ON THE BONDGRAPHIC POWER POSTULATE
AND ITS ROLE IN INTERPRETING
THE 1905 AND 1915 RELATIVITY THEORIES

by

Nasser Gussn

copyright © Nasser M. N. Gussn 1994

A Thesis Submitted to the Faculty of the

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

In Partial Fulfillment of the Requirements
For the Degree of

MASTER OF SCIENCE
WITH A MAJOR IN ELECTRICAL ENGINEERING

In the Graduate College

THE UNIVERSITY OF ARIZONA

1994



STATEMENT BY AUTHOR

This thesis has been submitted in partial fulfillment of requirements for an advanced
degree at The University of Arizona and is deposited in the University Library to be made
available to borrowers under rules of the Library.

Brief quotations from this thesis are allowable without special permission, provided
accurate acknowledgment of source is made. Requests for permission for extended
quotation from or reproduction of this manuscript in whole or in part may be granted by
the copyright holder.

APPROVAL BY THESIS DIRECTOR

This thesis has been approved on the date shown below:

SECoge €U Soubes 16,1999

Francois E. Cellier Date
Associate Professor of
Electrical and Computer Engineering




ACKNOWLEDGMENTS

I have no doubt in my mind that this work would have not been able to stand as a reality,
had it not been for the will of God, who bestowed on me of his uncountabley infinite
blessings what I cannot count. His true love and caring was, and will always be, the
reason behind my venturing with no fear and my aspiring to loftier stratum.

The author would also like to take the opportunity to thank the following people, who
played an important rdle in the process which had led to this thesis.

Although not involved directly, the company of my mother through the hard times I
went through while working on this thesis, was definitely an important psychological
factor that alleviated my loneliness. For her sacrifices since my birth, she can't be less
than a full partner in my success.

I also cannot forget the instrumental rdle my employer, Saudi Aramco, played in
achieving this goal. In particular I would like to thank my R&OED division coordinator
Mr. M. A. Al-Mubarak for his confidence and support. Also Mr. E. R. Pickinpaugh, my
mentor, for his wise advising through my PDP program; Dr. K. Kessinger for salvaging
my nomination by securing my admission to the U of A; and finally to the Aramco
Services Company's Academic Advisors for making this an unforgettable experience.

Last but not least, I would like to thank my thesis director, Dr. Frangois E. Cellier and
my relativity advisor, Dr. Lizhi Fang for their patience and illuminating remarks.

While lingering for the visitors,

Nasser M. N. Gussn
Tucson, Arizona,
September 5, 1994.



FOR THE LOVE OF HAKIMA



TABLE OF CONTENTS

LIST OF FIGURES .......ooomormmricineoeresssseses s ses s sese e seneen 8
LIST OF TABLES. ... .ottt ettt ettt e et eeaeete e enenenes 9
LIST OF SYMBOLS AND ABBREVIATIONS........oooiiieeeeee e 10
ABSTRACT ...ttt ettt e eae e et et e et ene e e e e eraeaneeeaas 14
1 INTRODUCTION: Objectives and Directions ..............................ccoeceeeinnn ... 15
1 Objectives of the Thesis..........ooveieieiiieeieeeeeceeee e 17

2 Directions t0 the R€ader ............c.oooviiiiiviiiieceee e, 18

2 THE ART OF MODELBUILDING .............ccoooiiiiiiiiieceeeeeeeeeeeeee e 19
1 Models, Systems and Theories .............coceiiriiiiiiriiiicee e 21

2 Classification of ModelS..............ocooviiiiiiiiiieceeeeeeeeeeeee e 25

3 Physical DOMAINS. .........cccoiiiiiiiiiiieieecieeeee e 27

4 Modelbuilding PRases.............coocovveiiiiiiiicceeceeeeeeeeeeee e 29

5 Model VerifiCation...........c..o.oiuiiuiiiiiecice et 30

6 Hierarchical MOdEIS.............c.ooooiiiiiiiiiic e 32

7 The Systems Approach in Modelbuilding .................c.ocooeveeiiviiiieeiiecee 33

8 DHAKOPLICS ....e.eeeietieiieeeee ettt ettt ettt ettt enn s 36

9 Simulation and Modelbuilding ................ccocooiiiiiiieieeeeeeee e 37

2 SELECTED BIBLIOGRAPHY .....oooiiiiiiiiceceeieeeeeeeeeeeee e 40

3 AN INTRODUCTION TO TENSOR CALCULUS...........coooviiieieieeeeeeen. 41
1 Generalized SPaces ........c..coviiviiiiiii e 42

2 Euclidean SPace..........cccocviviiiiiiiiiieceieeeeeee e 43

3 Orthogonal Transformations. .................ccooovoeoiieieeeeeeeee e 43

4 General Coordinate Transformations ................ccccceceoviiieviieiecceeeerecee. 45

5 Range and Summation CONVENtIONS. .................c.oooeieviiiiieeee e, 46

6 TOISOTS ...ttt ettt ettt ete e 47

7 RiemMannian SPACE ..........cooovoiiiiiiiiieceee e 49

8 TenSOT DENSILIES ......ovveiviieiieeeeccree e e 50

9 Tensor AIZEDTa...........ooiiiiiiiiii e 50

10 Tensors SYMIMELIY ......ooouiiiiiiiiiiiiicce et n e 52

11 Covariant Differentiation .. .......ccccoviviiiie et e e reeear e 53



TABLE OF CONTENTS — Continued

12 Differential OPerators . .......ocoveiiiiuiaierieire ettt 54
13 Line, Surface, and Volume Integrals ...........c..ccooveiiiiiiiieiiiee e 54
14 INeX GYMNASTICS.....ouuieiviiiiieieie ittt ettt st s enae e eanes 55
15 Geodesic Lines..........occcooviniioiniiine, s 56
16 Curvature Of SPACE........ccvvriiiiesieee e 56
17 SPECIAl SPACES.......ccoeiiiitiiiieieie ettt 58
3 SELECTED BIBLIOGRAPHY ......oooiiiii et 61
4 BONDGRAPH ANALYSIS. ... o 62
1 The POWer POStUlate .......ccooiiiiiiiiceee e e 63
2 Bondgraph ANAtOMY ..........coooiiiiiiiiiii e 68
3 Modulation of Bondgraphic MP Elements.................ccccooeiiiiviicrieiieiceen, 75
4 Structural Properties of Bondgraphic Elements ................cccoceviiiieieenenen. 77
5 Computational Causality.............ooooiiieiiiiiiiiiiiie e 80
6 Lagrangian Bondgraphs, Gyrobondgraphs and Generalized
Bondgraphs ......c.oooiii e 81
4 SELECTED BIBLIOGRAPHY .....coiiiiiiiiet e 84
5 SPECIAL RELATIVITY: Theory and Interpretation......................ccoocevnenenn. 85
1 Physics in the Nineteenth Century...............ocooceviieiiiiiniieeeeceeeeea 87
2 Origin of Special ReIatiVity ... 89
3 Lorentz Transformations.............ooeiiiiuieienie ettt 90
4 Special Relativistic Kinematics ............ocoooiiviiiiiiiiiccecee e 92
5 The Minkowski World........................ et heeen ettt et e 94
6 Special Relativistic Dynamics and Einstein's Energy Equation..................... 96
7 AModel Based on BGS.......oooviiiiiiiiiieecc e 97
8 A BG Interpretation of the Field-Strength Tensor in
EleCtrOQYNaIMICS. ... .oveieiiitieiccie ettt eaes 105
5 SELECTED BIBLIOGRAPHY ... 109
6 ON MODELING GRAVITATION ...t 110
1 The Energy-Momentum Tensor............ccooiiiiiiiiiiiiiieeeeeeie e 111

2 The Bridge between SR and GR ..............oooe i, 113



TABLE OF CONTENTS — Continued

3 The Consequences of Gravitation..............c.c.occeeieiienieeiiiecieiiieeie e 114

4 FEinstein's Gravitational Field Equations...................ccoooeeviiiiiiiiiiicce 118

5 The BG Interpretation of GR Theory...........ccocoeviiiiiiiiiieee 121

6 SELECTED BIBLIOGRAPHY ..........coooovvvocooerevecorsssesoecose oo 123

7T CONCLUSTONS .ottt et e et seeneesaesbensesseeseeanasseneas 124
1 On Whether Bondgraphs are the Appropriate

Tool for Modeling SR and GR................c.ooooiiiiiiiicceee 125

2 The Charm of Tensorial POWeT................c.ccooovioiiiioiiieieceeee e 125

3 The Impact of Parametrizing Mass on SR Theory..............cccocoeeiiiiiiienno. 125

4 On Reconciling GR with Bondgraphics...............c.cocooviiiiiiiiiic, 126

REFERENCES................cccoooiiiiimmmmomomooooooooeeeeoeoooeeeoeee oo se oo eeereo s se e seneees 127



LIST OF FIGURES
FIGURE 4.1, The Paynter tetrahedron of state...........ccoccoooiiiiiiiiniiee 66
FIGURE 4.2a, The multibond representation in BGS............cccoocviirmineeiciieceee. 71
FIGURE 4.2b, The Birkhoff junction structure in BGS ...............coocoiiiiiiini 71
FIGURE 4.3, The representation of active signals in BGS .........cccocoiniininiinnnenn 71
FIGURE 4.4, The bondgraphic representation for MP TF and GY in BGs................... 73
FIGURE 4.5, The 1-MP GY ..ottt 73
FIGURE 4.6, The explicit field and its implicit representation...................ccccooeeeeenennn. 75
FIGURE 4.7, The causal stroke assignment for bondgraphic elements ....................... 81
FIGURE 5.1, Systems K and K' with relative velocity W ...............c..ocooiiii . 87
FIGURE 5.2, BG representation for a relativistic particle................c..occooieiiiin 98
FIGURE 5.3, Beta vs. AIPha..........ccoooiiiiiiii e 102
FIGURE 5.4, Percentage difference vs. Alpha ............cccooooiiiiiiiiiii e 104



TABLE 2.1,
TABLE 5.1,

LIST OF TABLES

Physical Domains in Paynterian BGs

A comparison with the Bertozzi experiment results ..................c.............



10
LIST OF SYMBOLS AND ABBREVIATIONS

This list is intended to familiarize the reader with unfamiliar symbols or abbreviations.
Please note that this is not a comprehensive list; all familiar or standard symbols or
abbreviations are excused. The list is divided into three sections that sort the entries by
their origin; Greek, Latin and symbols that are rather mathematical in nature or that do
not belong to any of the previous categories. Where applicable, the equation number,
appearing between parentheses, is indicated.

GREEK:

ap,...,0 Indices that run from zero to three (lowercase letters only).

Jij Ratio of velocity to the speed of light.(138).

| R Affine connection or the Christoffel symbol of the second kind.(40).
¥ Coefficient modulating speed in special relativity.(113a).
oy Kronecker symbol.(18).

£ Electric charge density.

Pade Levi-Civita tensor.(29).

n* Minkowski metric tensor.(27).

I1 Tensorial bondgraphic power.(78) & (153).

fo, Mass density.

3 Electromagnetic field strength tensor.(142).

¢ Newtonian gravitational potential.

¥ Configuration-like variable.



LATIN:

ab,....z Indices that run from one to three (lowercase letters only).
A Four-vector electric potential.

B Magnetic field density.

BG Bondgraph.

C Capacitance or compliance (bondgraphic element).
E Electric field intensity.

E Energy.

e Effort.

e Electron charge.

E-M Energy-Momentum.

fe Flow.

F“ Four-vector force.

G Newton's gravitational constant.

G Einstein's tensor.(61).

g% Metric tensor.(26).

GBG Generalized bondgraph.

GR General relativity.

GST General system theory.

GT Galilean transformation.

GY Gyrator (bondgraphic element).

H Magnetic field intensity.



Ja
LT
NorN

norn

MGY
MTF
ODE
P(t)

Pa

PDE
O,

q

R
R
Ropy

RS

R-C
S

SE or Se

12
Inductance or inertance (bondgraphic element).

Four-vector electric current density.

Lorentz transformation.

Dimension of abstract space or the range of the indices of a tensor.
Rank of a tensor.

Multiport.

Modulated gyrator (bondgraphic element).
Modulated transformer (bondgraphic element).
Ordinary differential equation

Non-tensorial power.(70) & (71).

Four-vector momentum.

Generalized momentum.(72b).

Partial differential equation.

The ith state.

Generalized displacement.(72b).

Resistance (bondgraph element).

The Ricci tensor.(57).

Riemann-Christoffel curvature tensor.(52).

Irreversible transducer (bondgraphic element).

Riemann-Christoffel.

Source (bondgraphic element).

Source of effort (bondgraphic element).



SF or Sf
SGY
SR

T

TF

Ua

OTHER :

2

VZ

Source of flow (bondgraphic element).
Symplectic gyrator (bondgraphic element).
Special relativity.

Energy-Momentum tensor.

Kinetic energy.

Transformer (bondgraphic element).

Four-vector velocity.

d' Alembertian.(151).

Del operator.

Laplacian.

Covariant derivative.(38).

Gradient or ordinary partial derivative.

Partial derivative with respect to x¢.(152).

Covariant derivative along a curve.(164), (165) & (166).

13
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ABSTRACT

The thesis provides a new formulation for the bondgraphic power postulate. In this
formulation general tensors are used to build the efforts and flows. Examples from
particle mechanics and electrodynamics were found ‘to suggest that this tensorial power is
identically equal to zero.

Commencing with modelbuilding, which is briefly introduced to stimulate the
reader's interest in the formalism of the thesis, we proceed with discussions on
multibondgraphs and tensor calculus; thus building the backbone of our research. Both
subjects are treated only to the extent necessary for the preset objectives of this thesis.

The possibility of modeling Einstein's special relativity is also entertained. First the
theory is introduced, followed by a bondgraphic model utilizing velocity modulated mass.
Then another model, also based on bondgraphic concepts, that treats mass as a constant
energy reservoir is compared with that of Einstein. The experimental evidence (although
originally conducted for testing Einstein's energy-mass relation) is found mildly in favor
of the Einstein formula.

The r6le of the tensorial power in modeling Einstein's gravitational field equations is
then examined. After the theory has been introduced, the challenges facing this approach

are delineated and possible solutions are provided.



"So much may be allowed to
the determinist; but his belief
that all human actions are
subservient to causal laws still
remains to be justified. If,
indeed, it is necessary that
every event should have a
cause, then the rule must apply
to human behaviour as much as
to any thing else. But why
should it be supposed that every
event must have a cause? The
contrary is not unthinkable..."
A. J. Ayer. Freedom and
necessity. [in:] Reason &
Responsibility by Joel Feinberg
(ed.).

1 INTRODUCTION:
Objectives and Directions

This (introductory) chapter is intended to familiarize the reader with the structure of this
thesis. We start by listing the objectives of the thesis, followed by a delineation of the
prerequisites involved and the thesis-structure adopted. The most important fact that the
reader should realize is that this thesis is highly interdisciplinary; the tools we use include
sophisticated tensorial notations, differential geometry concepts, multibondgraphs, and

special and general relativistic concepts. This of course does not mean that
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comprehending the chain of reasoning is difficult. We simply suggest that the reader will
have to read and understand the introductory chapters on the subjects involved, unless he
or she has already been initiated into them.

I would also like to explain how this research in relativity can help electrical
engineers in particular tackle difficult problems in' their research areas. First of all one
should realize that relativity is very useful for analyzing many electrical engineering
problems. For example, in his book on relativity and engineering, van Bladel (1984)

states that:

Electrical engineers, in particular, are concerned with relativity by way of the
electrodynamics of moving bodies. This discipline is of decisive importance for power
engineers, who are confronted with problems such as

- the justification of a forcing function ... in the circuit equation of a moving loop
- a correct formulation of Maxwell's equations in rotating coordinate systems

- the resolution of "sliding contact" paradoxes

- a theoretically satisfying analysis of magnetic levitation systems.

The reader is also referred to the paper by Kron (1952) and to that by Hoffman (1949),
which provide a sample of a direction that promotes the use of tensor calculus for
establishing new theories pertaining to electrical engineering.

Unfortunately, some engineering colleges tend to deny their students such knowledge.
Reasons for such negligence (by these colleges) were not researched, since such research
is certain to require a considerable effort. The author was not able to reach any such
studies on the subject.

Although it took one full academic year to acquire the basic knowledge to work with
Einstein's special and general theories of relativity, I personally feel that the results

thereof achieved are, at least, penetrating.
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1 Objectives of the Thesis

The primary objective of this thesis is the extension of the bondgraphic power postulate
to relativistic phenomena, including the phenomena influenced by the existence of a
strong external gravitational field. By achieving tﬁis objective it is also hoped that the
author will have accumulated a decent working knowledge on the art of modelbuilding.
Such a knowledge is the ultimate extract that, theoretically, should enhance the author's
capability of analyzing engineering systems in general, and control systems in particular.
A third objective is to familiarize the author with the rudiments of differential geometry
(through studying general relativity); a topic required to analyze non-linear control
systems.

In order to meet these goals the following subjects will be discussed:

In chapter 2 a cursory view of the art of modelbuilding will be provided. This should

enable the reader to identify with concepts such as models, theories, physical

domains and systems. Also a brief introduction to simulation and its réle in
modelbuilding will be given.

o It was found necessary to represent the power postulate in the language of tensors,
which functions as the mathematical shell for the special and general theories of
relativity. Hence an introduction to tensors will be given in chapter 3.

o The bondgraph procedure for modeling systems will be presented in chapter 4. Also
in that chapter, the tensorial formulation of the power postulate of bondgraphs and
the bondgraphic effort and flow variables are introduced.

e In chapter S we will apply the developed concepts to special relativistic particle

mechanics and special relativistic electrodynamics. This, as will be shown, results in

the design of a new model for the relativistic energy of a one-particle system, which

will then be compared to the Einsteinian formulation.
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 Finally, in chapter 6, a modest introduction to the general theory of relativity will be
provided. The author will also provide his thoughts on the meaning of Einstein's field

equations as seen through a bondgraphic model.

2 Directions to the Reader

For this thesis we adopt the Harvard system for referencing. That is, we denote the
reference by the last name(s) of the author(s) and the year of publication, which will
appear between parentheses.

Equations are identified by Arabic numbers that are placed between parentheses. In
case we need to refer to an equation from a previous section or chapter, we will refer to
the equation using the above system, plus the (bold) Arabic numbers for the chapter and
section respectively, separated by a colon. Thus, equation (12), 4 : 3, refers to equation
(12) in chapter four, section three.

It is also worth mentioning that, for convenience, we have coined two new words in
this thesis. The first is modelbuilding, which refers to the art associated with modeling
systems in general. The second word is bondgraphs. Also variants of this word such as
multibondgraphs were admitted, in the belief that this approach will not impede the
reader's ability of comprehending the discussed issues.

Also to be noted is that, excluding this chapter and the last one, all the chapters of the
thesis furnish the reader with a selected bibliography on the subject(s) discussed in each

one. Please refer to the table of contents for the location of the references.



"The success of any physical
investigation depends upon the
judicious selection of what is to
be observed as of primary
importance." J. C. Maxwell. [in:]
Reality Rules I by J. L. Casti

2 THE ART OF
MODELBUILDING

Modeling can justifiably be considered one of man's most distinguished activities.
Although not in today's form or approach, modeling has helped humankind communicate
with each other, and understand and adapt to their environment as well. Modeling can in
fact be regarded as a documentation of the thinking process. Such a perspective
classifies all symbolic systems invented by man, such as languages and arts as models.

Even the acts of imagining and describing can be considered as modeling processes .
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Thus the reader should realize how difficult it is to provide an account of the history of
modeling. Still the appreciation of some of the great models man invented can be
stimulated by the following exposure.

Models help understand the way processes change by explaining observations and
providing predictions that can be verified. This cbncept was probably first applied to
physics. One of the famous examples of this approach is the modeling of the solar system
(Casti, part II, 1992). First there was the model for the orbits of planets in the solar
system "built" by Claudius Ptolemaeus (c. 2nd. cent. AD). This model had the planets
moving in orbits that were described by a collection of superimposed epicycles, the earth
being at the center of the system. The model was good enough to explain the
observations available at that time and produced predictions that satisfied the
astronomers of the day. It was used successfully to predict eclipses, the positions of the
planets, and most importantly the lunar positions influencing the flooding of the Nile. It
even survived the discovery of new planets, the influence of which was accommodated
using new epicycles that "updated" the predictions to agree with the new observations.
Assuming that the sun is at the center of the solar system, Niklas Koppemigk (1473-
1543) introduced the heliocentric model that was put in mathematical terms by Johannes
Kepler (1571-1630) and Sir Isaac Newton (1642-1727). In this model the planets are
pictured moving in elliptical orbits around the sun. Note that the predictions made by
both models are very close. Actually the Ptolemaeus model is rather more accurate in its
predictions, but the "simplicity” of the heliocentric model led to its adoption as the
standard model. Abundantly, many other examples are found in science and engineering.

Although man practiced modelbuilding since probably the beginning of his existence
— some times without realizing it — it never evolved to become rigidly defined. This led
many scholars (see Stein and Rosenberg [1991]) to describe it as an art rather than a

science (which is also the reason behind the name of this chapter). This vagueness



21

surrounding the process of modelbuilding is rather natural especially if one realizes the
vast field of applications this discipline has.

In 1947 this vagueness was considerably alleviated by the design of a standardized
vehicle by which all processes can be modeled (Grinker 1967). The birth of the General
Systems Theory (GST) on the hands of Ludwig von‘Bertalanffy (1968) provided a Global
Theory for modeling processes in all branches of science. This development provided the
first mover for what became known as the Systems science. (Note that although other
scientists did provide earlier contributions, e.g. Kéhler (1924), they did not deal with the
problem in its full generality.)

Laying no claims as to the conclusiveness of this chapter, the author believes that it
introduces the basic ideas of modelbuilding needed to guide the reader through the
remainder of this thesis. First we clarify the connection between models and systems, and
between models and theories. A classification of models and an introduction to the
concept of physical domains is then provided. Also the phases of modelbuilding and the
verification of the resulting model together with a simple discussion on systems will be
given. Finally we present simulation as an alternative analysis tool and a natural

extension to the process of modelbuilding.

1 Models, Systems and Theories

This section is devoted to providing a collection of definitions of models, systems and
theories that should function as a basis for a better understanding of modelbuilding.
Choosing to provide a collection (of definitions) stems from the difficulty of jotting down
a universally applicable definition for any of the above concepts. The vantage of such an
approach is evident in the richness one can attain by being exposed to different
philosophies. We also explore the interconnections existing between these concepts in

order to provide a unified picture for their réles in modelbuilding.
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Let us first consider models. In the common sense, the word model can refer both to a
copy of something and to something that is to be copied. In modelbuilding, we focus on

models in the first sense. To this end, Maki and Thompson (1973) state that:

When an investigator forms statements which he feels express basic principles in an area
of observation and study, then it is often said that he has formed a model. The process ..
is called model building. The model builder experiments and observes facts about the
real world in his area of specialization. He then tries to explain and describe the
phenomena that he is studying. He usually does this by proposing certain statements as
the ones which are basic and most important.

McLean et al. (1978) point out that a fundamental feature of models is "that their
construction and use involves a selective attitude towards information. All models are
thus easier to deal with, both in mental and manipulative processes than the reality which
they are designed to represent.” They also state that "model-building ... seems to be the
manifestation of a kind of cerebral 'least-action’ principle rendering models basic to man's
ability to conceptualize and deal with his environment." This selective attitude of models
was also communicated by Paynter (1961) when he described modeling as "the artful act
of abstracting from the totality of interactions between the elements of a physical system
and the elements of its environment, and from among the various parts of the system
itself, only those interactions which are relevant to the specific questions being
asked ... ", and by Astrom and Wittenmark (1990) who stated that "a model is a very
useful and compact way to summarize the knowledge about a process.”

Some of the above mentioned authors utilized concepts such as "physical system"
and "process" to define models. Other authors manifestly build their definitions of
models on concepts such as theory, experiment and system. For example, Casti (part I)
(1992) introduced the theory of models arguing "that the concept of a model of a natural

system N is a generalization of the concept of a subsystem of N, and that the essential
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feature of the modeling relation is the exploration of the idea that there is a set of
circumstances under which the model describes the original system to a prescribed
degree of accuracy. In other words, a particular facet of system behavior remains
invariant under the replacement of the original system by a proper subsystem.” Such
definitions of models require a formal consideratioﬁ of the concepts they introduce; what
does one mean by theory?, for instance. What is a system?

James and James (1992) define theory as "the principles concerned with a certain
concept, and the facts postulated and proved about it" and define system as "a set of
quantities having some common property" or "a set of principles concerned with a central
objective.” Such set-theoretic definitions of systems were also given by Mesarovic (1968)
and Blauberg et al. (1977). Maki and Thompson (1973) use the concept of an axiom
system (which they define as a collection of undefined terms together with a set of
axioms phrased with the use of these common undefined terms) to define the concept of
theory, thus interconnecting the two concepts. According to them a theory is the
collection of all theorems which can be logically deduced from an axiom system (where
theorem is defined as a logical consequence of that axiom system). They also distinguish
between two uses for the term theory; one in mathematical sciences and logic, which
revolves around the definition they provide, and the other in social and life sciences,
where a theory "is a collection of basic assumptions which is studied in an attempt to
explain certain observed phenomena." Some authors associate wholeness with the
definition of system. For example, Bahm (1969) states that "a system involves unity or
wholeness of some sort that holds its parts together," and Bluemenfeld (1970) states that
"the system interacts with the world outside as a whole." Another important feature of a
system is the interaction between its elements. This feature is the basis of the Mclean et
al. (1978) definition of a system as "a collection, or set, of interacting elements, the

interactions between such elements giving rise to complex behavior." Other compatible
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definitions were also given by von Bertalanffy (1950) and Kast and Rosenzweig (1972),
among others. These element-based definitions, together with the delineation (the
interaction and structure) of systems can be interpreted as a modelbuilding process,
leading to a model (subsystem) that can be utilized for analyzing the original process
(system). |

The above definitions indicate a correlation among models, theories and systems.
They also indicate the ubiquitous nature of the three concepts and how difficult it is to
eliminate their overlapping. Still, for our objectives in this thesis, we only need to
establish a clear distinction between the concept of a model and that of a theory, and
establish a fixed relation between models and systems (which is needed in order to justify
our usage of the terms).

We feel that the best of all explanations on the relation between models and theories
(which is the explanation we adopt throughout the remainder of this thesis) is the one

given by Coombs et al. (1954):

A model is not of itself a theory; it is only an available or possible or potential theory
until a segment of the real world has been mapped into it. Then the model becomes a
theory about the real world. As a theory, it can be accepted or rejected on the basis of
how well it works. As a model, it can be right or wrong only on logical grounds. A model
must satisfy only internal criteria; a theory must satisfy external criteria as well.

(The reader should not be surprised to find that some authors, e.g. Simon and Newell
(1956), use the terms "model" and "theory" interchangeably.)

On the relation between models and systems, we will adopt the views communicated
by Casti (1992), thus treating models as subsystems and bestowing on them all the

properties enjoyed by systems.
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2 Classification of Models
This section is devoted primarily to providing a satellite view that enumerates different
types of models (and systems; being models themselves.)

In literature one can find many classifications of models. Almost all of these
classifications provide a dichotomy. |

For example, models can be classified as either experimental or analytical (Brogan
1991). Experimental models are built by selecting mathematical relations which seem to
fit observed input-output data. One basic approach to achieve this is the principle of least
squares. The process of building such models and then fitting the models to data is also
known as system identification. On the other hand, analytical models utilize physical
laws to establish the relation between the components of the system under study.

Both types of the above models can be classified as mathematical, since they use a
mathematical tool (although different for each model type) for mimicking the dynamics
of the original system. Other models, usually referred to as physical models, such as the
billiard ball model for the behavior of an enclosed gas, or the apparatus build by Kepler
to model the orbits of planets, are more oriented towards metaphoric physical (material)
representation. Sometimes it proves useful to combine both types when analyzing non-
observable processes.

Maki and Thompson (1973) draw a distinction between mathematical models and
real models (which they define as the approximation and idealization of the real world)
while stating that "it is very difficult to decide where the real model ends and where the
mathematical model begins."

Mathematical models in particular are very useful for studying the dynamics of
systems. The type of mathematical tool or tools to be used depends on the process itself
and on the applications intended for the model. Our interest in models in this thesis is

oriented towards mathematical ones, which is natural since almost all analysis in science
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and engineering are based on them. (A view that is not universally accepted). Note that
models based on bondgraphs are also mathematical in nature, but incorporate an
important physical postulate, viz. the power postulate (cf. Ch. 4).

The following classifications are all for mathematical models.

First the dichotomy realizing deterministic aﬁd stochastic models. Deterministic
models predict the future behavior of the system if provided with sufficient information
at one instant in time or at one stage. This predictability is weakened in the case of
stochastic models. For these models the predictions are probabilistic and no matter how
much one knows about the system at a given time, it is impossible to determine with
"absolute" certainty the future behavior of the system.

We also find statespace models and input-output models in literature (although more
commonly referred to as systems rather than models). Both types of models are usually a
subset of deterministic models, and can either be continuous or discrete. In the
continuous case they are built of ODEs (statespace models are built of first order ODEs
only). In the discrete case, difference equations are used. The decision to use continuous
or discrete models depends on the amount of data the modeled process provides and on
the nature of dynamics involved. In general, many continuous models can be converted to
discrete models while successfully reproducing the dynamics of the original system (to a
preset degree of accuracy). In the statespace model case, the state concept provides a
complete summary of the status of the system at a particular point in time using state
variables which provide information on the internal dynamics of the system. Examples of
state variables are entropy in the thermodynamic domain, charge in the electric domain
and displacement in the mechanical domain (more on physical domains in the next
section). On the other hand input-output models are external. They provide information
about the input and the output of a system without any treatment of the internal

dynamics. Thus they are very similar to Ashby's black box models (1953).
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Note that PDEs are also used to build models. This approach is the standard for realizing
models of fields (e.g. electromagnetic or gravitational fields), or what are known as
continua models (where particle models are built using ODEs).

Bondgraph models have been very successful in modeling particle based processes.
They were also applied to continua phenomena ;zia reduction to particle level. (The
reader might relate better to the lumped and distributed parameter terminology referring
to particle and continuum models respectively.)

Mathematical models can also be built of linear or nonlinear equations. Usually
complex dynamics require nonlinear equations to describe them, although it is sometimes
possible to linearize the model when focusing on small variations.

Before leaving this section we need to emphasis that it does not provide an
exhaustive account of the classifications found in literature. Still the provided
classifications are the most dominant ones and can easily guide the reader through the

remainder of this thesis.

3 Physical Domains
According to Breedveld (1984), (section 5.2.2) "every type of scalar state variable or
vector component of a directed ... state variable ... with conjugate effort and flow
corresponds to a so-called ‘physical domain' ." In other words, one can state that physical
domains are distinguished from each other by their effort and flow pairs. Note that their
is no universally accepted table for these domains, and that different identifications of
effort and flow variables, produce different classifications of physical domains.

Table 2.1 provides the framework of van Dixhoorn's physical system theory for
physical domains as they are identified in Paynterian bondgraphs (BGs). Another
extended framework, that incorporates the magnetic and material domains, was adopted

for Generalized Bondgraphs (GBGs) (Breedveld, ib. p. 50). Actually, in chapter five, we
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so-called electromagnetic domain.

(Note that the chemical

thermodynamical domains do not have generalized momenta.)
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and

Table 2.1. Physical Domains in Paynterian BGs

Domain Effort Flow Generalized  Generalized
momentum  displacement
Translation Force Velocity Momentum Displacement
(N) (m/s) (Ns) (m)
Rotation Torque Torque Angular Angle
velocity momentum
(Nm) (rad /s) (Nms) (rad)
Hydraulic Total Volume Pressure Volume
pressure flow momentum
(N/m?) (m*/s) (Ns/m?) (m?)
Acoustic Pressure Volume Momentum Volume
velocity
(N/m?) (m?/s) (Ns/m?) (m?)
Electric Voltage Current Flux Charge
linkage
V) (A) (Vs) ©
Chemical Chemical Molar flow Molar mass
potential
(J/mol) (mol/s) (mol)
Thermo-  Temperature Entropy Entropy
dynamical flow
(K) (J/sK) (J/K)
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The unifying approach of dealing with different physical domains is an important tool by
which modelbuilding becomes oriented towards explaining the way different physical
domains interact. The interactions are described perfectly by gyrators and transformers
(see chapter four for definitions of gyrators and transformations). Thereby modelbuilders

can treat all physical phenomena using a single (unifying) concept.

4 Modelbuilding phases

This section provides a delineation of building phases a model must go through before
becoming a useful analysis tool. We focus our attention on mathematical tools in
particular; for the reasons mentioned earlier. Note that our treatment of phases is not
universal. (For example, a different outline of the steps involved is available in the book
by Brogan [1991], p. 5). We adopt the work by Maki and Thompson (1973, pp. 1-7) for
our presentation of the phases involved in modelbuilding.

The first phase in modelbuilding is devoted to studying the process or system to be
modeled. Obviously the success of this step is related to the degree of familiarity and
understanding the modelbuilder has for the to-be-modeled process. This prompts a
question on the skills needed for successful modelbuilding. The author's personal view is
that a good command of mathematics is the most important tool any modelbuilder needs.
But mathematics alone is not going to produce real world models. As we will note later
in this chapter, simulation is becoming a standard (while not the only standard) in
analysis of dynamical systems. This requires a strong understanding for a number of
programming languages and the ability to utilize simulation software. Also an ability to
recognize patterns and general structures can be of great help for modelbuilders, which
enables them to apply the results of one mathematical modeling experience to several

branches of science and engineering.
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The second phase involves idealizing and approximating the process; making the analysis
more precise. The modelbuilder is required to make decisions on what information or
features of the process are relevant to the conducted study, and then to reduce the real
process to an ideal one that can, satisfactorily, mimic the involved dynamics of the parent
process. This phase is usually the most difficult one due to the type of decisions that must
be made.

The third phase transforms the operative processes at work in the approximated and
idealized system to symbolic terms and mathematical operations. Note that such a
transformation is not unique. One can design experiments to show that one mathematical
model is better than others (according to Kuhn, this is impossible in practice!), but it
should also be clear that it is difficult to build a model that can account for all facets of
the problem under consideration.

When the mathematical model is completed, the fourth phase begins. In this phase,
various analyses of the system are conducted using appropriate mathematical tools. This
results in a set of predictions on the performance and dynamics of the original process.

This new information about the original process completes one modelbuilding cycle.
In the next section we introduce the most important concept relating the model to its

parent process.

5 Model Verification

The model evolving from the four phases already mentioned, does not reveal how
rewarding our modeling is, until we can validate the data it provides. This process should
be looked at as a falsification rather than a validation of the model, which is the position
Karl Popper adopted. "His claim is that real scientific models are set forth in a way that
spells out observations and predictions that can be tested experimentally. If the prediction

fails, then the model is falsified and must be abandoned or completely re-thought. But if
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a model passes its crucial test, it's not validated but only 'corroborated.' In this case the
process of testing must continue." (Casti II 1992).

Usually the first modeling attempt is not very successful in accounting for the
observations about the dynamics of the modeled process. This requires a new cycle of
the four phases of modelbuilding or more often,' a partial re-iteration of that cycle.
Another reason for re-building models is updating them. This is due to the measurement
capabilities available. Sometimes measurements cannot attain the accuracy degree
needed to judge models, a fact which usually leaves us with little choice but to learn to
live with the available ones until they become obsolete as investigators acquire higher
standards of measurement. In general, most models implemented in science are
frequently revised; since any new information about the process(es) in question must be
incorporated into the existing model(s).

It goes without saying that model verification is often not a straightforward task; the
ability to design experiments that can generate the data to be compared with the
analytical output from the investigated model is often hard to acquire. Some might argue
that it was the data obtained from the process that enabled the modeler to produce his or
her model in the first place; thus the data needed for verification should already be
available. Their argument is valid. Still we need to remind ourselves of the function
models should perform. Even if the model agrees with the data provided by the original
process, in many cases it must also be able to successfully predict the future dynamics of
that process. Often that is the part for which we design experiments.

This section should provide the reader with a dynamic picture of science; all the
theories we have today are not sacred, and our minds should be able to see them
constantly modified as we continue to progress. Such a mentality of change speeds up the
evolution of new frontiers, enabling human beings to gain more knowledge and power

than they have ever anticipated in our lifetime.
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6 Hierarchical Models

In this context, hierarchy refers to any set of relations in which units are organized into
more inclusive units. Note that all models (systems) are hierarchic in one way or another.
All hierarchies are concerned with relations, but some are concerned more with structure,
others with functional aspects of the system. Compiex systems often exhibit overlapping
hierarchies, so that some units are involved in more than one hierarchy, and sometimes
more than one hierarchy is involved in the same function (Bowler 1981).

In order to appreciate the concept of hierarchical modeling, the reader is first required
to understand the logic behind the idea of levels in modelbuilding. Take for example the
model of an electric power system. Such a model must be built to meet the objectives of
the conducted study. If the purpose is exploratory, simple models will suffice. On the
other hand, as the study becomes more concerned with the details of the performance of
the system, the modelbuilder becomes obliged to explicate more than a single level of the
system. Here the levels are separated by establishing functional dependencies that allow
the modeler to treat components of the studied system as black boxes when modeling at a
high level (macroscopic level) and delineate the structure of the components themselves
as he or she start to model the microscopic levels. Thus the influence of the components
can be incorporated without the need to examine their dynamical details, while
maintaining the possibility of modifying the specifications of any component as it alters
the performance of the system.

The 1dea of the level of a model is very similar to that of the subsystem. As we start
to recognize models as systems, we begin to map the levels of a model as subsystems and
progress upwards, to higher modeling levels that eventually produce the total or complete
system.

From the above perspective one can clearly see that such an approach becomes

indispensable as the modeled process becomes complex. That is to say, in order to model
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any real world processes the modelbuilder will find it necessary to model the process as a
system that is composed of a number of subsystems that have simpler structures or
dynamical performances. This also becomes convenient as the modelbuilder engages in

building models that share components or subsystems that have already been modeled.

7 The Systems Approach in Modelbuilding
Through the second half of the twentieth century, the idea of systems was able to
penetrate almost all fields of science, becoming the basis for rapidly developing methods
for the solution of complex problems. This approach of representing processes as systems
is part of a modelbuilding procedure that is oriented towards generalizing the type of
(mathematical) model used to analyze various kinds of processes under different
disciplinary umbrellas. This goal is best achieved by structuring the systems approach on
heterogeneous theoretical concepts. In this section we provide a cursory look into this
type of models, a look that is intended to initiate the reader on this methodology without
diverting our efforts away from the main stream of this thesis. For more comprehensive
treatment, the author provides some of the often cited and most recent works in the
bibliography section of this chapter.

One way of defining a system mathematically is the statespace approach. This
approach, as mentioned earlier, uses a "system" of first order ODEs to mimic the

dynamics of the parent process. When denoting the states by Qi (i=12 .., N), the

mathematical representation can be written as

[ dQ, _
cg"fl(Qlana-“aQN)
1 S dt =f2(Q1>Q2,"'=QN)
aQy _
= [0(Q yrennr Q)
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(Bertalanffy 1968). This representation is found in many fields. For example, it was used
by Skrabal (1944, 1949) to model the mass action, by Lotka (1925) to model
demographic problems, and by Spiegelman (1945) for kinetics of cellular processes and
the theory of competition within an organism. Werner (1947), used a similar system to
model the basic law of pharmacodynamics which is used to derive the various laws of
drug action.
The above representation can be used to demonstrate a variety of behavior patterns
that systems may exhibit. First let us limit our study to a system with a single state. This
meets our objectives without any loss of generality. The mathematical representation

becomes

dg
2 “c;—f(Q)-

Expanding the right hand side of the above equation into a Taylor series around the

origin and truncating after the first term we get

d
3 —d%:alQ >

(o, being the Taylor series coefficient) where the zeroth term is equal to zero on the
assumption of no spontaneous generation of elements. The solution of equation (3) is the
well known exponential law

4 Q= C, exp(ayt).

(C, is the constant of integration.) This law appears in many fields. In mathematics it is
often called the law of natural growth (for «, > 0), and is applied to the growth of capital
by compound interest. In social sciences it is known as the law of Malthus and signifies

the unlimited growth of a population whose birth rate is higher than its death rate. When

the constante, is negative, equation (4) can be applied to radioactive decay and to the
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extinction of the population when the death rate is higher than the birth rate. Other
applications can be found in many other disciplines, including biology and chemistry.
Another law for growth can be obtained by truncating the series after the second

term. The resulting equation is

5 0= o, Cexp(a,t) ’
1-a,Cexp(ayt)

where C is a constant and «; and «, are the Taylor series coefficients. The growth
produces the so-called logistic curve which also has applications in many fields. For
example, in sociology it is called the Verhulst law and represents the growth of human
populations with limited resources.

The representation of equation (1) can also be used to model the phenomenon of

competition. Take for example the simplest case of two competitors. One can reduce the

complexity of the model farther by assuming ,,; = 0. Then the resulting law is given by

6 O = BQzA >
where,
A=a,/a,
B=C,/C*

(In biology, equation (6) is known as the allometric equation and in sociology, it is
known as Pareto's law.) More complex cases (for which not all «,; are equal to zero) can
be found in the works by Volterra (1931) and Spiegelman (1945).

Other behavioral patterns such as wholeness, mechanization and finality are also
modeled by (1). The interested reader is referred to the masterpiece written by
Bertalanffy (1968) for a detailed treatment. Note that all the above mentioned patterns
are actually notions pertaining to the inner structure of the system model (Blauberg et al.

1977). This particular conceptual tool is a very powerful one in modeling processes that
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maintain a static structure. Such processes are dominant in engineering (practically all
machines can be assumed to have static structures) and physics. Unfortunately, the
stfuctural approach faces serious challenges when applied to biology and sociology
where processes tend to evolve and maintain dynamic or varying structures.

In the next section, a technique referred to as Diakoptics is introduced. It is based on
the concept of tearing the structure of a complex system (in order to simplify the analyses

involved).

8 Diakoptics

The etymology of the word " Diakoptics” is from the Greek "kopto" meaning "to tear"
and "dia" that reinforces the word to follow and may be interpreted as "system." The
word was suggested by Prof. Philip Stanly, of the Department of Philosophy at Union
College, Schenectady, NY (Kron 1963). Hence the method is also known as "the method
of tearing." "The method of subspaces " is an earlier name for the same method that was
coined in the early 1940's (Hoffmann 1944). Kron started to tear systems in the mid
1930's, for the purpose of setting up the equations of large systems in a piecewise
systematic manner. In the early 1950's he began to solve each subdivision first and then
interconnect the solved equations (Kron 1956). That was the harbinger of a new vista in
electrical engineering, providing a program that utilized tensor analysis as a
mathematical shell.

As defined by its inventor, Diakoptics "Is a combined theory of a pair of storehouses
of information, namely equations + graph, or matrices + graph, associated with a given
physical or economic system. The graph of the system is also put to work to assuage the
monstrous appetite of the high-speed digital or analogue computer" (Kron 1963).

Diakoptics is definitely not limited to physical systems but extends to any system which
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has a large number of variables and is representable by a block-diagram or a graph. The
system may contain negative, non-linear and other arbitrary algebraic functions.

This contribution by Kron helped expedite the development of what became known
as bondgraphs. The existence of such a conceptual kinship between the two techniques
was explicated by Henry Paynter (1969 & 1992), thé inventor of Bondgraphs. Due to the
more general structural treatment that bondgraphs supported, and to the elimination of
the "awesome" tensorial notation that was adopted for Diakoptics (the author re-
introduces this notation to bondgraphs, believing that it plays an important role in the
analysis of complex systems), and also due to the use of a more general type of graphs,
bondgraphs became much more established in scientific and engineering circles. An
introduction that focuses on bondgraphs as a modeling tool is found in chapter four.
Although not instrumental to this thesis, the reader might also want to experience the
applications of Diakoptics as a modeling tool; for that purpose, a number of good texts

on the subject is provided in the bibliography section.

9 Simulation and Modelbuilding

Before leaving this chapter, we will discuss briefly the process of simulation and its role
in modelbuilding; first a definition of simulation is introduced, then we focus our
attention on mathematical simulation and on the software used to simulate dynamical
systems.

Shannon (1975) defines simulation as "the process of designing a computerized
model of a system and conducting experiments with this model for the purpose either of
understanding the behavior of the system or of evaluating various strategies for the
operation of the system." Another definition given by Korn and Wait (1978) states that a
simulation "is an experiment performed on a model." Although many other definitions

are found in the literature; the relation between simulation and models (or
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modelbuilding) almost always revolves around the idea of systems. Simulation is a tool
for "observing" the behavior of systems that do not exist (e.g. mathematical models), or
for "observing" the unobservable (or rather the difficult-to-measure) behavior of real
systems.

The application of continuous dynamic simulétion (CDSS) languages on personal
computers (PCs) and workstations is becoming the standard analysis tool for engineers
and scientists. These languages can be discrete, continuous or combined. For discrete
event simulation, the most popular languages are SIMSCRIPT, GASP, GPSS, and
SIMULA (Karayanakis 1993). For more information on discrete simulation languages,
the reader can consult Deo (1983) and Kreutzer (1986). Continuous languages are used in
verifying analog simulation results. The most popular ones are ACSL and SIMULINK.
Other languages are developed to simulate hybrid systems. GASP IV and CLASS are two
of the well-known combined simulation languages. For an excellent treatment of
combined simulation languages see Cellier (1979a & 1979b).

A standardization effort by the Simulation Software Committee of Simulation
Councils, Inc. (SCi) resulted in developing CSSL (Continuous System Simulation
Language) in 1967. CSSL is a problem-oriented language for the simulation of
continuous dynamic systems that can be modeled by systems of ODEs. For more on
CSSL, the reader is referred to Stephenson (1971). Some of the most popular languages
based on CSSL are ACSL, RSSL, DARE, DARE-P, HYTRAN, and SL/1.

Like any other technique, modeling via simulation has its advantages and
disadvantages. Some of its advantages are (Adkins and Pooch 1977):

1. Provides controlled experimentation environment, with regard to the time of the
experiment, the variation of parameters, and the number of times it is carried out.
2. Permits sensitivity analysis by input variables' manipulation.

3. Permits experimentation without altering the real system.
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4. Is a very effective tool for training purposes.

The salient drawbacks of simulation can be summarized as follows:

1. In terms of development time, man power and computer time, simulation may
become expensive. |

2. The results of simulated experiments can diverge from the behavior of the real
process. This is primarily due to the selective attitude of modelbuilding.

3. Initializing the parameters involved in a model may also prove to be difficult. This

involves extensive developing time in collection, analysis and interpretation.

As a final remark, the reader should realize that although simulation is widely considered
an integral part of the decision-making process carried out by modelbuilding, the
successful application of the technique is still an art that is heavily dependent on the

modelbuilder's experience on applying simulation.
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"Starting from the concept that
there exists a unique privileged
observer of the cosmos, namely
man himself, natural philosophy
has journeyed to the opposite
pole and now accepts as a
fundamental principle that all
observers are equivalent, in the
sense that each can explain the
behavior of the cosmos by
application of the same set of
natural laws." D. F. Lawden, An
Introduction to Tensor Calculus,
Relativity and Cosmology, 3rd
edition

3 AN INTRODUCTION
TO TENSOR CALCULUS

It seems that the concept of stress in mechanics is the historic origin that led to tensors
(tenseur, that which exerts tension, stress [Kay 1988]). Tensor calculus was developed by
Georg Friedrich Bernhard Riemann (1826-1866), Elwin Bruno Christoffel (1829-1900),
Curbastro Gregorio Ricci (1853-1925), and Tullio Levi-Civita (1873-1941) as a tool for
the study of n-dimensional spaces undergoing transformations of reference frames

subject to some condition of invariancy. In the early 1920's, the distinguished Albert
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Einstein (aided by Marcel Grossmann) championed its inclusion in physics as the
mathematical shell for his relativity theory. Kron was the one to inject the compactness
of such analysis into electrical engineering in 1935 (Bewley 1961).

The most important concept that tensors introduce is that of physical entities. This
makes tensors the most suitable of tools on which dne might successfully build a general
physical systems theory. Thus there is no doubt that tensor calculus is one of the most
suitable (necessary but not sufficient) bases for a unifying theory in science.

This chapter gives a cursory exposition that is intended as a guide to the subject
rather than a self-contained material. The reader will find much more exhaustive
treatment in the bibliography at the end of the chapter. Still the author believes that this
material is quite adequate for a first encounter with tensor analysis and for the

subsequent developments utilizing it in this work.

1 Generalized Spaces

The relation between analysis and geometry, as it stands in the realm of real dimensions
at the end of the twentieth century, has proven to be a very powerful tool in attacking
problems in science, especially sciences built on mathematical foundations (the so-called
hard sciences.) The power of this method lies in the fact that it helps one "see" the
relation between the variables over which the analysis is performed, by representing
their variation as trajectories of points in three dimensional spaces. As the labyrinth
established in the world of "systems" of more than three variables evolve, the "seeing"
advantage starts to slip through our fingers (but is not exactly lost, thanks to the
projection theorem). The geometric interpretation of any physical "system" can howevér
still help our understanding in areas such as analysis and synthesis ( or design ) of

physical "systems."
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Such a generalization of three dimensional spaces allows us to think of N dimensional
spaces (where the dimension, N is allowed to be finite, or infinite), with N dimensional
codrdinates, that are linearly independent of each other and thus form a so-called basis of
the space (for more on this formalism on generalized spaces see [Dudley 1994] or

[Brogan 1991] ).

2 Euclidean Space
The modern meaning of a Fuclidean space is that of a generalized N dimensional one.
But what makes that generalized space Euclidean is the definition of distance between

two points that live inside it. The square of the distance between adjacent points is given

by
7 ds* =Y dx’,

where the x's are rectangular Cartesian coérdinates. This expression representing ds” is
called the metric or the fundamental form or simply the square of the line element.
Note that if the space allows complex numbers as values for the coordinates, the
generalized space is called a unitary space and equation ( 7 ) needs to give the absolute
value of the difference of the coordinates. Before introducing any other generalized
spaces, a digression is in order to introduce the formalism of tensors that will facilitate

writing our equations.

3 Orthogonal Transformations
Starting with rectangular Cartesian coordinates x’ and formulating the distance between
two points B(x',x*,...,x")and P,(y',3*,...,»") in an N dimensional Euclidean space

( where x',y' eR" ), we obtain:
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Now if we carry out the linear transformation,

9 ¥ = aijxj+b" i=12,3,...,N

1
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and find that the coefficients of the transformation satisfy

(x'-y)

for all rectangular Cartesian coordinates x’,x’ and y',7’, then the transformation is said

M=

10 S(E-y) =

i=1 i

Il
—

to be orthogonal. Note that the square of the distance between points F, and P, is

invariant, i.e. independent of the Cartesian Frame used.

Let z=x'~y and ¥ =X —7'. Then (9 ) can be written as:

N

- j

11 '=3Xa,z.
j=1

Now in matrix notation ( 11 ) takes the form,
12 Z=Az

and ( 10 ) becomes

13 z77=2"z2

taking the transpose of ( 12 ) gives,

14 =4

If we substitute ( 14 )and ( 12 ) in ( 13 ) we get
15 AT4=1,

Thus by taking the determinant of both sides we find that |4|= +1(where the positive

value belongs to "proper" rotation, while the negative value belongs to orthogonal



45

transformations involving a reflection), which means that 4 is non-singular and that post

multiplying ( 15 )by 4™ gives (remember that we restrict our work to R")
16 AT =47

In components notation the above results are summarized as follows:
_jzf;a,ja,.k =&’

17

il J
gaﬁaki =& k
I=

where & is the Kronecker symbol defined by
o lLi=yg
18 5= J}
0,i#j
Note that the conditions in (17) are the necessary and sufficient conditions for the

orthogonality of a linear transformation.

4 General Coordinate Transformations

The transformation in ( 9 ) can be written in the general form

19 -3 =x(!%%,.,x") (i=1,2,...,N).

This form is a representation of the C? class (i.e. ¥ (x!,x?,...,x") has continuous second-
partial derivatives at every point in the region) mapping in a N dimensional abstract
space from x’ to X'. If this transformation is bijective (i.e. one-to-one and onto), it is
called a coordinate transformation, and if x’ are rectangular Cartesian coérdinates, as in
(9), ¥ are called affine coordinates. If the transformation is nonlinear, then ¥’ are
called curvilinear cooérdinates. The most common curvilinear codrdinates are the polar,

cylindrical and spherical coordinates (Kay 1988).
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In pursuit of our goal of a general mathematical shell for physical systems, it will become
necessary to use coordinate systems that are not tied to the rectangular codrdinates.
Distance in those codrdinates is represented through a functional such that it remains
constant under all admissible transformations. Generally this is going to destroy the
Euclidean properties of the spaces under considération. At this stage its important to
stress the independent character of the functional (or metric) representing the space and
the coordinate system adopted to describe the space. This independence holds for all
coordinate systems with the rectangular coordinates being the exception, where the

codrdinates are defined by the metric (Kay 1988, p.26.)

5 Range and Summation Conventions

Quoting from Synge & Schild (1949):

Range Convention:

When a small Latin suffix ( superscript or subscript ) occurs unrepeated in a term, it is
understood to take all values 1,2,...,N, where N is the number of dimensions of the space.

Summation Convention:

When a small Latin suffix is repeated in a term, summation with respect to that suffix is
understood, the range of summation being 1,2,...,N. It will be noticed that the reference is
to small Latin suffixes only. Some other range (to be specified later) will be understood
Jfor small Greek suffixes, while if the suffix is a capital letter no range or summation will
be understood. [in this thesis the range for Latin suffixes is from 1 to 3, where Greek

suffixes run from O to 3]

Thus when the summation convention (due to Albert Einstein) is applied to (17) we

obtain
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20 aya, = &%
a,a, = &%

where the summation takes place with respect to / from 1 to N. Sometimes the repeated

suffixes are referred to as dummy indices and the npn-repeated ones as free indices. The

reason behind the nomenclature is that the repeated indices can be replaced by any other

indices without changing the value of the sum, where such a change of independent

(non-repeated) indices generally does not preserve the equation. Thus in tensor equations

the same free indices can appear in every term only once, but a dummy index may only

appear in every term twice.

6 Tensors

Einstein (1916) defines tensors as follows:

Let certain things ("tensors") be defined with respect to any system of coordinates by a
number of functions of the coordinates, called the "components" of the tensor. There are
then certain rules by which these components can be calculated for a new system of
coordinates if the transformation connecting the two systems is known. The things
hereafter called tensors are further characterized by the fact that the equations of
transformation for their components are linear and homogeneous. Accordingly, all the
components in the system vanish, if they all vanish in the original system.

Gabriel Kron defines "tensor" as another term for "physical entity” and defines tensor
analysis as "the study of physical phenomena in terms of the physical entities
themselves." He also emphasizes that a tensor is not a matrix with a definite law of
transformation, but rather that the n-way matrices are the projections of the physical
entity we call a "tensor" (Kron 1942). Bishop and Goldberg (1968) give the following

definition:
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Let V be a vector space. The scalar-valued multilinear functions with variables all in
either V or V* (the dual space of V ) are called tensors over V and the vector spaces they
form are called the tensor spaces over V.

Tensors have ranks (also known as valences or orders). The rank of a tensor is the
number of indices of that tensor. The total number of components of a tensor is equal to
N, where N is the range of the indices (i.e. the dimension of the space) and » is the
rank of the tensor. The simplest tensors are tensors of rank cypher (scalars) which are
invariant, i.e. they have the same representation in every codrdinate system. First rank

tensors are vectors and they transform according to one of the following rules:

Contravariant vectors (with superscripts):

—i
21 7oyt ZX
ox’
Covariant vectors (with subscripts):
— Ox’
22 V=V ow

In a similar manner the higher order tensors can be defined as contra- or co- variant
tensors. The following is for the most general case that involves the transformation of a
(k+1) order tensor:

—j —i n
23 f/_ilizis--fk = [/ s 2 ox* Ox 1... ox"
Qhfsedi T .y m Ex™ 5“]] —_—
a X1 X X 5 x-’l

Note that tensors with a rank of two or more can be mixed, i.e. having contra- and co-
variant indices (superscripts and subscripts). An example on a mixed tensor is the

Kronecker symbol:

O%P Ox’_ OX° Ox* _ _,

24 VOO dxhawe %7

Thus the Kronecker symbol is an invariant with respect to the above transformation
which is the reason why it is termed the fundamental tensor of the second rank (Lawden

1975).
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7 Riemannian Space

One of the most important tensors is the metric tensor which is associated with the
distance concept and is associated with it via the following equation

25 +ds® = 8.p dxdx’.

With the positive sign the interval is said to be space-like, and with the negative sign it is
said to be time-like. As soon as we define this squared infinitesimal distance, which is an
invariant homogeneous quadratic function of the coérdinate differentials, we designate
the manifold a "metric space" or a "Riemannian space" (Bergmann 1976). Note that if
the rectangular Cartesian codrdinates in equation (7) were written in terms of curvilinear
codrdinates x“, equation ( 7 ) would become similar to equation ( 25 ), except that the
metric tensor will be of a different form. In Euclidean space, the metric is always
positive-definite. When the metric is allowed to be indefinite, it is then associated with

non-Euclidean spaces. The metric tensor itself is defined as follows

_o¢ o8
2 8= Gan G

where 17, are the Minkowskian metric give by

+1, a=p=12,0r3
27 Ny =1-1, a=p=0
0, a=#p
This tensor will be revisited when we look into the special and general theories of

relativity in more detail.
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8 Tensor Densities

Tensor densities ( or pseudotensors ) are defined as follows

Y ox* Ox* 4
ox*oxv *

%
ox

28 V=

v

Where ¥ is the weight of the tensor density and |JX/Fx| is the Jacobian of the

transformation x — X.
The only tensor density that does not change its components in all coérdinate

systems, is the Levi-Civita tensor density which is defined as follows

0, some indices are equal
29 e"™ =341, even permutation

-1, odd permutation

were the odd and even permutations are with respect to a reference sequence usually

taken as 1,2,..., N ,where N is the dimension of the abstract space.

9 Tensor Algebra
All algebraic operations introduced in this section produce tensors, with exceptions in
special cases that are mentioned below. These operations are defined only under certain

conformability conditions.

Summation:
This operation is defined on tensors having the same type and order. The output is also a
tensor inheriting the same type and order. This operation is commutative. For example

the summation of tensors U *’and V' * is given by

30 We=U?++y
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Inner Product:

This is an order reducing operation. It is carried out by equating a contra- or co- variant
index in one tensor to an index of the opposite type in the other tensor, then summing
over the dummy indices. The output is a tensor that has a rank less than the sum of the
ranks of the parent tensors by two and with a number of contra- and co- variant indices
that is reduced by one for each type, as shown in (31). Note that this product will produce
a scalar (an invariant) in the case of tensors of rank one, similar to the result from vector

analysis. This operation is also commutative.
31 wl=0v,

Outer Product:
This operation produces a tensor that has the sum of the ranks of the parent tensors as its
rank while preserving the type of the indices of the parent tensors ( being either contra- or

co- variant ). Note that this operation is commutative ( 32 ).
32 W =UV 4

Contraction:
As we proceed in the inner product operation, we equate the indices of different types but
from the same tensor (a monad operation). Thus this operation has one input and one

output, that has a rank that is less than the rank the input tensor by two. In (33), if we

contract the tensor by setting a = y we get

s ox® ox? ox'

W-—aﬂ}l = t r s
33 ox" OxF Ex7
_ B 9yt B B
Waﬂa =W iii ox =W éyf—é‘tr =W 23
ox® Fx" ox° ox*

Although there is no contraction operation in vector analysis, it is helpful to readers
familiar with vectors to think of vector sum, inner product and outer product as special

cases of the above.
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It is also worth mentioning that the inverse of a second rank tensor is given by

-1 - ,B(l
34 Zy' =Y

(which could be interpreted as impedance-admittance relation) and that the transpose of

Zog

1S Zg,.
10 Tensor Symmetry

A covariant tensor of second valence is said to be symmetric if
35 Ay = Ag,
and antisymmetric or skew symmetric if

36 A

aﬂ=_A

Ba

Note that symmetry or antisymmetry is conserved under transformation of coérdinates
since A Aﬂa and Aa/,+ A,,a are tensors and thus, if they vanish in one codrdinate
system, they vanish in all others as well. The same can be said about contravariant
tensors. Note that these remarks do not hold in the case of mixed tensors.

The above definition can be extended to higher valence tensors by examining
symmetric properties over pairs of indices provided that they are of the same type, i.e.
both must be co- or contra- variant.

A result similar to the one concerning the decomposition of matrices into symmetric

and antisymmetric parts applies for non-mixed tensors with valence two,

1 1

37 Aaﬂ='2‘(Aaﬂ+Aﬂa)+5(Aaﬂ—Aﬂa)

where the first part is the symmetric part and the second is the antisymmetric one.

Obviously both parts are tensors of valence two.
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11 Covariant Differentiation

Now if we try to find the derivative of a tensor of the first rank with respect to x*, we
will find that the derivative does not transfer as a tensor (Weinberg 1972). This
prompted a definition of a covariant derivative that would restore the tensorship of the

derivative. The covariant derivative for a mixed tensor of rank three is defined as follows

Lo . 0’, {og vo (2 v X Lo
38 T =S T+ DL+ LT =TT

( ;p indicates the covariant derivative with respect to x°) where,

1 °8,, 6g, 0°g
39 [ =_p" #V+ Av__ HA
) & { ox*  ox*  Ox”

is known as the Christoffel symbol of the second kind or as the affine connection. It is

given by

40 2 9% 78
w T PET FxkaxY

The reader is cautioned that this symbol is not a tensor (Weinberg 1972). Note that the
contravariant (upstairs) indices produced the positive product terms, where the negative
terms were produced by the covariant (downstairs) index. The same mechanism carries
on for higher order tensors .

Finally we need to mention that the covariant derivative of the metric tensor vanishes
identically. For if we differentiate (26) with respect to x* we get

08w O°E O o o
i A v 77&,3 + A v
Ox Ox"Ox* Ox ox* Ox"Ox

77043

_pe 507 e o
4 "G o T T G e T
= rfygpv + rfvgpy

and from the definition of the covariant derivative for a covariant tensor of valence two

we get
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og,,

Ax* - Ff/.tgpv - rfvgpp =0

42 g,uv;},=

This result is known as the Ricci theorem (Broisenko and Tarapov 1968).

12 Differential Operators
The simplest differential operator is the gradient of a scalar field. For a scalar it is also

equal to the covariant derivative

43 s =98

w = Pk
(Sometimes a comma [ , ] is used instead of a semicolon [ ; ] to represent the gradient).
Higher order tensors are defined in the same way. Note that this operation increases the

tensor rank by one.
The covariant curl is also equal to the ordinary curl,

3V,
44 Vo o—v p 9V,

AR PO P

Note that this curl tensor is anti-symmetric in all reference frames.
Finally the divergence of a tensor is defined as its derivative with respect to one of its

indices, thus lowering the rank by one:

4, =
X
45
_ICy
Cass™ Ox?

13 Line, Surface, and Volume Integrals

The line integral of a tensor of any rank is equal to a contraction of one of its indices and

an integration,

46 |42 ax"=B.*
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Where the ellipse denotes other indices. The surface integral is equal to

47 J' A%, dxPdx” = C.°

and the volume integral is given by
43 J:U Al st Tdx’dx® = C?p

In tensor analysis Stokes' theorem assumes the following form:

04, 4

adxﬂ
oxP é’x

49 J’A dx® =

14 Index Gymnastics

Quoting from Misner et al. (1973) "index gymnastics” is defined as:

...the technique of extracting the content from geometric equations by working in
component notation and rearranging indices as required...

The most exhaustive table on index gymnastics techniques can be found in Misner et al.

(1973). We provide the most important entries in the following:

.. . ap _ b

1. Raising an index S =g"S,
. . a _ aff

2. Lowering an index Sy =8,

3. Contracting S to form a new tensor M M,=S;,

4. || n,4| is the inverse of ” 7 ll NapT? = 6.

5. Gradient of N to form a new tensor Sg‘y =N /‘,f ,
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6. Divergence of N to form a new tensor R Ry=Ng,

7. The contravariant index on a gradient is Ng7=Ng 77
obtained by raising covariant index.

15 Geodesic Lines
A geodesic is the shortest distance connecting two points on a surface. In a Euclidean
space, it is a straight line, but in a Riemannian space it takes forms other than straight

lines. The geodesic equation is given by

d2§1 ; dgm dgk
50 +T =0
> ™ ds ds

Where s is the arc length. Note that the affine connection vanishes when the coérdinate

system is Cartesian. For a derivation of (50) the reader is referred to Bergmann (1976).

16 Curvature of Space

We found it convenient to structure this section on the chapter in the book by Synge and
Schild (1949). No claim is made that this section is self contained, although we include
all the elements necessary for our study of the general theory of relativity.

The concept of curvature of space is not a new one. In Euclidean geometry we speak
about the curvature of a line or of a plane. This may be generalized for an N dimensional
Riemannian space by considering N dimensional objects, and treating the curvature as an
intrinsic property of the space (i.e. it cannot be measured by comparison of the space
with another space.) A curved space can be defined as a space that does not satisfy the
definition of a flat one. A space is said to be flat if it is possible to choose coordinates for

which the metric form 1s

51 ds® = &,(dx")? + &,(dx” ) +...+&, (A )2,
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throughout the space (not at a single point only), where the coefficients of each term are
either +1 or —1. In order to examine the curvature of a space, a unique tensor, built from
the first and second derivatives of the metric tensor, is used. This tensor is known as the

Riemann-Christoffel curvature tensor (R-C tensor for short) and is given by

or?, or’
A v K A A
52 R Oy S A S A

= - >
e ox* ox” e

where the I's are the affine connections (Christoffel symbols of -the second kind) given
by (39). The algebraic properties of the fully covariant R-C tensor (which is obtained via

the metric tensor) are :

53 R =R, (symmetry)
54 Rﬂ,uvx = —R,u,lvx = -R/lyxv = R,uﬂ.xv (antisymmetry)
35 R/lywr + Rﬂx,uv + Rﬂvxy =0 (CYChC1ty)

A necessary condition for the flatness of any space is the vanishing of the R-C tensor at
all points in the space.
The number of the independent components of the R-C tensor is given by
56 (1/12)N*(N*-1)
where N is the dimension of the space. An important form of the R-C tensor is obtained

via contraction,
—_ DA
57 R,=R,,
which is known as the Ricci tensor and is symmetric. Also of interest is the curvature

scalar which 1s given by

58 R=g"R, .
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In addition to the above algebraic identities, the R-C tensor obeys the following

differential identities known as the Bianchi identities:

59 R

Auviin

+R

Aunvix

+R

Auxr, v =

0.

A useful form can be obtained by contracting equation (59) twice to obtain

v 1o
60 (R == g"R),, =0.

Finally we introduce the Einstein tensor defined by

61 G = (R™ —% g"R),

which together with equation (60) leads to the conclusion that the divergence of the

Einstein tensor vanishes.

17 Special Spaces
In this section we will introduce some special types of spaces, exposing interesting
properties that cannot be found in a general treatment of Riemannian spaces.

First of all we introduce constant-curvature spaces, but to do so we need to define
isotropic points in a Riemannian space. An isotropic point in a Riemannian space is a

point at which the Riemannian curvature satisfies

62 K (gacgbd - gadgbc) = Ropea

Introducing G, , = (g,.8,, — £.42,.) We can write

63 KG ppea = Rapea

Now if a Riemannian space (with a dimension of three or higher) is isotropic at each
point in a region, then the Riemannian curvature is constant throughout the region. For if

we take the covariant derivative of (63) with respect to x* and permute and then sum we

get
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64 Gabch;u + GabduK + G K O

abuc

ac _bd

Multiplying with g“g” gives

8°8"G ey = 88" (808pa = Boise) = 6°84— 858 = N* — N
N&°

65 g“ g”dGabdu 88" (80alu — Euuloa) = 030% — 564 = & -
bdGabuc g““gbd (gaugbc - gacgbu) 5:5:‘! 5;‘5;1 6: Né\d

u

Then summing gives

66 (N> - N

For N = 3, the covariant derivative of K with respect to x* (which is arbitrary) becomes
equal to its partial derivative with respect to x* (since X is a tensor of valence cypher).
Hence K must be constant (see problem 9.14 in Kay [1988]). This result is known as
Schur's theorem.

Although we have already introduced flat spaces in (51), we expand our treatment by
introducing some of the possible properties of a flat space of N dimensions (Synge and
Schild 1949):

(1) The metric form is not always positive definite. Thus cypher distance between
two points does not always indicate that the two points coincide.

(2) The number of dimensions may be greater than three. In such cases a two
dimensional flat space does not divide the space into two parts.

(3) A flat space may be topologically different from Euclidean space. Although
this property is interesting, for our purposes, we shall assume the space to have Euclidean

topology.
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Before introducing Cartesian tensors, we need to define the so-called homogenous
coordinates. In (51), if the metric form can be written as

67 ds® = dy®ay”

where y® = ‘/;;x“ (the summation convention being inactivated), the codrdinates are
said to be homogeneous and due to the simplicity of the metric form in homogeneous
coordinates, they are used to study flat spaces. 3-space Cartesian codrdinates are an
example on homogenous codérdinates. Under such coérdinates, the transformations are all
orthogonal (section three). Under this formalism, Cartesian tensors are defined as
quantities that transform according to tensor laws when the cooérdinates undergo an
orthogonal transformation. The analogy between homogeneous codrdinates in flat space
and rectangular Cartesian codrdinates in a Euclidean plane prompted the name Cartesian
tensors. Note that being a tensor requires more stringent conditions than being a
Cartesian tensor, and that Cartesian tensors are available only if the space is flat and the
codrdinates are homogeneous. Also note that Cartesian tensors can not distinguish
between co- and contra- variant components, and thus their transformation laws remain

unchanged under raising or lowering indices. This can be seen when (9) is rewritten as
68 [x'=4x’+4, I''x' =B3 +B" .
Differentiating with respect to x’ and X’ we get

ﬁfi_ ox’

69 —_—
ox’ ox’

(due to the orthogonality of the transformations.)

Finally we state the fact that covariant differentiation can be introduced without
introducing a metric. That is to say, without associating a length with an infinitesimal
displacement or an angle with two vectors. This treatment leads to the so-called non-
Riemannian spaces, which are more general than Riemannian spaces. For more on non-

Riemannian spaces see Synge and Schild (1949).
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"I remain convinced that BG
models will play an increasingly
important role in the upcoming
century..." Henry Paynter.
Preface, ICBGM'93

4 BONDGRAPH
ANALYSIS

From a mathematical perspective, a bondgraph ( BG ) is a member of the linear graphs
family. Thus the similarities between bondgraphs and blockdiagrams, signal flow graphs,
electric circuits, mechanical networks, or other linear graphs are anticipated. In fact
many papers were devoted for scrutinizing such connections ( e.g. [Perelson and Oster
1976], [Brown 1972a] ). Still differences between bondgraphs and other linear graphs
exist (Cellier 1991), and these differences are actually the source of the unique character

of bondgraphs. Succinctly, a bondgraph is a modeling tool for multiport systems, which,
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while preserving the topological structure of the system, uses power flow ( being the
historic basis of the multiport concept ) as a criteria for description. This criterion
sometimes becomes a hurdle in the way of extending bondgraphic modeling to non-
physical systems since the "power" of social and economic systems is still,
mathematically speaking, a soft term. Therefore we can appreciate the physical genes
imbedded in the bondgraphic representation of multiport systems.

Bondgraphs were officially born on April 24, 1959 (Paynter 1993). The classic work
on BGs is "Analysis and Design of Engineering Systems", the class notes for MIT course
2.751, by their inventor Henry M. Paynter (Paynter 1961). Subsequently, BGs evolved in
the hands of a second generation of bondgraphists, such as Dean C. Karnopp, Ronald C.
Rosenberg, Jean Thoma, and Donald L. Margolis, who wrote numerous papers and books
on BGs that led to the standardization of the BG language and the extension of its
application to new physical "domains." A third generation bondgraphist, by the name of
Pieter C. Breedveld championed the generalized version of bondgraphs ( GBG ) which
was based on Thermodynamics ( see below ).

In this chapter we will introduce the rudiments of BG's with emphasis on the electric,
magnetic and mechanical domains. This will initiate the reader to bondgraphs and enable

him or her to integrate BGs into their analysis and synthesis of physical systems.

1 The Power Postulate

In this section we will focus on the power flow concept that BG's utilize to model the
equations of motion of multiport systems. The basics are first covered, with emphasis on
the electrical and discrete mechanical domains to demonstrate the ideas considered. Then
an extension that integrates the tensor character of variables to the concept, is introduced.
Power is defined as the rate at which energy is transferred, with the watt ( J /sec ) as its SI

unit. The reader might have noticed that the formulae for power found in any
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introductory physics book involve the product of two time dependent variables. Take for
example the formula for the instantaneous power in electric networks, P(t)y=v()i(t).
This is a matrix formula that gives the scalar power as a function of time, and relates it to

the output of an inner product between two column vectors (hereafter the underscore 1s
used to identify wvectors), viz., the instantaneous voltage vector v(¢), and the

instantaneous current vector (¢). Another formula for instantaneous power is that of the

discrete mechanical "domain," (P(¢) = f (1)"v(¢). The power in this case is the inner
product of the instantaneous force vector i (t), and the instantaneous velocity vector
v(¢). This observation on the nature of the power formulae spans the gamut of physical
systems, and in fact constitutes a basis for analogies.

Actually as we examine the types of variables in these formulae, we start to realize
that they belong to two types of variables. The first type, known as the flow ( /), built
from the time derivative of the so-called "configuration-like variable" ( we will denote it
by W ) of the system, e.g. the generalized codrdinates in discrete mechanical systems
( from which originated the notion of a configuration ) or the electric charge in electrical

networks (Toni 1977). For discrete systems we will call the configuration "generalized

displacement" (q) so that it agrees with the existing nomenclature. The second type,
known as the effort (e), ( or as the source-like variable ) is built from the partial

derivative of the energy of the domain under consideration with respect to the

configuration. Mathematically, this translates to
d
70 Pwy=L | 2N oy i)
dt A\ dt -

or

d
71 P(r)= ‘;—f = (g—i][d—fj =f(0) e()
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(where [ p] 1s the generalized momentum. Note that each formula 1s associated with a

specific kind of energy.) It is convenient to also define the integral of the effort with
respect to time as the generalized momentum. Hence the basic quantities are defined as

follows

T2a

t
p(t)=Je(z) dr+p,
72b o

z(t)=§£(z’) dr+q,

The Paynter " tetrahedron of state " that depicts the relations between the variables
is shown in Fig. 4.1. This generalization is a powerful tool that can provide a unified
approach to the analysis and synthesis of any dynamical system. A table that summarizes
the relation between the BG's fundamental variables and conventional variables for some
discrete "domains" was provided by Van Dixhoorn (1982).

As we have seen in the introduction to Tensor Calculus, every vector is a tensor

of valence one. Hence we can identify any vector as either a covariant or a contravariant

tensor.
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Fig. 4.1 : The Paynter tetrahedron of state

But what type of a tensor is the effort variable ? What about the flow variable ? This is
really not an essential issue since we can always find a metric tensor that can lower or
raise the indices. We only need to investigate the relation of power invariance and map it
into the definitions of the co- and contra- variant tensors. Our starting point is the
observation that most variable transformations in physical systems are power conserving.
The reader is referred to Hoffmann (1957) and Karnopp (1969) for more details. Power

invariance can be mathematically stated as follows

73 P)=P'(t)
where power is observed in two different coérdinate systems. From (70) we can define

(P'(¢) similarly to obtain a relation between the efforts and the flows of each coordinate

74 Er=¢"f

which we can delineate further by substituting for the efforts and the flows from ( 72a ),

- e

where the energy is, a fortiori, invariant. Now if we rewrite equation ( 22 ), 3 : 6, using

the chain rule, we get
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dx’ dx’
76 V| — =V —

and one can immediately realize that ( 76 ) and ( 75 ) are very similar. Still the reader is
cautioned that the codrdinates in ( 76 ) are not equal to the generalized coordinates in
( 75 ). This can be seen since ( 22 ), repeated as ( 77 ), does not give the correct relation
between the efforts and the ﬂbws, but rather the relation between the efforts of the so-

called "primitive" system and the connected real one, viz:

77 V= (ﬁx jV

ax )’

The lecture notes of His (1932-33) refer to currents and voltages as contravariant and
covariant vectors, respectively (Roth 1959). This was also the way Kron (1942) and
Happ (1971) treated them. Although it was not universally followed ( e.g. Brameller,
John and Scott [1969] ) we will adopt this treatment throughout the rest of this thesis,
and refer to it as the His convention. This convention regards efforts as covariant tensors
and flows as contravariant ones, which appears to be the natural type of both. ( Again we
emphasis that the covariance [contravariance] of any index can be changed to
contravariance [covariance] via the metric tensor.) A generalization of the above concept
will definitely maintain the scalar character of power (for conserving transformations),
but will allow the effort and flow tensors to have valences greater than one. Thus power
can be written as (Note that this formulation is more general than that of Fahrenthold and
Wargo [1991])

78 = eaﬂy...f oA

(note that we preserve the symbol IT for tensoral power only) where it is understood that
the effort and flow tensors have the same valence. In this work we will present physical

phenomena that require efforts and flows with valence one only.
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Before we leave this section we need to caution from the fact that Power and Energy are
not invariant under all transformations. For example, under Lorentz transformations
( more on these transformations when we discuss relativity in the coming chapters )
energy and power are not scalars ( invariants ). Thus in general we cannot treat energy
and power as scalars, but for many physical phenomena we will deal with

transformations that leave energy and power invariant.

2 Bondgraph Anatomy

In order to model the relation between efforts and flows as it occurs in physical systems,
BGs need to have multiport elements that establish relations mixing efforts and flows,
and relate variables of the same type. ( We will avail ourselves of the multibondgraphs
formulation without introducing the 1-bond notation. Multibondgraphs were first
introduced by Bonderson [1975] as vector bondgraphs and then renamed by Breedveld
[1986] to prevent any ambiguity that might occur from the notion of column vectors in
matrix theory and the vector concept in vector analysis. The reader is referred to Karnopp
et al. [1990] for a more gradual development of the notation used in this work.) Other
multiport elements should model the interaction between the environment and the
system, or in other words the boundary conditions. Our criterion in classifying these
multiport elements is, again, based on the concept of power (Breedveld 1984).

The first type establishes mixed relations and is power-discontinuous (where energy
storage or dissipation takes place). The multiport element responsible for energy storage
( hence known as energic ) is denoted by C, which stands for capacitance ( in the electric
"domain" ) or compliance ( in the mechanical "domain” ). Hereafter it will be referred to
as a C-field. It is important to realize that C-fields store only one type of energy, viz.
potential energy ( or its analogues such as the electric energy ). The other familiar storage

element is the inductance or inertance which is referred to as an I-field, which takes care
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of storing the mechanical energy and its analogues. In mixed energy "domains" it is more
-convenient to describe energy storage through mixed fields, which are referred to as
IC-fields in BGs terminology (Karnopp et al. 1990). The other power-discontinuous
element is denoted by R. The reader, probably, recognizes this as the resistance in the
electric "domain,” which actually extends to all other physical "domains" and is
responsible for the dissipation of energy from the system ( hence known as non-energic ).
We shall refer to it as an R-field. It is important to note that the C and I elements are
reversible, i.e. energy can be stored in them and retrieved as well ( after some time delay,
of course ), where R elements are irreversible; they donate the energy to the environment
as entropy (Thoma 1975). If the entropy introduced is included in the model, the field
becomes an irreversible transducer, denoted by RS, and referred to as an RS-field. The S
in the mnemonic code stands for the non-linear entropy source that accounts for the
liberated energy. If the entropy is not included, the assumption of an isothermal (or, in
other words, linear) relation, is implied, and the RS-field degenerates to an R-field.

The multiport elements responsible for modeling the interaction between the
environment and the system are also power-discontinuous, since they model power
creation ( power from the environment to the system ) or annihilation ( power from the
system to the environment ). Conveniently, they are called multiport sources. The
mnemonic code for sources is S-array. The reason for the word 'array' is that, by
definition, sources have no constitutive coupling between the effort and the flow
variables. Thus sources produce only one type of variables. If they produce an effort they
are called effort sources ( if the effort produced is constant they are called Dirichlet
sources ), SE-array. The other type of sources, SF-array, will thus produce the other type
of variables ( known as Neumann sources for constant flow ).

At this juncture we have already accounted for all the power-discontinuous multiport

elements needed to model dissipation, storage and boundary conditions associated with a
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physical system. Now we need to introduce multiports (MP's for short) that will model
the energy transfer within the system itself. Note that these MP elements are not required
to do any function that is modeled by the power-discontinuous ones. All they need to do
is to transfer energy to and fro the power-discontinuous MP elements. (Thus they must be
power-continuous MP elements.) In GBG's terminology these MP elements are
collectively referred to as a Birkhoff Junction Structure (after George D. Birkhoff), or as
a Generalized Junction Structure (Breedveld 1984).

In electric circuit theory, we speak of wires or "ducts" through which power is
allowed to flow. This means that we enforce quasi-static conditions on our model or,
stated differently, power radiation is left out and the only way energy is transported is
through the electric wires. In BG's we assume that there is no way of transporting energy
within the system other than by means of radiation, convection and conduction. (Actually
this extension was introduced for Generalized BG's.) (Nijen Twilhaar 1985.) In BG
terminology, the ducts are called multibonds, hence the name bondgraphs. They are
represented by a harpoon or a half arrow as shown in Fig. 4.2a ( 7 is the valence of the
effort [or flow] variable ), where we follow the Thoma convention (after J.U.Thoma)
which requires the half arrow to point always to the "flow side" of the multibond
(Breedveld 1986). This representation is not unique ( cf. Thoma [1990] ), but we see it as
a reasonably balanced representation between complexity and vagueness. The Thoma
representation is also used when necessary. (Thoma uses a single harpoon with a ring
around it to represent multiport bonds.) The complete reticulation up to this point is

depicted in Fig. 4.2b.
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Fig 4.2a: The multibond representation in BGs Fig. 4.2b : The Birkhoff junction structure in BGs

In order to also be able to represent the communication between the various ports, we
need to augment control signals that do not carry power, but rather information. ( They
will have to carry a small amount that can be considered negligible for all practical
purposes. ) These signals are also known as active signals and are represented with full

arrows as shown in Fig. 4.3 .

Fig. 4.3 : The representation of active signals in BGS

In a junction structure, there are four elements that model the transfer of power within
the physical system. The first multiport element we focus on is the 0 (zero) junction.
This junction is also known as a common effort junction and is represented by the

following equations:

fa: ""+f”"’+...

- ! —_ ”'—‘.t-
e, =e =el=

79
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where # is the dimension of all the effort and flow vectors. Note that f“ is the output
vector, where all the other flow vectors are input vectors. ( The output is always written
to the left of the equal sign, where inputs are written to the right of it.) Similarly we

define the 1 ( one ) junction or the common flow junction as follows:

—_— ! " .
e, =e,+e,+

fe=fre= fres
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The sign of each component is decided by the so-called computational causality ( see
below ). The familiar parallel and series connections in electric circuit theory are special
cases of the above junctions. Some authors refer to 0 ( 1) junctions as p ( s ) junctions for
the same reason (Thoma 1990.)

The other two elements that are included in the Birkhoff junction structure are the
MP transformer and the MP Gyrator. The MP transformer ( MP TF ) is defined by the

following equations:

e, =170,

frﬂ___ Tffa
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where 77 is the transformation tensor. Similarly the MP gyrator ( MP GY ) is defined as

follows

f%= Gﬂ“e/’g
frﬁ - Gﬂaea

82

where G, is the gyration tensor. Note that transformers do not change the "gender" of

the effort and flow tensors, where gyrators do. Also note that GYs are more basic than

TFs, for we can obtain the effect of a transformer by two consecutive gyrative operations
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( where K, is the inverse of H” ) Fig. 4.4 shows the BG representation of MP TF's and
Br

MP GY's. Note that we can represent MP GY's in two ways: as having two multiports,
which is the traditional definition as in ( 82 ) or as having only one (Breedveld 1981).
The new definition seems to facilitate the modeling of systems. The new 1-MP GY is

defined as follows (no relation exists between equations [83a, b & ¢] and [84] ):

=waﬁ

e(l
Gop=~Gpa
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(with the other causal relation also possible.) The bondgraphic representation for theIMP
GY is shown in Fig. 4.5.

e

——7/T..F—Jﬁ’ —f—/(?.Y—/
T

el

Fig. 4.4 : The Bondgraphic representation for MP TF and GY in BG's

e

—> GY
S

Fig. 4.5 : The 1-MP GY
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If the junction structure does not include any GYs, the junction structure is known as a
Kron (after Gabriel Kron), or a weighted junction structure. If only 0 and 1 junctions are
present, the structure is known as a Kirchhoff (after Gustav Kirchhoff), or simple
junction structure.

With a glance at Fig. 4.1 one notices that there is a hidden line that relates the

variables p and q. The constitutive relation is called a memristor ( short for memory

resistor ) by Chua (1971). The memristor is defined mathematically as follows

g=f=W(p)e
p=e=M(q)f

where W(p) is called the incremental "memductance” and AM(q) is called the
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incremental "memrisistance." Note that memristors have a meaning only for nonlinear
systems, since for the linear case the constitutive relations in ( 85 ) will degenerate to the
constitutive relations of an isothermal ( linear ) resistor.

The memristor is, like the linear resistor, causally neutral. This is because integration
and differentiation are involved in viewing it in the effort-flow plain (Oster and
Auslander 1972). Memristors can only be wused to model non-linear, displacement
modulated resistors. Oster and Auslander (ib.) provide numerous examples for the uses of
memristors. Although in their paper they do distinguish memristors from modulated
resistors, the author of this thesis does not "see" the difference. We wanted to present the
memristor for completeness, but it will not be used in the following developments.

Some authors use the term implicit fields to refer to fields that are built from pure
power-discontinuous-element fields plus power continuous elements, especially 0 and 1
junctions. In this terminology fields build from MP energy storage elements are referred

to as explicit fields. For example, in the case of C-fields ( I-fields ) constituting the pure



75

fields in an implicit field, the explicit field is represented by a 2-MP C-field ( I-field ).

Fig. 4.6 is an example of an explicit I-field.

!

e

1

Fig. 4.6 : The explicit field (right) and its implicit representation (left)

3 Modulation of Bondgraphic MP Elements

The MP elements of BG's introduced in the previous section can be allowed to vary. This
stems from our observations in many physical phenomena that can be modeled through
MP elements that vary with "time" or with displacement. ( In inter domain relations, we
can also expect effort and/or flow modulation .) Thus we can generalize the formulation
of the elements already introduced to a formulation that provides MP modulated
elements.

But first let us investigate the possibility of modulation for the energy conserving
elements. As storage element, C-fields and I-fields are not allowed to change the amount
of energy stored, not even through dissipation, since we have to model all the dissipation
through R-fields. Thus the very concept of storage requires the constitutive laws of
energy storage elements to be modulation free with respect to time (Breedveld 1984,
p.85); modulation with respect to other variables such as generalized displacement is still
possible. However such extension is perfectly legitimate for non-energic power

conserving MP elements such as GY's and TF's (Kamopp 1977). ( From now on let us
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use elements and MP elements indiscriminately while maintaining the most general
context.)

Let us now investigate the possibility of modulated S-arrays. Naturally physical
phenomena are full of sources that are "time" variant. Take for example a.c. voltage
sources. But are there any sources that are displacement modulated ? Recall that there is
no constitutive relation that relates efforts and flows in S-arrays. Thus we have no
constitutive tensor to modulate, and the possibility of displacement modulated sources is
eliminated.

Modulated resistors are related to memristors, which are always displacement
modulated. The constitutive relation for modulated resistors in the e— f (effort-flow)
plane is similar to that of memristors in the p—g (momentum-displacement) plane.
Solid-state electronic devices are an example of displacement modulated resistors. Such
resistors are always non-linear. Are there any "time" modulated resistors? By definition,
an R-field is an n-port, the constitutive relations of which relate the n-port efforts to the
n-port flows by means of static ( or algebraic ) functions (Karnopp et al. 1990, p.251).
( Note that this definition makes power-conserving elements, such as 0 and 1 junctions,
R-fields, usually referred to as implicit R-fields. ) Thus "time" modulation violates the
basic definition of R-fields. (The reader might be able to think of some physical
phenomena where the dissipation is "time" variant. Still, for the purposes of this thesis,
we adhere to the above definition.)

Now we ask ourselves if RS-fields can be modulated. If we recall that RS-fields were
introduced as an alternative to the transformer in modeling entropy generation by
irreversibilities, we can argue that they can be modulated in a similar fashion to
transformer modulation (Thoma 1975). In fact RS-fields are inherently cross coupled,
with resistance being a function of temperature. Thus effort modulation is perfectly

legitimate for RS-fields. Also from the previous two paragraphs we can conclude that



77

displacement modulation of RS-fields is possible via the electric charge from the
resistance side. One can also represent "time" modulation the way it was introduced for
MP TF.

The tensors of the constitutive relations in equations ( 81 ), ( 82 ) and ( 83 ) were not
explicitly referred to as constants, since we can allow for their variation and still be able
to maintain the invariance of power ( for a special class of transformations that are
frequent in physical phenomena). These tensors, which we will refer to as the modulating
tensors, are modulated by signals of active bonds that do not contribute to the power of
the MP MTF or MGY ( where the M stands for modulated ), and are either functions of
the displacement ( configuration-like or metric ) tensor or "time." Again we need to
emphasize that it is possible to use other variables to modulate MP elements. We restrict
the modulation on displacement and "time" since they suffice for modeling the
phenomena encountered in physical systems. (We will see that in special relativity, a
flow modulated transformer is of great importance.) If the modulating tensors are
functions of the displacement tensor, the modulation is said to be internal and the MP
MTF or MGY becomes non-linear. If they are functions of "time", the modulation is said

to be external and the MP MTF or MGY becomes time-variant.

4 Structural Properties of Bondgraphic Elements
It has already been stated that sources in BG's are always decoupled. Thus we only speak
of S-arrays and not S-fields. ( There exists no relation between the effort and the flow of
any source.) Similar restrictions are imposed on BG elements. In this section we
investigate these restrictions and their influence on the structure of BG elements.

Let us start with C-fields. Any single-valued functional relationship between effort

and displacement defines an energy conserving C-field. Energy of C-fields is given by
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86 E= !ea(t)f"(t)dt = ;[ea(t)d—i%id = [ e,(9)dg” = E(g)
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In general, tensors of C-fields are symmetric. With the assumption (over power
conserving transformations) that energy is a single valued scalar function of displacement

and £ € C? (i.e. assuming energy to have a smooth second derivative ) we have

de, & OE_PE _ E _ O JOE_Je

a’ arar A 4y a4 a a°
. De, _ 0¢

o

g

87

= Cp=0Cy,

where C,; is the constitutive tensor of the C-field for the linear case. The equations in

( 87 ) are known as Maxwell's reciprocal relations. Mutatis mutandis, similar results hold

for I-fields ( 88 ), viz:

ore  E _ of°

88 = =
ﬁpﬂ 5pﬁé’pa o‘,pa

In the case of R-fields, if the R-field is implicit and composed of linear pure
1-MP R-fields, 0 and 1 junctions, and transformers, the implicit R-field's constitutive
tensor ( which is a covariant tensor of the second rank ) is symmetric ( provided it is
written in terms of resistances only ). It is said to be in the Onsager form in analogy to the
Onsager reciprocity (Onsager 1931a & 1931b). If the implicit R-field contains gyrators,
the reciprocity is lost. ( If the constitutive tensor is written in terms of resistors and
conductors, the tensor becomes skew symmetric, and is said to be in the Casimir form,
again, provided that no gyrators are present [Casimir 1945]. ) In the general case, an R-

field is not in the Onsager form nor in the Casimir form (Karnopp 1990).
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Finally we investigate the structures of transformers and gyrators. The simplest
transformer one could think of is a transformer with only two ports and a "ratio” of one.
This becomes a 2-MP TF with its transformation tensor being the Kronecker tensor
( which we always represent as a mixed tensor ) of valence two. In such a case, the
transformer degenerates to a multibond. Note that in order for equations 83a, b, and ¢
to hold, we need the indices of the gyration and transformation to run over the same
range, or in other words the gyration and transformation tensors must live in spaces that
have the same dimension. ( If a matrix representation is used the matrices must be
square ).

Similarly, the simplest 1-MP gyrator is build from two bonds and its matrix

representation is given by

89 g=| 7!
|t oo
This type of gyrators is called symplectic. This is because the matrix in ( 89 ) is known as

a symplectic matrix in differential geometry. For the multiport case the gyration tensor is

represented by

0 -1
90 Gop= .
I 0

The mnemonic code for these gyrators is SGY. Symplectic gyrators are very useful for
dualizing elements. For a comprehensive treatment of their use in dualizing, the reader is
referred to Breedveld (1984). For the general case, a MP GY will always have a gyration
tensor that is skew symmetric. If the 1-MP GY is used, the gyrative tensor is skew
symmetric. Where if the old definition is used, the matrix representation of the gyration

tensor becomes block skew symmetric. Note that it is necessary for the gyration tensor to
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be skew symmetric to insure that a gyrator ( of any kind ) conserves energy but does not

store any.

S Computational Causality

A method that declares efforts and flows as causes ( independent variables) or effects
(dependent variables), becomes essential when one attempts to write down the equations
embedded in a BG. To achieve this goal we use a stroke ( that actually resembles the
palm of the hand as seen from a side view ), known as the causal stroke that is placed at
either end of the power bond and declares that end as the side from which the flow enters
the bond. Hence it also tells us that the effort must enter from the other side, since power
is a bilateral signal in BGs. Fig. 4.7 demonstrates the placement of the causal stroke on
the MP elements of BGs.

Note that sources have fixed causality, where storage elements have preferable
( integrable ) causality for numerical evaluation reasons. Dissipation elements do not
involve differentiation nor integration in their constitutive relations and hence do not
have a preferable causality. The same is true for the 1-MP GY. On the other hand, 2-MP
TF's and 2-MP GY's have two permissible causal assignments out of a total of four
possible assignments for each. Finally the 0 and 1 junctions have restricted causality as
shown in Fig. 4.8. This is due to the way they are defined in ( 79 ) and ( 80 ), that is to say
that 0 junctions have only one output flow tensor, where 1 junctions have only one output
effort tensor.

In augmenting a BG with causal strokes, one starts with the necessary (fixed)
causalities, then preferable causalities and finally restricted ones are assigned. If all
assignments turn out to be in agreement with the permissible causalities, the BG has a
unique solution (i.e. the system of equations generated has a unique solution). If some

necessary causalities cannot be met, there exists no solution and the BG is said to be non-
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causal. If some preferable causalities cannot be met, we have a degenerate BG (in other
words, we have a structural singularity in the solution). Finally if assigning the causalities
of the storage elements is arbitrary ( can be changed without violating any of the other
causal requirements ), we have in our system of equations the so-called algebraic loops

(Cellier 1991).

s= =l e |
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Fig. 4.7 : The causal stroke assignment for bondgraphic elements

6 Lagrangian Bondgraphs, Gyrobondgraphs and Generalized
Bondgraphs

Over the past four decades, many types of BG's stemmed from mechanical ( also known
as dynamic or Paynterian ) BG's. The evolving BG's ecither attempted to minimize the
primitive set of elements used ( either from a pure mathematical point of view or for
physical considerations), or combined BG analysis with other analytical tools to produce
even more powerful ones. The minutiae of such developments are not discussed here,
since our treatment relies exclusively on the original Paynterian BG approach. (This is
not a sequitur of an unrewarding attitude to such efforts, nor is it an underestimation of
their practical exigencies. We simply judge that at this embryonic stage of development

we need to maintain our analysis strictly adhering to the classical power postulate and the
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original nine elements used in Paynterian BG's.) We still feel obligated not to bypass
these developments. A satellite view of some BG's is presented in this section.

Brown (1972b) introduced Lagrangian Bondgraphs as an analytical tool for modeling
holonomic physical "systems". (A holonomic system is a system that has only holonomic
constraints, i.e. constraints that can be expressed analytically via equations relating
generalized coodrdinates and time.) His approach combines Lagranges equations and
Paynterian BG's, arranged in expressions of energy and power. If the "system" is linear or
mildly non-linear, the structure of such graphs contains all or almost all the information
in the model. For highly non-linear systems, the graph contains little information and
serves little purpose.

Six years later, a paper by R. C. Rosenberg (1978) introduced another type of BG's,
Gyrobondgraphs. As he defines them, they are "a form of bond graphs containing only
elements from a primitive set. " A primitive set, introduced by Paynter and Karnopp
(1965), must include the dissipation element ( R-field ) plus one type of storage, junction,
and source elements;, and gyrators. ( Since this paper was introduced before the
introduction of the 1-MP GY, the gyrators referred to are the old 2-MP GYs. ) Rosenberg
chose to build his primitive set from inertances, 1-junctions, and effort sources. He gave
no explanation for this choice, although he pointed out that choosing other primitive sets
will not change "substantially” the development of gyrobondgraphs. Duality rules provide
a tool for converting Paynterian BGs to gyrobondgraphs; still such treatment of BGs
damages their importance as modeling tools for physical systems by obscuring their
physical interpretation of the dynamics involved and reducing them to formula
manipulation tools.

This last observation prompted P. C. Breedveld (1981) to introduce a new primitive
set, based on one state variable, that stemmed from the lack of an I-field in

thermodynamics (Breedveld 1982). (The existence of inertic storage elements in other
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physical domains raises a serious question on the individuality of thermodynamical, and
actually the chemical domains. It seems to the author that this has to do with the
definition of equilibrium in thermodynamics, that requires the flow [the entropy flow] to
be identically cypher, where other equilibrium definitions permit constant flow and are
thus less restrictive.) To be able to provide a complete synthesis for all physical domains,
a primitive set containing C-fields and sources of effort (which are considered to be
infinitely large capacitors) was adopted. This approach was later given the name
generalized bondgraphs ( GBGs ) to eliminate any confusion that it only applied to the

thermodynamical "domain".
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"The special theory of relativity
is now believed to apply to all
forms of interaction except large
scale gravitational phenomena. It
serves as a touchstone in modern
physics for the possible forms of
interaction between particles.
Only theories consistent with
special relativity need be
considered . This often severely
limits the possibilities." J. D.
Jackson, Classical Electro-
dynamics, 2nd edition

5 SPECIAL RELATIVITY:
Theory and Interpretation

Instead of providing a historical background on the special theory of relativity in this
introduction (which the reader can find in any introductory book), I would like to impress
on the reader's mind some of the controversial comments that he or she might not be able
to find in the majority of the literature on the subject. First let us begin by asserting the
fact that "a small but vocal tradition” of showing that Einstein did not derive the mass-
energy relation in 1905 does exist. The best example on this tradition is the work by E. H.

Ives (1952). (The reader should understand that this and all the other opinions in this
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introduction are being cited without any comments from the author!) One can also find
works that are critical of the SR theory itself, two representative works being those by
Luther (1966) and Irvine (1981). Also of interest is the work by Abraham (1908) in which
he provides a rigid model of the electron that challepges the mass-velocity relation in SR.
In fact, most of the early experimental work pertaining to this subject was conducted on
the mass-velocity relation in order to decide on the model that best fits the experimental
observations.

It is also important to understand the implications of the SR theory. In particular the
reader should contemplate the most salient ones such as the abandonment of universal
time, the frame dependence of simultaneity, the energy flow contributions to momentum,
and most remarkably the relation between energy and mass.

In this chapter, we intend to develop a solid basis of the SR theory. We begin by
providing a picture of the scientific scene as it appeared in the nineteenth century. In the
second section, the track leading to the building of the SR theory is provided. Next, in
section three, the famous Lorentz transformation is introduced. (Not being derived in this
chapter, the author would like to suggest the work by FEinstein [1952] for a simple
derivation of the Lorentz transformation.) Over the next three sections we expose some
of the kinematic and dynamic features of the SR theory together with the mathematical
tool developed by Hermann Minkowski, and the energy equation of an isolated
relativistic particle. Then the BG model for the relativistic energy of the one-particle
system is introduced. Finally, in the last section we present the covariant form of the
Maxwell equations and produce a BG interpretation for the Lorentz force equation

together with an expression for the power of a particle traveling in an electromagnetic

field.
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1 Physics in the Nineteenth Century

Until the second half of the nineteenth century, Newtonian physics seemed to apply to all
physical phenomena. Its central ideas of absolute space (i.e., the set of axes K, with’
respect to which all "true" motion should .be measured) and the uniform
— un-accelerated — motion of particles, that are removed from interaction with other
particles (i.e., the law of inertia), provided the basis for establishing the relationship
between the codrdinates of rigid systems. For a rigid system K that moves with relative
uniform velocity w with respect to another rigid system K’ (see Fig. 5.1), the relation

between the codrdinates is given by the Galilean transformation

r'=r—wit,
t'=t.

91

(Note the universal character of time in equation [91].) Thus if a particle obeys the

equation of motion

2
f=miX

ar’
in system X, it will obey the equation

d*r'

f'=f=m
dr?

in system K’ .

Fig. 5.1: Systems K and K' with Relative Velocity w.
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Differentiating (91), the velocity addition law is found to be

92 u=u-w.

The above treatment shows that the first and second laws of Newton mechanics do hold
under Galilean transformations. This prompted the acknowledgement of the principle of
Galilean relativity (or covariance under GT's [short for Galilean transformations]) as a
characteristic of all branches of physics.

After a series of experiments carried out by various physicists, it was concluded that
electromagnetic radiation propagates in empty space with a uniform constant velocity
which is equal to 3E8 m/s and is usually denoted by c. If we take this conclusion as a fact
and use it to study the transformation properties of electromagnetics, our task becomes
much easier since it can be accomplished without the need to consider the interrelation
between magnetic and electric fields. If we carry out the GT in equation (91) then the

speed of light in the X system of coérdinates will be

u, =c.cosa,
93 u, =c.cosp,
u, = C.Co8 7,

where the angles «, and yare used to designate the direction of the light rays, and are

measured from the three axes of the X system. Note that
94 cos’ a+cos® f+cos’ y=1.

From equation (92), the velocity components with respect to the new system K’ are

L.
u, =c.cosa—w,,
| J—
95 u, =c.cosf-w,

u,=c.cosy—w,,
and

96 u' =(c’ +w? —2c(w,.cosa+w,.cos f+w,.cos )" .



89

Thus the velocity in the new frame will equal ¢ only for a certain cone of directions with
the vector w as its axis. In the direction of w, the speed of light will be c—w, and in the
opposite direction it will be c¢+w (Bergmann 1976). Thus it is very clear that the
Galilean relativity principle does not apply to glectromagnetic radiation. From this
difficulty, Maxwell's equations had to have a preferred frame of reference with respect to
which they take their standard form!

Many efforts to establish the covariance of electromagnetism with respect to GTs are
very well documented in literature. The most salient ones can be found in Bergmann
(1976).

We shall rather focus on the path taken by Einstein that led to restoring the relativity

principle in electromagnetics and mechanics.

2 Origin of Special Relativity
At the end of the nineteenth century, physicists were contemplating three possibilities for
explaining the problems electromagnetism was facing with Galilean relativity. These

possibilities are (Jackson 1975) :

1. Modifying the Maxwell equations so that invariance under GTs is established.

2. The relativity principle is not universal, and Galilean relativity applies only to
classical dynamics, and that electromagnetism had a preferred reference frame where
they assumed their simple form (where ether is at rest.)

3. The relativity principle is universal, but it assumes a different form than that

proposed by Galilei.

The experimental evidence supporting Maxwell's equations was strong enough to

eliminate the first possibility. Also the experiments of Fizeau in 1851 and 1853, and of
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Michelson and Morley in 1886, made the second possibility quite implausible. Thus the
third alternative was the only one left to explore.
Albert FEinstein (1905a & 1905b) ventured through that alternative by building his

model on the following three postulates (Jackson 1975 and Lawden 1982):

1. The Postulate of relativity: The Laws of nature and the results of all experiments
performed in a given frame of reference are independent of the translational motion
of the system as a whole.

2. The Postulate of the constancy of the speed of light: The speed of light is
independent of the motion of its source.

3. The postulate of Euclidean Geometry: In any inertial frame, the geometry is

Euclidean.

The introduction of these postulates dictated re-writing the laws of mechanics (and
eventually, the laws of nature in general) for high-speed motions. They also required a
series of experimental work to verify their authenticity. The theoretical work will be
presented in the following sections. For more detailed treatment of the experimental

work, the reader is referred to the Resource Letter on Relativity (1962).

3 Lorentz Transformations
Mathematically, the Lorentz transformation can be represented as a transformation from

one system of spacetime codrdinates x“ to another system x'“ so that
97 x'% = Ay xP+a”
where a“and A‘; are constants, restricted by the conditions

98 A(;'A/;naﬂ =15
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with
+La=p=1,20r3
99 Ny =1-La=p=0
O, p
The above tensor (equation [99]) is known as the Minkowski tensor and represents the
flat spacetime known as the Minkowski world (see chapter three.) A simple form of the
LT (short for Lorentz transformation) can be found from the situation depicted in fig. 5.1,

with w = wu_ , for which the LT from X to X' takes the form

x y 0 0 —pB| |x°
100 xl', _ 0 10 O x!
x? 0 01 0 x?
x> -3 0 0 vy x

Where B=w/c , and y=(1-8%)"? . Note that a®(in equation [97]) is equal to zero.
This type of LT is correctly called a homogenous Lorentz transformation. On the other
hand, if a“ is not equal to zero, the transformation is classified as an inhomogeneous

Lorentz transformation or as a Poincaré transformation. Further, an LT, whether

homogeneous or inhomogeneous, is classified as a proper transformation if A’ satisfies
the additional conditions

101 A} > +1; DetA = +1.

An improper LT is then defined as a transformation that involves either space inversion
(A% > +1 ; DetA =-1) or time reversal (A} > —1; DetA =-1). (Weinberg 1972.) An
important subgroup of proper LT's is that consisting of rotations, and is represented

mathematically with

102 A, =R,, A,=A)=0, and Ay =+1,

J
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where R; is a unimodular orthogonal matrix. Note that GT's and LT's are identical as far

as spacetime translation (x* — x* +a“) and rotation are concerned. Only when a boost
of the coérdinates is involved (w = 0), does one see a difference between the two
transformations.

A common property all LT's share is that they leave invariant the so-called proper
time, which is the time one always measures in his own frame. The proper time 1s usually

denoted by dr., and is defined as follows
103 d7? = dx® —dx® = -, dx dx”.

Note that equation (103) is valid for both accelerated and unaccelerated bodies, but is

restricted to material ones only (such as particles).

4 Special Relativistic Kinematics
In this section, we discuss some of the kinematic effects of the LT. Particularly of interest
are the effects on length and time measurements in different frames of reference, as well
as the relativistic addition laws of velocity.

Let us start by examining the effects on time. From equation (10), the time ¢’ (where,
x'% = ct") is given by
104 t'=y(t=(B/c)x?).
Now we can write the expression for a period of time A¢’. Note that the last term in

equation (104) drops out, and the relation becomes

105 At' =y At

Thus if one imagines a rigid clock located at the origin of the X frame, the time it records
will be slower by a factor of (1/ y) than that recorded by a similar clock located at the
origin of the K’ frame. This means that a body in motion will experience a period of time

less than that experienced by a body at rest. (Note that in [105] the observer is assumed to
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be stationary in the K’ frame; the moving frame becomes K.) Probably the reader has
heard about the famous twin paradox which is based on the same relation in (105).
Actually a twin-paradox experiment was carried out in the year 1966. It was conducted
on muons instead of human beings, so that the joprney of the muon is along a circle
fourteen meters in diameter. After completing a complete circle and returning to the
starting point, the muon was found to be younger that its twin particle. ( Note that muons
are unstable particles and that their life time is approximately two microseconds. ) For
more details the reader is referred to Fang and Chu (1987). The phenomenon discussed
above is known as time dilatation or time dilation.

Another interesting effect of the LT is the so-called Lorentz contraction. Referring to
fig. 5.1 With w=wu, , and if one assume that a rod is rigidly connected with K with its

end points at the codrdinates x,’ and x,*, one can give the rod's length as

106 I=x"-x
Now if an observer considers the length of the rod in the K’ system, /', as the difference

x;’ —x!°, at the same time x'°, then the relation of the two lengths is given by

107 I'=y1.
Thus for a stationary observer in X', the rod will seem to be contracted by the factor .
A similar treatment that covers surface and volume elements can be found in Bladel
(1984).

Another interesting effect that LT's produce is the relativistic law for addition of

velocities. To derive the law we will assume that a point P located in the K’ frame moves

in the K’

with a velocity u’, then the components of this speed must be u'' =¢ =

i

frame and ' = CW in the X frame. If we also assume that the X’ frame moves with a

uniform velocity of w=cf in the positive z (x’) direction (note that beta is a three

dimensional vector in this case), then the LT gives
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dx° =y, (' + ")
d' = dx"!
dx® = dx”?
dx’ = , (s + )

From the above, the parallel component of the velocity (with respect to w ), u

108

, 18

paralle,

given by
'
109 _ uparaIIeI +w
uparallel - ] w.u' H
+ 2
C

and the perpendicular component is given by

'
1 1 0 u uperpendicular

perpendicular = w.u' .

7e(+—5-)

02
!

w.u

The above components will generate the classical laws if the term —;
C

is negligibly

small. The total velocity is then given by

u’yw_l + w[ww': (1- yw_l) + 1}

111 u= ;
w.u

02

1+

Note that the transformation relation in equation (111) was derived for a rotation free LT.

5 The Minkowski World

As a consequence of abandoning universal time, events are now described (in a
codérdinate system) using four coordinates, three spatial and one temporal. Together with
the postulate of the invariance of the speed of light in any inertial frame, this formalism

produces the invariant quantity known as the proper time and is given by
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112 d =dt* —dx* = - ﬂapdx“dxﬂ
(Note that we are now using natural units for which c¢=1). In (112) the time ¢ is
considered a fourth coordinate (namely x° =ct) that together with the other three
conventional codrdinates constitutes a four dimensional generalized space known as the
Minkowski world or the Minkowski spacetime. The above equation can be re-written to

obtain a relation between the proper time and time as follows:

113 dr= (ah‘2 -dxz)”2
=(1-u*)dt = y'dt
where
dx
u=s—
113a dt
}/E(I_HZ)—I/Z )

(Keep in mind that we are using natural units for whichc=1.)
Note that u is a vector relative to stationary rectangular axes only. In order to have a
vector relative to Lorentz transformations in spacetime, we define

« a 1
114 U"‘de de £=
dr dat dt u

which is known as the four-velocity of the system. Note that

115 U'=UU,=n,UU°*
=-y*(1-u’)=-1

In a similar manner the four-momentum of a particle whose rest mass is m, and whose

four-velocity is U“ is given by

1
116 P“=mOU“=mO}/!: }
u

Ll

where m (= m, y) i1s known as the relativistic mass.
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6 Special Relativistic Dynamics and Einstein's Energy Equation

Continuing with the previous one-particle system we can proceed to define a four-force

given by
dp*® dUe dU® dt
117 =% _ - a@
dr gy T de
_ yymy| | F°
Y4 7 It
=myy| d(yw) |=| 7 =],
a ||| |F
sl | F?
where
¢ = 9Cmyu)
d

Now differentiating (115) with respect to z( and using direct notation ), we get

118 U.d—U~=0, re. UF=0
dr

Thus the four-velocity and four-force are, in a sense, orthogonal. Substituﬁng for U and

Fin (118), we get

7 (uf—ym)=y*(u.f—r)=0

119
c(uf-m)=0

(Note that we have divided by »* .) And since, by definition, the first term on the left
hand side of (119) is the rate of work, we can obtain the kinetic energy, T as
T= J'rhdt = m+ constant.
Now since at rest (u=0), 7=0, we get
120 T=m-my=FE-m,

where
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121 E = ym,

is the Einstein energy equation for the system, and E is the total energy associated with it

(Lawden 1982).

7 A Model Based on BGs

In this section we revisit what is known in bondgraphs as the power postulate (see
chapter four. For an introduction to bondgraphs, the reader is referred to Breedveld
[1984], Cellier [1991], and Kamopp et. al. [1990].) This postulate gives the power for

any system as follows

122 H=d—E=

et

where e, is the effort tensor ( e.g. the four-vector force for a one-particle system in
classical mechanics) and f“is the flow tensor ( e.g. the four-vector velocity of the one-
particle system. ) Note that since the right-hand side of equation (122) is a tensor of
valence zero, the left-hand side must also be a tensor of valence zero. Equation (122)
will still hold if we use efforts and flows that do not transfer as tensors under orthogonal
transformations. In this case the power will not be a tensor as well.

Applied to our previous example, assuming non-relativistic flow ( velocity ) we can use

Newton's second law giving

123 aE =myu.u
dt

Thus the energy is given by

124 E=T=—mu.u= lm(,u2
2 2

This formalism spans the gamut of classical physics and successfully produces a unifying

approach for modeling physical phenomena. In order to extend this formalism to SRT we
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need first to observe the following discrepancies between SR mechanics and classical
mechanics. In the SR case we model the relativistic effects through a mass modulation,
thus defining the relativistic mass m. In classical mechanics such effects would rather be
obtained by attributing the modulation to the flow ( velocity ) and maintaining the
parameter character of mass. That is to say we can model the relativistic effects in the

one-particle system as shown in Fig. 5.2.

e | e' |
_7/‘ MTFﬁ/] M
7Ty

Fig. 5.2: BG Representation for a Relativistic Particle.

Where
M =ml, ,

(note that 7, is an » x n identity matrix)

and
T'=y,
e=e,=F,= P,
e=e =ely=y"'F, =P,
f=r=U°%,
f=ro=f"1y=yve

Thus substituting (114) and (117) in (122) gives

128 M=e.f'*=Fy'U"
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= }/—lnaﬁFﬂUa
=—ym,+m.f=0

( compare with equation [119] ) which can be re-written as

ef =y U'F +y ' U F + y ' UF?

126 dE . ’
7 myyy

(Note that the left-hand side of equation {126] is not a tensor with respect to orthogonal

[Lorentz] transformations. Thus the energy is not a tensor either. Fortunately, the power

postulate still holds. One can also consider equation [126] as a tensor equation applicable

only to rectangular, stationary axes in spacetime. )

Since

127 y=(=1/2)(1~-u*)>?*(-2u).a
= yui

we have

128 fgj— =myy'u.a

Integrating (128) with respect to time, we get

129 E=(1/2)*my+E,

(compare with [121]) where E, is the constant of integration. For any system with

my, = 0, the total energy £ must be equal to zero ( unless lul =1). Thus the constant of

integration must be zero for zero mass. Still, in order to align this model with the
Einsteinian one, we can use the rest energy formula as follows.

For zero velocity, equation (129) becomes
129a E..=Q1/2)m+E,.

Now, by using Einstein's formula
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Epy=m,y

we can take the constant of integration to be equal to
Ey=1/2)m, .

The total energy can now be written as

E=Q1/2)y*my+(1/2)m,
=my +(1/2)myy*u’

130

(In the more familiar un-normalized units, equation (130) becomes

131 E = (1/2Yymyp*c® +(1/ 2)m,c?

= myc® +(1/ 2)my v’

=FE o +T
where the first term is the rest energy and the second is the relativistic kinetic energy.)
We will call (130) the Special Relativistic Quadratic (SRQ) energy equation to
distinguish it from (121). Note that under this formalism, the equation for kinetic energy,

in both classic and relativistic mechanics, can be written as

132 T = (1/2)my flowy?

where the flow is given by () in the relativistic case and by () in the classical one.
(When u << ¢, the factor modulating the flow can be set equal to one.)

The concept of flow can be interpreted as the effect of spacetime on matter. Since
the general theory of relativity forsakes the fixity of spacetime and shows that it is curved
due to the existence of matter (Fang and Li 1989), one can regard the flow as the effect of
spacetime on matter. (An established fact in general relativity is that spacetime acts on
matter, telling it how to move and matter re-acts back on spacetime telling it how to

curve). Thus the simple relation of change of position (in spacetime) to the change of
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time (i.e. velocity), is lost when matter (particles) travels with speeds commensurate to
the speed of light.
To compare the existing formulae for kinetic energy, we can express the kinetic

energy T (not to be confused with the above modulus) as a function of y as shown below:
133 Ty = Mo (7= 1)
which is the formula derived from equation (121), and

-

134 Ting = mye* (=)
which is the formula derived from equation (131). Now let us define the quantity A as

follows:

A= Hsro _ AT,
dy dy

135

which can be easily shown to equal 7}, . By defining « as 7'/(m,c*), where m, is the

rest mass of the electron, Einstein's energy equation then gives the following formula

136 (u/cy =1-(1+a)”.
On the other hand, the SRQ formula gives

137 (u/c)? =1-(1+2a)™.

It is easy to show that (136) and (137) are equal to the first order, which is actually the
order used in classical mechanics. To support (137) we need to compare experimental
results with analytical results from both equations. Using the results obtained by W.
Bertozzi (1964) shown in Table 5.1 ( the values for (u/ c)obs ), we can see (Fig. 5.3) that
the Einstein formula is the closer to the data. However, neither formula can be excluded
on this basis due to the fact that the data was provided to test equation (136) only, thus

not focusing on the maximum difference region between the two equations.
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We can also calculate the maximum difference between the two formulae by defining

P as follows

138 B=(ulc).

Then we can calculate the maximum difference by ‘setting equal to zero.

d (:BSRQ - :BEin)
da

This yields a sixth order equation with two complex roots, a second order root at zero
and two real roots (one being negative). Thus the only values that « can take are 0 and
1.3276, from which the maximum difference is found to be equal to 5.07053E-02 ¢
( where ¢ is 3E8 m/s.).

Beta

0. 5. 10. 15. 20. 26. 30. 35.

Alpha

Fig. 5.3 : Beta vs. Alpha. The solid line corresponds to equation (136) where the dashed
one corresponds to equation (137). The diagonal crosses correspond to the experimental
data from table 5.1.
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T @ W)y, | (uich, | (ure): | wichy,
(MeV)

05 |1 |0.867|0.752 | 0.750 | 0.667
1.0 |2 ]0.910 | 0.828 |.0.889 | 0.800
1.5 {3 10960 |0.922 | 0.937 | 0.857
45 |9 10.987 |0.974 | 0.990 | 0.947
150 {3010 |10 ]0.999 |0.984

Table 5.1: The results from the Bertozzi experiment. The table also provides the
analytical data from equations (136) and (137).

One can also obtain the difference of the two formulae as a percentage. Defining the

difference as a percentage of £,,, , we get

139 P.D.= (B~ Psrg ) ! Priw) X100,
from which the maximum difference is found to be 5.615 % of the value of f,, (see
Fig. 5.4).

Other experimental results that can be shown to support the new model are abundant.
For example, the experiment by Perry and Chaffee at Harvard University ( although used
as an evidence for the contribution of the kinetic energy to the inertia; a dependence that
is also supported by the new model ) can also be used to explicate the close relation
between the experimental data and the proposed model (Copeland and Bennett 1961).
Other promising results are those of the Guye, Ratnowsky and Lavanchy (1921)
experiment. For more on the experimental work on SRT, the reader is referred to the

Resource letter on special relativity (1962).
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10. T T T T T T u T —r—

P.D.

0. 6. 10. 16. 20. 26. 30. as6. 40. 45. 50.

Alpha

Iig. 5.4 : The difference between equations (136) and (137) expressed as a percentage of
Pro

At this juncture we need to remind ourselves of the objective of this investigation.
According to Karl Popper "...science is not in the business of validating models at all, but
rather should be trying to falsify them." (Casti 1992). The work by Parker (1972) seems
to falsify the new model in favor of the Einsteinian one; still he declares his data as
circular at the end of his paper. The best approach is probably the direct measurement of
the time-of-flight of electrons within the range «<5, and the comparison of the
experimental results to the analytical ones. Such an experiment is yet to be conducted
(note that although the experiment by Bertozzi is structured as proposed, it lacks focusing
on the suggested range where the difference between the competing models is

maximum.)
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It should also be noted that BG's are perfectly capable of reproducing the Einstein

d(ym)

formula, if we proceed as follows. Using f = , which is the normalized form of

f= d(%@ we can write

f = (ju+ni),
and substituting for 7 from equation (127) we get
f= .
Now utilizing a transformer (see fig. 4.4) to obtain the involved equations, with the
integral causality for the I element, and setting f = 7[d(7Tu)/dt], one can easily find that

the modulus required, the so-called Lorentz modulus, is equal to

172

140 T =[@u?)(y-1)]

Finally it's worth mentioning that our effort of building a model that competes with
the Einsteinian one for special relativity is not an unprecedented one. Abraham (1908)
proposed a rigid model for the electron that produced a competing relation between mass
and velocity. Actually most of the early experiments where carried out to support the
validity of either the Abraham or Einstein mass-velocity equation (or rather to falsify
one of them.) The prevailing of the Einstein equation over Abraham's should not deter
inquiring minds from building new models (equations) that might bring about a more

unified scientific structure.

8 A BG Interpretation of the Field-Strength Tensor in Electrodynamics
This section is designed in a very simple fashion that introduces the basic invariant form
of the Maxwell equations and the Lorentz force equation. It also introduces a BG
interpretation for the Lorentz force equation that leads to an interesting generalized

statement concerning the power composed of tensorial efforts and flows. Let our first
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step be the derivation of the invariant form of the Maxwell equations and the Lorentz
force.
For the electric and magnetic fields E and B, produced by charge densitye and

current density J, the Maxwell equations are

141a VE=¢
141b vxB=2E.3
ot
141¢ V.B=0
141d vxE=_B
ot

Now let us define the following tensor
142 O =

This then allows us to write (141a) and (141b) as follows

143 2 o=yt
ox”®

and (141c) and (141d) become

o
af =
144 £ D=0,

which can be rewritten as

145 D

ﬂr,a+q)7a,ﬂ+q)aﬂ, y= 0 >

2
where @, = ———gf. Note that @, = 7,77, , and since J¢ is a four-vector, ®* is
X

also a tensor, which is usually referred to as the (electromagnetic) field strength tensor,

that satisfies
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146 'Y = A% N 5@
Hence we can provide the invariant form of the Lorentz force equation (giving the
electromagnetic force on a charged particle)
147 F¢=en, ®¥U.
Now equation (144) allows us to represent @, as a curl of a four-vector 4, (=(4,A),

where ¢ is the scalar potential and A is the vector potential):

b7 7

148 q)aﬂ:E;Aﬂ_ﬁ

A4,

Hence the Maxwell equations can be written as follows
149 [24%=-J,

150 FA4,=0

Where (12 is the d'Alembertian defined by

e f &
151 R =g L L v -2 |
T 5% & a
and
i é
152 %= = (—— V).
Ox (ﬁxo’ )

Recalling the power postulate presented in chapter three (section one), we can formulate
the power for a particle traveling in the electromagnetic field as follows
153 H=e, f*=FU"

= ”aﬂF ﬂUa

= naﬂe ﬂﬁyq)ﬂlsU}/Ua
Note that the (tensorial relativistic) power is identically equal to zero. The reader might
have already noticed the resemblance between this result and the one in equation (125).

Actually one can even postulate that this is a general result for any tensorial (relativistic)
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power built from four-vector efforts and flows, since by definition the length of a four-
vector is unchanged under rotation of axes (that is by a Lorentz transformation) (Rosser
1967, p. 206), or in other words one can postulate that equation (78), 4 : 1 can be re-
written as follows

154 M=e,f*=0.

Of course a rigorous study of other physical domains is first necessary before one can
claim such a generalization. The reason this postulate was presented is to impress the fact
that it was obtain for the two covered cases.

Note also that the result in (153) was discussed in chapter four. The reader can easily
see the gyrative character of the tensor @“— from the antisymmetric nature of the matrix
in equation (142) — and since gyrators are non-energic elements, the result in (153)
becomes natural (see fig. 4.5, 4 : 2 for the bondgraphic representation.) In a similar
treatment to the one carried out for equation (125), the power of the particle in the

electromagnetic field can be given as

dE . .
155 —=FU' =eEU" = jeu.E,
dr

or recalling the classical form of the Lorentz force equation, one can write

156 9 Fu=eE+ xB)u
dt c
= eu.E + cypher
Thus one can see that the effect of the magnetic field is not shown in the formula
obtained from the power postulate. This of course is explained by noting that the function
of the magnetic field is to influence the direction of the particle rather than influencing

its transverse motion (this can be related to the Larmor theory which explains the role of

the magnetic field as generating angular velocity. )
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"Of the general theory of
relativity you will be convinced,
once you have studied it.
Therefore I am not going to
defend it with a single word."
Albert Einstein, in a postcard to
A. Sommerfeld, February 8, 1916

6 ON MODELING
GRAVITATION

Almost ten years elapsed, after his special version, before Einstein published his
general theory of relativity. This theory models the effect known as gravitation utilizing
the so-called Riemannian geometry, and provides the gravitational field equations even
for strong gravitational fields. From another perspective, it can be stated that the theory
investigates the changes suffered by the laws of nature as powerful gravitational fields
curve spacetime. Thus, in general relativity the effects of gravity are injected to flat

spacetime laws to produce the same laws but in curved spacetime.
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This chapter will provide the reader with the rudiments of the theory. The author
reckons that the first concept to be discussed must be the so-called energy-momentum
tensor; After providing the definition, we explain how this tensor acts under powerful
gravitational fields. Also the so-called principle pf equivalence is introduced. This
principle clears the way for the transition from special to general relativity to take place.
From there we establish a link between the results from chapter five and their
counterparts under strong gravitational fields.

The crux of the chapter is the discussions in the last two sections. The penultimate
one provides Einstein's field equations, where the last section is devoted to discussing
the role tensorial power can play in the modeling and understanding of the equations.

I also feel obliged to indicate that, similar to the case of SR theory, Einstein's general
theory of relativity (GR theory for short) is also challenged by other theories. For
example, the so-called relativistic theory of gravitation that was invented by Logunov
and Mestvirishvili (1989) preaches a gravitational field which is rather physical and
identifies with the Faraday-Maxwell-Hertz type of fields. In other words it provides the
field with locally defined energy. The interested reader might find other theories in the
literature that also compete towards explaining the dynamics of gravitation. This chapter
however will mainly be restricted to Einstein's work since his approach is highly

regarded as the standard one.

1 The Energy-Momentum Tensor

The energy-momentum tensor can be thought of as a tool that determines the amount of
mass-energy in a unit volume (Misner et al. 1973). In a similar fashion to the treatment
in section eight of chapter four, the density and current of the energy-momentum four-

vector can be defined so that (see Weinberg [1972], p. 43f.):
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157 T 5= G°.
(Note that the relation in [157] holds only in the absence of gravitation.) In (125), 7% is

the energy-momentum tensor, G“is the density of the external four-vector force /%, and
o1
T B=

oxP’

The tensor G“ can be easily identified with the effort concept in

bondgraphs. Thus one can think of the density of the external four-vector force as the
effort tensor of the matter or material domain.

Note that for a system of free particles, the four-vector momentum of the system is
constant and the E-M tensor (short for Energy-Momentum) 1is conserved.
Mathematically this is stated as follows
158 T% =0 .

(i.e. the bondgraphic effort is identically equal to cypher!) Equation (158) will also hold
for a system of particles that interacts only during space-localized collisions. Now if
one introduces forces to this system of particles, the conservation of the E-M tensor i1s

lost. For example the E-M tensor for a gas of charged particles is given by
159 T(x) p= D% (x)J7(x).
Actually one can restore the conservation law to this particular setting, if the term

160 T." = ®°,0% - (1/ 4 1’0 @7,

(e T,°=q/2)(E*+B*), T,°=(ExB), )isadded to the existing 7% T, thus

creating a new (conserved) E-M tensor

161 T conservea = TP +T.,% .
Finally please note that the E-M tensor is always a symmetric tensor (even the one in
equation [161] ).

The following sections will manifest the importance of the E-M tensor especially as

a building block for the gravitational field equations.



2 The Bridge between SR and GR

Due to the efforts of great scientists such as Galileo Galilei (1564-1642), Christiaan
Huygens (1629-1695), Isaac Newton (1642-1727), Friedrich W. Bessel (1784-1846),
Roland Eotvos (1848-1919), and Robert Dicke (1916- ) the nucleus of the idea of the
equality between the gravitational and inertial mass was created. This effort led to a
more successful idea that was able to constitute a link between the SR and GR theories;
viz., Einstein's equivalence principle, especially in its weak form (Weinberg 1972). This
principle has two versions, strong and weak. The strong version of the principle can be

stated as follows (ib. page 68f.):

[A]t every space-time point in an arbitrary gravitational field it is possible to choose a
“locally inertial coordinate system" such that, within a sufficiently small region [,small
enough so that the gravitational field is sensibly constant throughout it,] of the point in
question, the laws of nature take the same form as in unaccelerated Cartesian
codrdinate systems in the absence of gravitation [i.e. the form given to the laws of
nature by special relativity]. '

On the other hand, the weak version of the principle is restricted only to the laws of
motion of freely falling particles instead of the more general laws of nature. Actually,
one can even distinguish yet another version of the principle. One can talk about a very
strong version which applies to all phenomena, and a strong version that excludes only
gravitation. This simply has to do with the experimental evidence and its limitations to
particular phenomena.

In its strongest form, the principle can be stated as follows (Misner et al. 1973):

[I]n any and every Lorentz frame, anywhere and anytime in the universe, all the
(nongravitational) laws of physics must take on their familiar special-relativistic forms.
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As was also pointed out by Weinberg (ib.), the equivalence principle, especially in its

strong form, and the Gauss axiom are very close to each other. This directly leads us to
aE”

xﬂ

conclude that gravitation can be modeled by the derivatives of the transformation

functions &% x)that transform the observer from the laboratory codrdinates x“to the
local inertial ones &“.

In the next section, we will explore, added by the principle of equivalence, the
effects of gravitation on systems we have already covered in the previous chapter, viz.,

the electrodynamic and (particle) mechanical systems.

3 The Consequences of Gravitation

As an extension to earlier treatment of special relativistic dynamics given in 5 : 6, and
the treatment of electrodynamics given in 5 : 8, we introduce, in this section, the
effects of gravitational fields on these domains. Most importantly, the author explicitly
states the formalism by which he extends the bondgraphic concepts to cover the effects
of gravitation. Also at the end of this section a discussion on the effects of gravitation on
E-M tensor is provided. The reader interested in a more detailed treatment of the
presented concepts in advised to consult the book by Weinberg (1972).

Before discussing the effects of gravitation on particle mechanics and
electrodynamics we need to introduce a mathematical tool that is used to build the
equations involved.

Let us first focus on the character of the momentum, a fortiori, the force tensor, and
the velocity tensors. It should be obvious to the reader that these tensors "live" or
function on curves, say the curve x*(7). In other words they are defined only over a
curve. Hence our using the covariant differentiation introduced in 3 : 11, which is

designed for tensor fields which "live" within the spacetime as a whole, is quite
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inappropriate. Thus we need to define a covariant derivative with respect to the curve, or
rather with respect to the invariant 7 that parameterizes the curve x*.

Now let us introduce a contravariant vector V#(7) that transforms as follows:

—u

162 (=),

ox
where the derivative Jx /Jx” is to be evaluated at x" = x"(7). Differentiating with
respect to 7, we get

dvi(ey _ox avi(n)  Fx axt

163 V(o).
e "o dr Taadar @

Comparing with the definition of the affine provided by equation (40), 3 : 11, we can

define the covariant derivative along the curve x"(7) as follows:

H 2 A
DV _=_dV +r&dx pr
Dt drt

164
dr

For a covariant vector, the above equation becomes

DVy (@Vy s dx

165 24X
Dt dr " dr

v,.

Note that the covariant derivative defined in equations (164) ([165]) is a contra- (co-)
variant tensor, of valence one, that transforms according to the law given in equation
(21) ([22]), 3 : 9. In general the covariant derivative along a curve x"(7)of a tensor, of
any valence, is defined by adding, to the ordinary derivative with respect toz, a term
such as that in equation (163) for each upper index, and such as the one in equation
(164) for every lower index (Weinberg 1972).

The covariant derivative along a curve for a tensor field can be found by utilizing the
ordinary covariant derivative. For example, the covariant derivative along x"(7) for the

tensor field 7, is equal to
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1 A
166 DT . = T#V;A dx .
Dt dr

Thus for the one-particle system we have introduced in 5 : 6, the influence of an external

gravitational field will alter equation (117), of 5 : 6, as follows:

167 Ft= =m,

Equation (167) is definitely interpretable as an inertance. The difference between this
element and its counterpart is the covariant derivative along the curve over which the
tensors involved are defined. It should be obvious that this element reduces to the
classical one when the gravitational force is absent. Note that the development of the
energy equation(s) in chapter 5, does not extend to this setting, which involves
gravitational forces. The author restricts his interpretation only to bondgraphic elements
which survive the existence of gravitational forces. ( In the following this point is going
to be discussed in more detail. ) Still, one can easily see that the tensorial power for this

one-particle system, under the influence of a gravitational force is given by

U
168 H=e¢f*=mU, DDU .
T

Now since U®U,, = -1, holds in the absence of gravitation, and applying the equivalence
principle, we should have the same result in the presence of gravitation. Thus if we take

the covariant derivative, along the curve we get

DU H
—D—(U“U#)= gr 22y U
Dt Dt * Dr
DU My
169 —yp kg e
Dt Dt
DU uv
_ur ey g ] g Py D8
Dt # Dt Dt
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Dg*¥ - .
Now we need to evaluate the term g . For that we utilize equation (166). Thus we
T
get
170 Dg*  ,, dx*
= LA
Dz & dr

From our previous result concerning the covariant derivative of the metric tensor, found

in 3 : 11, we realize that the expression in (170) is equal to zero. Hence we can write

D DU DU
171 —(U*U)=U*—%+ “ygr v,
Dr( W Dt Bt Dt

Thus the expression in (171) vanishes and we get

H
172 H=mU#DU =0.
Dt

Similarly, the treatment of electrodynamics is modified to indicate the existence of
the gravitational forces. Equations (143) and (145), 5 : 8, are modified by the covariant

derivative to read

173 DYy =-J",
174 (Dﬂr;a+q)m;ﬂ+ (Daﬂ;;'z 0,

(Note that the raising or lowering of the indices is carried out via the metric g*" instead
of 7%.) and equation (147), also of 5 : 8, becomes

175 F*=eg @V

Equation (157), of this chapter, is also modified by the existence of gravitational fields
to read

176 ™..=G"

Thus the transfer from flat spacetime to curved spacetime, or from Lorentz to Non-

Lorentz frames, changes the writing of the laws of physics by changing the commas to

semicolons.
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4 Einstein's Gravitational Field Equations
In this section we will follow one of the approaches given by Weinberg (1972) for
deriving Einstein's field equations. First we build the equations for weak fields and then
utilize the equivalence principle to arrive at the equgtions for the strong ones.

For a particle moving slowly in a weak stationary gravitational field, the equations of
motion can be written as follows (see 3 : 15):

d*x* drY
177 +T%0 == | =0
dr oo(dz')

where dx / dt was neglected with respect to dt / dz (on the assumption of slow motion).

Also the value of the affine connection is simplified considerably to give

178 T %o = —% g% % (see equation (39), 3 : 11).

Another simplifying step can be achieved due to the weak nature of the field, since such

fields can be described by a semi-Cartesian codrdinate system that is given by
179 8op = Napt s lhaﬂ[ <<1.

Thus, truncating after the first term, the affine connection can be written as follows

180 [0 = — L o Do

2 OxF
From which we can arrive at the following equation:

2
dx_1y,

181 —_—
drr 2 o

which corresponds to the Newtonian result

d’x B

182 —_—=
dr?

-Vg.

In (182), ¢ is the gravitational potential given by Poisson's equation
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183 Vig=47Gp,

where G is Newton's constant, equal to 6.670 E-8 in c.g.s. units, and p is the
nonrelativistic mass density. Comparing (181) and (182), we can write

184 hy =—-2¢+C,

where C is a constant. Now examining the values of hy and ¢ at infinity, which
logically must vanish, one finds that the constant C must be equal to cypher. Thus we
arrive at

185 oo =—(1+29).

Now let us divert our attention to extending the above results to (arbitrarily) strong

gravitational fields. We can achieve this by focusing first on a point in this field where

we can erect a locally inertial coérdinate system for which the following holds true:

186 Zap( X)) = Ty

agaﬂ(x) _O
ox’ sz— '

Thus in the neighborhood of X, we can treat the strong field as a weak one that is

described by linear differential equations.
On the other hand, since the energy density 7, for nonrelativistic matter is equal to
the mass density p, and utilizing equation (185), one can rewrite Poisson's equation

(183) as follows:

187 V2gy = —87GT, ,

For the general distribution of the E-M tensor one can anticipate
188 G,p=-87GT,, ,
which can be taken one step further, via the equivalence principle, to give the equations

for an (arbitrarily) strong gravitational field:
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189 G, =-87GT,.
(where G, reduces to G, for weak fields.) Thus recapitulating, one can see that G, is

a symmetric, conserved tensor (properties necessary to salvage the equality in [189]).

We shall also assume that G,, contains only terms that are linear in the second

derivative, or quadratic in the first derivative, of the metric. This assumption is
justifiable since G,, must be of the second rank. If higher, or lower, order terms are to
be allowed, they will have to be multiplied by constants having dimensions that reduce,
or increase, the overall rank of the term to two. Thus reducing the term's contribution
for sufficiently large or small fields.

Another important fact we need to consider, is that contracting the R-C tensor is the
most general way of constructing a second rank tensor field. Since such contractions can

yield only two tensors, viz., the Ricci tensor and the curvature scalar, we can build the

G, as follows

190 G,=CR, +C"g,R.

where C’and C"are constants. For the evaluation of these constants, and for an
alternative derivation, the reader is referred to Weinberg (1972). The final result will
actually give the Einstein tensor already introduced in equation (61), 3 : 16. Thus the

final shape of the Einstein field equations becomes

1
191 R#V—Eg#VR =-87GT,,
Although providing some of the solutions of the Einstein field equations might add some
flavor to the discussion, we believe such treatment to be void of any nutritious value that
benefits the objectives of the chapter. The interested reader can still find such solutions
in Hoenselaers and Dietz (1984).
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5 The BG Interpretation of GR Theory

In this section we reflect on the previous discussions and their implications on achieving
our objectives, viz., on modeling the dynamics of gravitational fields via bondgraphs.
First let us interpret the character of the effort ‘in GR. Our earlier treatment of the
E-M tensor revealed its conservation, which means that its covariant derivative, which
we interpreted as the effort tensor, is identically equal to cypher. Hence, again, we find
that the tensorial power vanishes, although this time its vanishing is due to the
conservation of the effort rather than the "generalized orthogonality" between the effort
and the flow we experienced in other situations. This of course reduces our chances of
modeling the power (energy) transactions for gravitational fields. To this end Hilbert

writes (1917):

I declare that ... for the general theory of relativity, that is, in the case of general
invariance of the Hamiltonian function, there are generally no energy equations that ...
correspond to energy equations in orthogonal-invariant theories. I could even note this
fact as being a characteristic feature of the theory.

Another inherent problem in GR is the local energy density. Quoting from Wald (1984):

The issue of energy in general relativity is a rather delicate one. In general relativity
there is no known meaningful notation of local energy density of the gravitational field.
The basic reason for this is closely related to the fact that the spacetime metric, g, ,
describes both the background spacetime structure and the dynamical aspects of the
gravitational field, but no natural way is known to decompose it into its "background"
and "dynamical” parts.

More recently, Logunov and Mestvirishvili (1989), championed a new theory that built
the gravitational field in the spirit of the Faraday-Maxwell fields, i.e., built the field "as
a material substratum that can never be destroyed by the choice of reference frame." By

doing so they eliminated the difficulty of splitting the metric tensor, since "... to retain
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the concept of a gravitational field as being a Faraday-Maxwell physical field we must
completely renounce its identity with the metric tensor." (ib.)

In spite of all the problems, someone with some background in bondgraphs can
easily see that equation (190) represents a transformer of power between two domains;
the material and gravitational ones. Unfortunately, upon taking the covariant derivative
of both sides, one arrives at a trivial equality. Borrowing the Kamoppic expression, our
treatment is definitely "penetrating but Olympian", in the sense that it does identify the
problems involved but stands short from overcoming them.

The author is still confident that bondgraphs can become a unifying method for
modeling dynamics, including those of gravitational fields. It is also believed that the
hurdles preventing us from achieving this goal result from the structure of the GR theory
rather than from the geometrodynamics involved. It is quite possible that other
alternative theories can produce bondgraphic models that can help understand
gravitation better. Unfortunately, such claims will have to be kept on hold until a second

stage of this research, towards a Ph.D. hopefully, is conducted to that end.
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"He spoke, but Meneldus overheard;

and when he answered, these were his winged words:
'Dear sons, no mortal man can vie with Zeus:
his halls are everlasting — and his goods.

As for my wealth, there may be other men

to match me, or there may, by chance, be none.
But it has cost me many wanderings

and many griefs to bring these treasures here,
stowed in my ships; for more than seven years
I traveled till at last I reached my home..."
Book IV, The Odyssey of Homer.

A new verse translation by A. Mandelbaum.

7 CONCLUSIONS

This "summary" chapter provides an account of the results achieved in this thesis. The

sequence they are listed in here, does not reflect their ordering in the thesis. The author

rather felt that the results should be arranged according to their importance and the

degree they affect future research on the subject. Please note that this chapter does not

exhaust all the work presented in the thesis and that it is intended to highlight the salient

results only.
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1 On Whether Bondgraphs are the Appropriate

Tool for Modeling SR and GR
Although the bondgraphic treatment of SR particle mechanics via modulating the flow by
7, resulted in a divergence from the standard model, its educational value is still
preserved when the flow is modulated by 7 = [(2#“2)(7/— 1)]1/2, thus admitting velocity
modulated inertance. In SR electrodynamics, bondgraphs were successful in modeling
the electromagnetic field tensor in congruence with the existing literature.

As far as the GR theory is concerned, the tensorial power postulate was penetrating
but Olympian. Again the insight provided is of considerable importance.

Thus although bondgraphs provide penetrating problem analysis, they, in some cases
introduce models that diverge from the standard ones. We still endorse their use, at least

as a parallel analyzing tool.

2 The Charm of Tensorial Power

A promising result obtained in this thesis is the tensorial bondgraphic power. This
formulation worked beautifully in the examples provided in chapters five and six. It was
also postulated that this power always vanishes, although such conclusions are not more
than educated guesses outside the work we conducted. More exhaustive treatment and

testing of the postulate is necessary before a rigid belief of the results is established.

3 The Impact of Parametrizing Mass on SR Theory

In case of SR particle mechanics, BG's were found to produce a new energy-mass
formula. Upon comparing the new formula with the standard 1905 one, it was found that
the experimental data , from one of the more accurate experiments, agreed better with the
standard formula. This result must be viewed while keeping in mind the fact that the data

used were actually conducted to test the standard formula only. Although we highly
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respect the Einstein energy-mass relation, we maintain that conducting new experiments,
designed specifically to comparing the two models, will definitely be the only decisive
factor on adopting a new formula or renewing our faith in the existing one. Other factors,
such as the conservation of energy, must definitely be taken into consideration in the

proposed experiments.

4 On Reconciling GR with Bondgraphics
Other than identifying the effort tensor in GR, the research on this topic was hindered by
the lack of a definition of local energy for "Einsteinian" gravitational fields. A second
phase of the research can be conducted to focus on other gravitation theories which
support local energy density.

The Einstein field equations provided some insight on the power transfer between the
material and gravitational fields, despite the collapse of the constitutive relations of the

bondgraphic transformer.
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