverage blocks respectively (Figure 88). These

Figure 88: Average blocks

blocks receive as inputs the required information, for instance, the Daverage block re-
ceives as input densities ρ− and ρ+ at each interface, and gives as output the averages
at each interface,

√
ρ+ρ− in Daverage case. By using this average we can compute the

wave velocities λi and the waves Wi. Blocks Lambdas and Waves achieve this task (Fig-
ure 89). The output of the Waves block are three mxn + 1 matrices. The first matrix
contains the W1 waves for each interface, the second the W2 waves for each interface,
and the third the W3 waves for each interface. Each wave is an m-component vector.

108

Figure 89: Lambdas and Waves blocks

The strengths a1, a2 and a3 of the waves are computed by the a block (Figure 90). With

Figure 90: a and FluxDiff blocks

λi, ai and Wi we can, as already explained, decompose the traveling waves:

W+ =
∑
λi>0

aiWi (386)

W− =
∑
λi≤0

aiWi (387)

This task is achieved by the FluxDiff block. Each FluxDiff block produces one wave:
either W+ or W−. In the Euler system we have three waves, that means that we need
three FluxDiff blocks, each of which will give us W+ or W− according to the λ. At
the end we must sum the outputs in order to obtain

W+ +W− (388)

Finally we give this sum to the integrator which evaluate the update rule. The complete

109

construction of the Euler system with the LDLR reconstruction and Roe´s numerical
flux is illustrated in Figure 91.

Figure 91: Euler system with LDLR reconstruction and Roe´s flux

6.12 Examples

The LDLR implementation of the Euler equations by using Lax-Friedrichs and Roe´s
fluxes was already shown in the previous chapters. We illustrate in the following some
other examples implemented by using the logarithmic reconstruction method. All ex-
amples can be found under FiniteV olume −→ Examples. As in the MOL chapter, we
start with the simplest PDE implemented, the advection equation.

110

6.12.1 Advection Equation

The advection PDE was explained in the MOL chapter. Its implementation with the
Finite Volume Method by using LDLR can be seen in Figure 92. Lax-Friedrichs flux

Figure 92: Advection PDE implementation by using FVM with LDLR and Lax-
Friedrich´s flux

was used, with α = 0.2. Other values of α lead to unsatisfactory results. In general, the
results are not as good as in the MOL implementation. Forty cells were used to achieve
good results (Figure 93). And the last cells presented quite accentuated dissipation.

Figure 93: Analytical (red) and FVM (blue) solution of the advection equation for the
first and last cells (40 cells were used)

This could be caused by the Lax-Friedrichs flux. Conclusion: Advection equation is
better simulated with the method of lines. The finite volume method with LDLR and
Lax-Friedrichs flux needs considerably more cells in order to achieve comparable results.
However, if we implement the advection equation with the upwind method (Figure 94),
the results are better. In Figure 95 the analytical and numerical solution for the first
and last cells (10 cells were used) is shown. The accuracy is better than in the case of
the Lax-Friedrichs method, moreover, there is less dissipation in the solution of the last
cell. Additionally, we must not search for an optimal parameter when using the upwind

111

Figure 94: Advection PDE implementation by using FVM with LDLR and Upwind flux

Figure 95: Advection PDE implementation by using FVM with LDLR and Upwind flux

112

method.
A third implementation of the advection equation uses Lax-Wendroff flux. The results
are however not as satisfactory as in the case of the upwind flux.

6.12.2 Diffusion Equation

The diffusion problem was already discussed in the Method of Lines Chapter. In Figure
96 the FVM implementation of the diffusion equation can be seen. The Diffusion Flux

Figure 96: Diffusion PDE implementation with FVM

block implements the numerical diffusion flux discussed in the beginning of the Finite
Volume Method Chapter. In Figure 97 we can see the comparison of the analytical
solution and the FVM solution of the diffusion PDE for the second and middle cells of
the domain, where 10 cells were used. As can be seen, ten cells are already enough to
reach a good approximation. The situation with 40 cells is illustrated in Figure 98.

113

Figure 97: Comparison of the analytical and FVM solution of the diffusion PDE for the
first and middle cells of the domain (10 cells were used)

Figure 98: Comparison of the analytical and FVM solution of the diffusion PDE for the
first and middle cells of the domain (10 cells were used)

114

6.12.3 Burger´s Equation

Burger´s equation was also implemented with LDLR reconstruction and Lax-Friedrichs
flux (α = 0.9). The corresponding implementation can be seen in Figure 99. The Finite

Figure 99: Burger PDE implementation by using FVM with LDLR and Lax-Friedrichs
flux

Volume Methods solution of the first and middle cells compared with the respective
analytical solution in the case of 10 and 40 cells is shown in Figure 100. As could be

Figure 100: Numerical versus analytical solution of the Burger´s equation for the first
and middle cells with 10 (left) and 40 (right) cells

expected, the accuracy increases when more cells are used.

115

6.12.4 Euler with Lax-Friedrichs and Roe´s Fluxes

Simulation of the Euler equations requires considerably more cells than other examples.
To compare the two implementations, Euler with Lax-Friedrichs flux and Euler with
Roe´s flux, sixty cells were used. In Figure 101 the comparison of the density for the
59-th cell and 61-th cell can be seen. In Figure 102 the same comparison in the case

Figure 101: Comparison of density with Euler Lax-Friedrichs (red) and Euler Roe´s
(blue) fluxes (60 cells used)

of momentum for the 59-th cell is done. By using more cells, for example hundred, the

Figure 102: Comparison of momentum with Euler Lax-Friedrichs (red) and Euler Roe´s
(blue) fluxes (60 cells used)

situation is almost the same. Another problem are the big oscillations in the Roe´s
implementation. A possible cause might be the violation of CFL condition (see Section
6.14).

116

6.12.5 Buckley-Leverett Equation

Buckley-Leverett equation is implemented with LDLR method in FiniteVolume→Examples.
The initial condition used is

u(x, 0) = 1.0 (389)

and boundary conditions are
u(x1, t) = 0.0 (390)

u(xn, t) = 0.0 (391)

The FVM implementation with LDLR and Lax-Friedrich´s flux is illustrated in Figure
103. In figure 104 we can see the MOL and FVM solution of the Buckley-Leverett PDE

Figure 103: Buckley-Leverett PDE implementation with FVM (with LDLR and Lax-
Friedrich´s flux)

for the first and middle cells of the domain (10 cells were used). The difference is big
and by refining the grid the situation is not better. One reason could be the wrong α
parameter in Lax-Friedrich´s flux.

117

Figure 104: MOL and FVM solution of Buckley-Leverett PDE with LDLR and Lax-
Friedrich´s flux

6.13 General Block

The idea of the GeneralBlock (Figure 105) is to incorporate two numerical methods,
MOL and FVM, into a single block. This way we assure more transparence to the
user, that can now just use one single block and choose the desired numerical method,
without caring about details of each method. For this purpose, GeneralBlock contains

Figure 105: General Block Integrator

two integrators, the MOL and FVM integrators. Which one must be used is specified
by the user through the parameter integrator: integrator = 1 for MOL and integrator
= 2 for FVM. In Figure 106 the implementation of the advection equation with the
GeneralBlock is illustrated. In this example we chose MOL method. For this purpose
the R input and V ar output of the block is used, just as in the MOL Integrator. If we
wish to solve advection equation with the FVM method (Figure 107), we just set the
integrator parameter to 2 and use the F input and Q output of the block.

118

Figure 106: MOL implementation of the advection equation with GeneralBlock

Figure 107: FVM implementation of the advection equation with GeneralBlock

119

6.14 Courant-Friedrich-Lewy Condition

When studying numerical methods we must consider many criteria, such as [8]:

• Consistency

The discretization of a PDE should become exact as the mesh size tends to zero
(truncation error should vanish).

• Stability

Numerical errors which are generated during the solution of discretized equations
should not be magnified.

• Convergence

The numerical solution should approach the exact solution of the PDE and con-
verge to it as the mesh size tends to zero.

• Conservation

Underlying conservation laws should be respected at the discrete level (artificial
sources/sinks are to be avoided).

• Boundedness

Quantities like densities, temperatures, concentrations etc. should remain non-
negative and free of spurious wiggles.

The theory is very complicated and we will not analyze all these criteria in this thesis.
We will however look at the Courant-Friedrich-Lewy (CFL) condition.
The CFL condition is a necessary condition that must be satisfied by the finite volume
method if we expect it to be stable and converge to the solution of the differential equation
as the grid is refined [2].
Consider the scalar advection equation

qt + vqx = 0 (392)

with the positive velocity v and say we are using the finite volume method where we
need only three values Qt

i−1, Q
t
i and Qt

i+1 in order to compute the cell average Qt+∆t
i at

the next time step. In this case the exact solution moves a distance v∆t over one time
step. In Figure 108 we see two cases: one in which this distance is less than the cell size
and one in which it is greater than the cell size. If v∆t < ∆x, that is if the distance
moved by the exact solution is less than the cell size, then it makes sense to use the
values Qt

i−1 and Qt
i to compute the flux at the interface xi−1/2. If however, v∆t > ∆x,

that is if the distance moved by the exact solution is greater than the cell size, then we

120

Figure 108: CFL: stable (above) and unstable (below) cases

see that the value Qt
i−2 comes into play. The flux at the interface xi−1/2 depends now

on the value Qt
i−2.

The finite volume method would certainly be unstable when applied with such a large time
step, no matter how the flux was specified, if this numerical flux depended only on Qt

i−1

and Qt
i. This is a consequence of the CFL condition.

CFL Condition: A numerical method can be convergent only if its numerical domain
of dependence contains the true domain of dependence of the PDE, at least in the limit
as ∆t and ∆x go to zero.

Note: The CFL condition is only a necessary condition for stability. It is not always
sufficient to guarantee stability [2].
When using DASSL, CFL condition cannot be always satisfied because adaptive time
step procedure is used. We can use instead methods that use a fixed time step proce-

121

dure, like Runge−Kutta methods of different orders in Dymola. This way we can adjust
width grid used in our implementation by looking, after the simulation, the maximum
time step used by Runge-Kutta.

122

7 Conclusion

In general Method of Lines gives better results than Finite Volume Methods and it
is simple to use. First-order Finite Volume Methods methods are not as accurate as
first-order Method of Lines methods. Only conservation laws, like the Euler system,
are not simulated well enough. For these methods, Method of Lines introduces too
much spurious oscillations. It is however possible that this is due to the particular
implementation done in the MOL Package.
Finite Volume Methods is very complicated to understand and to implement. In order
to use it, you have to know something about this method. For example, in the case of
FluxLimiter Library, the Riemann theory must be understood in order to use correctly
the blocks. Moreover, equations must be rewritten in conservation form. Finite Volume
Methods is mainly used for conservation laws and does not introduce much oscillations.
Euler system of equations for example contains three conservation laws: conservation of
mass, conservation of momentum and conservation of energy. This system of equations
is implemented in three different ways. One implementation uses the Lax-Friedrichs flux
and works quite well. Another implementation uses Roe´s flux and is instable. The third
implementation modified the FluxLimiter Library to solve the Euler equations. Because
of lack of time it was not possible to test and debug the last two implementations, that
are for now instable. One possible cause might be the violation of the CFL condition,
that cannot be assured at all time steps, when using methods such as DASSL. Another
disadvantage of Finite Volume Methods are the fluxes. In the case of Lax-Friedrichs flux
an optimal parameter, α, must be chosen. This is very cumbersome, especially for time
expensive simulations.
A third method, Adaptive Method of Lines, was originally planed, but dropped because
of the problem in Dymola of creating/destroying instances at run time that is required
in adaptive methods.
General block combines both methods, Method of Lines and Finite Volume Methods,
into a single method. Only one equation, the advection equation, is implemented by
using this block and works well.
Although originally only time dependent PDEs were considered, an example of time
independent PDE, Poisson equation, is also implemented and works well. Consequently
PDE Package can be theoretically used to solve time dependent and time independent
PDEs.
In the present thesis all examples were implemented in one dimension. It is however
possible to extend the package to more dimensions. Maybe future works could achieve
this task.

123

8 Bibliography

References

[1] Francois E. Cellier, Ernesto Kofman: Continuous System Simulation, Springer

[2] Randall J. Leveque: Finite Volume Methods for Hyperbolic Problems, Cambridge
Texts in Applied Mathematics

[3] Bruce R. Munson, Donald F. Young, Theodore H. Okiishi: Fundamentals of Fluid
Mechanics, Wiley International edition

[4] Michael Heath: Scientific Computing, McGraw-Hill

[5] Stanley J. Farlow: Partial Differential Equations for Scientists and Engineers

[6] Jose Diaz Lopez: Shock Wave Modeling for Modelica.Fluid library using Oscillation-
free Logarithmic Reconstruction, The Modelica Association, 2006, September

[7] Robert Artebrant, H. Joachim Schroll: Limiter-Free Third Order Logarithmic Re-
construction, SIAM, Vol.28, No. 1, pp. 359-381

[8] Dmitri Kuzmin: Introduction to Computational Fluid Dynamics Lecture,
www.mathematik.uni-dortmund.de/ kuzmin/cfdintro/cfd.html

[9] John D. Anderson: Computational Fluid Dynamics, McGraw-Hill

[10] Mack J. Hyman: Moving Mesh Methods for Partial Differential Equations, Mathe-
matics Applied to Science: In Memoriam Edward D. Conway, pages 129-153. Aca-
demic Press, Boston, Mass., 1988

124

