

CIRCUIT MODELING IN DYMOLA

by

Daryl Ralph Hild

A Thesis Submitted to the Faculty of the

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

In Partial Fulfillment of the Requirements
For the Degree of

MASTER OF SCIENCE
WITH A MAJOR IN ELECTRICAL ENGINEERING

In the Graduate College

THE UNIVERSITY OF ARIZONA

1993

 2

STATEMENT BY AUTHOR

This thesis has been submitted in partial fulfillment of requirements for an advanced
degree at The University of Arizona and is deposited in the University Library to be made
available to borrowers under rules of the Library.

Brief quotations from this thesis are allowable without special permission, provided

that accurate acknowledgment of source is made. Requests for permission for extended
quotation from or reproduction of this manuscript in whole or in part may be granted by the
head of the major department or the Dean of the Graduate College when in his or her
judgment the proposed use of the material is in the interests of scholarship. In all other
instances, however, permission must be obtained from the author.

 SIGNED:

APPROVAL BY THESIS DIRECTOR

This thesis has been approved on the date shown below:

 François E. Cellier Date
 Associate Professor of
 Electrical and Computer Engineering

 3

ACKNOWLEDGMENTS

I would like to thank Dr. Francois E. Cellier for his guidance and direction as I

worked through the development, verification, and write-up of the bipolar junction

transistor models discussed in this thesis. I wish to thank the MITRE Corporation,

especially the management team at Fort Huachuca, Arizona – Jeff Hustad, Milt

Hutchinson, Jack Moody, Dick Nixon, and Robert Ringdahl – for their support of my

master's degree studies. Most of all, I thank my wife, Janis, for her support and

encouragement throughout this effort.

 4

DEDICATION

To Janis,

for her love,

support,

and friendship...

 5

TABLE OF CONTENTS

LIST OF FIGURES .. 7

ABSTRACT .. 8

1. INTRODUCTION .. 9

2. CIRCUIT MODELING USING DYMOLA .. 13

2.1. The Basic Electrical Components .. 13

2.2. Modeling Circuits With The Basic Components ... 14

3. THE BIPOLAR JUNCTION TRANSISTOR .. 17

3.1. The P-N Junction ... 17

3.2. Modeling The Bipolar Junction Transistor .. 21

3.3. The External Base-Collector Capacitance ... 24

3.4. The Two Dependent Current Sources .. 25

3.5. The Collector And Emitter Resistances ... 27

3.6. The Base Resistance .. 29

3.7. The Base-Collector Diode .. 31

3.8. The Base-Emitter Diode .. 32

3.9. The Substrate Diode ... 34

3.10. BJT Parameters, Constants, And Temperature

Compensation Factors ... 35

 6

4. VERIFYING THE BJT MODEL .. 36

4.1. Processing Dymola Models For Simulation 37

4.2. Processing The BJT Circuit Models For Simulation 41

4.3. Numerical Integration Of Electrical Circuits .. 42

4.4. The NPN BJT .. 44

4.5. The PNP BJT .. 46

4.6. NPN And PNP Model Discrepancies ... 49

5. MORE COMPLEX CIRCUIT MODELING ... 50

6. CONCLUSIONS .. 53

APPENDIX A. DYMOLA MODEL OF ELECTRICAL COMPONENTS 55

APPENDIX B. DYMOLA MODEL OF BIPOLAR JUNCTION TRANSISTORS 59

APPENDIX C. SPICE MODELS OF THE NPN INVERTER CIRCUIT 71

APPENDIX D. DYMOLA FILES MODELING THE NPN INVERTER CIRCUIT 74

APPENDIX E. SIMULATION PLOTS OF THE NPN INVERTER CIRCUIT 79

APPENDIX F. SPICE MODELS OF THE PNP CIRCUIT .. 94

APPENDIX G. DYMOLA FILES MODELING THE PNP CIRCUIT 97

APPENDIX H. SIMULATION PLOTS OF THE PNP CIRCUIT 102

APPENDIX L. SPICE MODELS OF THE OPAMP CIRCUIT 117

APPENDIX J. DYMOLA FILES MODELING THE OPAMP CIRCUIT 122

APPENDIX K. SIMULATION PLOTS OF THE OPAMP CIRCUIT 130

REFERENCES .. 132

 7

LIST OF FIGURES

1. Simple Logic Inverter ... 9

2. Simple Passive Element Electrical Circuit ... 15

3. P-N Junction Models ... 17

4. Vertical And Lateral NPN BJT ... 21

5. BJT Current Convention ... 22

6. A Vertical And Lateral NPN Transistor Model .. 23

7. Simple NPN Inverter Simulation Plot ... 45

8. PNP Test Circuit ... 47

9. PNP BF=10.0 Circuit Simulation Plot .. 48

10. An Operational Amplifier Model .. 50

11. An OPAMP Inverter Circuit ... 51

12. OPAMP Simulation Plot ... 52

 8

ABSTRACT

In this thesis, an alternative to SPICE as an electrical circuit modeling and simulation

tool is explored. SPICE has been very popular automated circuit analysis tool of industry

and universities, alike. A new modeling tool, Dymola, supports object-oriented modeling

and can generate state-space models for simulation in several different simulation

languages: ACSL, DESIRE, Simnon, SimuLink, and DSblock. In Dymola, objects are

mathematically modeled as implicitly described sets of ordinary differential equations.

Dymola objects may then be interconnected to form more complex systems.

This thesis develops a library of PNP and NPN bipolar junction transistor models, and

investigates use of the transistor models as subcomponents to more complex circuits such

as operational amplifiers. The simulation results are compared to those obtained from

two Spice dialects, and are discussed in terms of accuracy, efficiency, flexibility, and

robustness.

 9

1. INTRODUCTION

Today's circuit designers use automated tools to model and simulate electronic circuit

designs prior to committing a design to a fabrication process. One of the more popular

modeling and simulation tools for electronic circuits is SPICE.

A variety of SPICE dialects exist to run on various computers from desktops to

mainframes. SPICE uses a topological modeling approach for circuit description. In this

approach, all circuit nodes are numbered and the circuit designer assigns circuit element

terminals to nodes. Consider the simple logic circuit of Figure 1.

Figure 1. Simple Logic Inverter

 10

In SPICE, the following description models this circuit.

Simple Logic Inverter

 Vin 1 0 0

 Vs1 0 3 6

 Vs2 5 0 6

 Q1 4 2 0 5 PROC35.N

 Rin 1 2 5.6k

 Rbias 2 3 10.0k

 Rload 4 5 1.0k

.MODEL PROC35.N NPN

+ IS=1.1fA BF=100 BR=1

+ RC=500 RE=15 RB=1000

+ CJC=.3pF CJE=.5pF CJS=.1pF

+ VJC=.65 VJE=.77 VJS=.75

Note that the first character of each element name determines type of circuit element

being used: V - voltage source, R - resistor, Q - transistor. The element name is followed

by node assignments for its terminals. The node assignments are followed by element

parameter assignments. In the case of the bipolar junction transistor (BJT) element Q1,

PROC35.N refers to a .MODEL statement which allows us to group sets of device

parameters for the BJT element type.

Not all SPICE dialects use the same equations or device models. In fact, the

equations and device models used in SPICE software packages are often proprietary and

the circuit designer using a particular SPICE dialect will not normally have visibility of

the equations coded into the software. This limitation constrains the designers

 11

understanding of the model he is using and the relationship a particular parameter may

play in modeling physical characteristics of a device. This is particularly true for the

more complex active devices such as BJTs, junction field effect transistors (JFETs), and

metal oxide semiconductor field effect transistors (MOSFETs). Furthermore, many

versions of SPICE do not allow the user access to internal voltages, currents, and other

circuit element parameters. These limitations constrain ones ability to analyze and

interpret simulation results relative to a particular parameter or set of parameters.

Another limitation of SPICE as a modeling and simulation tool is its restriction to

electrical and electronic components. SPICE has no facilities to model non-electrical

systems or interfaces between electronic and non-electronic systems. SPICE is a well

proven tool for electrical and electronic circuit engineering. It provides limited support,

however, to the systems engineer designing electro-optic, electro-mechanical, electro-

biological, or electro-chemical systems.

A modeling language is needed to (1) allow the designer to directly see how a

parameter fits in the description of a device, (2) allow the designer to access internal

operating parameters and values of a device during simulation, (3) support topological

and/or power and energy flow descriptions of systems and subsystems, (4) support

hierarchical modeling, and (5) support modeling of various types of physical devices -

electronic, mechanical, biological, chemical - and coupling these devices together into

systems.

One potential modeling language is Dymola [1] and [2]. Dymola is an object-oriented

modeling language and preprocessor. As a modeling language, it allows the modeler to

hierarchically decompose and describe a system and its subsystem

 12

components in a very compact, yet easily readable, syntax. Furthermore, Dymola allows

the modeler to separately describe the mode/system and the experiment/stimulus under

which to simulate the model. As a model preprocessor, Dymola can determine the

causalities, reduce the structural singularities, and solve the algebraic loops arising from the

interconnection of subsystems (submodels) and generate a state-space description of the

model in a variety of continuous system simulation language (CSSL) -type modeling and

simulation languages [3].

Another possible modeling tool is the System Performance Simulator [4]. In an

independent effort Martin Vlach researched and developed a modeling and simulation

tool where the modeling capabilities are similar in approach to Dymola. Both tools model

continuous systems using differential algebraic equations to describe the modeled

elements. Models developed for one could easily be converted into a form readable by

the other. Ironically, Vlach received a U.S. Patent on his work in 1992 despite the fact

that such a modeling tool had already been developed by Elmqvist in 1978.

In [5], Cellier proposes using Dymola as an alternative to SPICE: "If we are able to

make Dymola powerful enough that it can handle arbitrarily complex circuits containing

arbitrary algebraic loops and structural singularities, we can automatically generate a

state-space model that will execute much more efficiently at run-time than the currently

used SPICE code." To support his assertion, Cellier began developing a Dymola model

of a bipolar junction transistor (BJT). As described in this paper, this model has

meanwhile been developed further, and its accuracy and validity were verified against

BBSPICE [6] and PS pice [7]. This paper also discusses outstanding developments

needed to achieve the full benefits of using Dymola over SPICE as envisioned by Cellier.

 13

2. CIRCUIT MODELING USING DYMOLA

2.1. The Basic Electrical Components

Modeling the basic circuit elements in Dymola is a straightforward process. The

following model, for example, describes the electrical characteristics of a resistor and its

interfaces.

model type resistor

parameter R=1.0

cut WireA(Va / i) WireB(Vb / -i)

main path P <WireA - WireB>

local u

 u = Va - Vb

 R*i = u

end

For added clarity, Dymola keywords have been bolded. This description defines an

object class (model type) of type resistor. The resistive value of the resistor is defined by

the parameter R, which is set to a default value of 1.0. The cut statement defines the

two wires of a resistor used to connect it into a circuit. The path statement further

defines this connection as a directed path from the input cut to the output cut. The local

variable u is used to compute the voltage drop across the resistor and Ohm's Law is used

to describe the resistor itself.

Similar object class (model type) descriptions for the resistor and other basic circuit

elements - inductor, capacitor, diode, voltage source, current source, and common

 14

(ground node) - have been developed and consolidated into a Dymola library file of

electrical components. This Dymola library file is listed in Appendix A. A modeler

using Dymola can simply call this library file and then use these component descriptions

in the modeling of more complex circuits and systems.

2.2. Modeling Circuits With The Basic Components

After defining and describing the model types to be used in a circuit, the next step is

to declare (instantiate) each component in the circuit and describe the interconnections.

For example, the simple passive electrical circuit of Figure 2 is described in the following

Dymola model.

model circuit

 submodel (voltage) U0

 submodel (resistor) R1(R=100.0) R2(R=200.0)

 submodel (capacitor) C(C=1.0E-6)

 submodel (inductor) L(L=1.5E-3)

 submodel common

 input u

 output y1, y2

 connect common - U0 - R1 - C – common

 connect U0 - R2 - L - common

 U0.u = u

 y1 = C.u

 y2 = L.i

end

 15

Figure 2. Simple Passive Element Electrical Circuit

The submodel declaration instantiates each model type (object). The parameter value

settings for an object are annotated in parentheses and override the default settings found

in the model type descriptions. The connect statements allow for a compact description

of the component interconnections in terms of two directed paths. Finally, the three

algebraic equations at the end of the model connect the input and output parameters to the

appropriate model variables. In this model, the input and output variables are variables

found within the voltage source, capacitor, and inductor submodels. A dot notation of the

type 'submodel_name.variable_name' is used to identify the respective submodel

variables.

From this description, Dymola can automatically generate the connecting equations

based on Kirchhoffs voltage and current laws. From the connecting equations and the

component description equations, Dymola can automatically determine the causality

 16

assignments, reduce the structural singularities, and solve the algebraic loops that result

from submodel coupling.

With this background in electrical circuit modeling in Dymola, we now turn to the

development of a bipolar junction transistor model using Dymola.

 17

3. THE BIPOLAR JUNCTION TRANSISTOR

The bipolar junction transistor is built around p-n junctions. These junctions are

highly nonlinear in their electrical characteristics. A diode is a p-n junction with the

anode equating to the p-side and the cathode equating to the n-side of the junction.

Forward biasing the junction diode is achieved by placing the p-side at a higher potential

than the n-side.

3.1. The P-N Junction

.Figure 3 provides three depictions of the p-n junction. The first depiction is of the

physical device with a heavy p+ doping concentration for the anode and a lightly doped n-

silicon base structure for the cathode. The p-n junction is depicted in the center with

electrical schematic symbols. Note that the capacitance of the junction is a non-linear

function of the charge stored in the junction. Also, the resistance of the junction accounts

for the minimum admittance of the junction. An aggregate junction diode schematic

symbol is depicted on the right.

Figure 3. P-N Junction Models

 18

From Figure 3 it is seen that the current through the p-n junction is simply the sum of

currents resulting from the capacitance, admittance, and ideal diode effects of the junction.

The relationship of the current through, and the voltage across, the junction is:

i = id + ig + ic

id = Is*exp(ud/(Vt*Nd)) - Is

ig = Gmin*ud

ic = Cd*der(ud) = der(qc)

where Is is the transport saturation current of the diode; Vt is the thermal voltage; Nd is

the current emission coefficient; Gmin is the minimum admittance of the junction; and qc

= Cd*ud is the electrical charge stored in the junction capacitance. The thermal voltage is

computed from Vt = k*T/q where k is Boltzmann's constant; T is the temperature; and

q is the electrical charge of an electron.

In [5], Cellier approximates the electrical charge of the junction as a function of

current and voltage with the equation:

qc = τd*id +Vbi*Cd*(1-(1-ud/Vbi)**(1-md))/(1-md)

where τd is the transit time constant of the capacitance, id is the current through the

junction diode which is also a function of ud, Vbi is the built-in voltage potential of the

junction, Cd is the zero-bias depletion capacitance, and md is the exponential grading factor

of the junction.

 19

By handling the first and second terms of qc separately and taking their derivatives

with respect to the junction voltage ud, the diode diffusion capacitance and the junction

depletion capacitance respectively are obtained as follows:

Cdif = der(qc-dif)

= der(τd*id) /der(ud)

= τd*der(Is*exp(ud/(Vt*Nd))-Is)/der(ud)

= τd*Is*exp(ud/(Vt*Nd))/(Vt*Nd))*der(ud)/der(ud)

= τd*Is*exp(ud/(Vt*Nd))/(Vt*Nd))

Cdep = der(qc-dep)/der(ud)

= der(Vbi*Cd*(1-(1-ud/Vbi)**(1-md))/(1-md))/der(ud)

= (Vbi*Cd*((1-ud/Vbi)**(-md))*der(ud)/Vbi)/der(ud)

= Cd/(1-ud/Vbi)**md.

This approximation of the depletion capacitance Cdep, however, has a singularity at

ud = Vbi. In [8], Van Halen proposed the following approximation equation for Cdep

to eliminate this singularity:

Cdep = Cd / (1 - (ud - 0.5*Vt*exp((ud-Vbi)/Vt)/Vbi)**md.

From the above equations, the p-n junction can easily be modeled in Dymola with the

following description.

 20

model type jdiode

 cut Anode(Va / I) Cathode(Vb / -I)

 main path P <Anode - Cathode>

 parameter ND=1 IS=1.0E-16 TD=0 CD=0 VD=0.75 MD=0.33 ->

 AREA=1 GMIN=1.0E-12

 external DTemp FTemp VT ISfact VDfact

 terminal Id u

 local ISv Vbi CDv ISe Ic Cdif Cdep denom

 { Electrical equations }

 u = Va - Vb

 I = Id + Ic

 Id = ISe - ISv + GMIN*u

 ISe = ISv*exp(u/(VT*ND))

 Ic = der(u) * (Cdif + Cdep)

 { Junction capacitance equations }

 Cdif = TD * (ISe/(VT*ND) + GMIN) {Diffusion cap.}

 Cdep = CDv / denom {Depletion cap.}

 denom = (1 - (u - 0.5*VT*exp((u-Vbi)/VT))/Vbi)**MD

 { Temperature adjustment equations }

 ISv = IS*AREA*ISfact

 Vbi = FTemp*VD + VDfact

 CDv = CD*AREA*(1 + MD*(1 - Vbi/VD + 4.0E-4*DTemp))

end

This description introduces three more declaration statements available in Dymola:

external, terminal, and local. External parameters allow for an implicit data exchange

between the submodel and the next higher order system, i.e. externals are like global

parameters. Calling models must acknowledge the existence of externals by declaring such

variables as internal. Terminals and locals are variables in the model that may

 21

change in value during a simulation run. Terminals support connections to other devices

while locals do not. Terminals are accessed using the dot notation introduced earlier.

The above description also introduces the jdiode temperature adjustment equations.

The performance of a p-n junction is temperature dependent. This model compensates for

temperature effects on the transport saturation current, IS, the built-in junction potential,

VD, and the zero-bias capacitance, CD. These temperature equations were found in both

the HSPICE User's Manual [9] and the BBSPICE [6] source code.

3.2. Modeling The Bipolar Junction Transistor

The bipolar junction transistor consists of multiple p-n junctions. The two primary

junctions are the base-collector and the base-emitter junctions. A third p-n junction

occurs across the substrate. BJTs are classified as either NPN or PNP transistors based on

the doping of the emitter, base, and collector. BJTs are further classified as being either

vertically or laterally diffused transistors depending on the physical geometry of the

device. Figure 4 shows a vertically diffused and laterally diffused NPN transistor. For

the PNP transistor the doping concentration in each region is simply reversed.

Figure 4. Vertical and Lateral NPN BJT

 22

From Figure 4 it is seen that the substrate p-n junction is formed with the collector for

the vertically diffused BJT, and it is formed with the base for the laterally diffused BJT.

For the BJT a standard convention for current flow into the transistor is specified to

avoid memorization of different convention sets depending on the BJT type. This standard

convention is shown in Figure 5.

Figure 5. BJT Current Convention

The following Dymola statements model this BJT interface.

cut C(VC / IC) B(VB / IB) E(VE / - IE) S(VS / ISUB)

main cut CBES [C B E S]

path BE<B-E> BC<B-C> BS<B-S> CE<C-E> CS<C-S> ES<E-S>

path EB<E-B> CB<C-B> SB<S-B> EC<E-C> SC<S-C> SE<S-E>

The directed path flows given in this description allow for a compact specification for any

combination of directed flows into and out of the transistor.

 23

Figure 6 provides a graphic model of the vertically and laterally diffused NPN

transistor. In the vertical NPN transistor, the substrate is connected to the collector. For

the lateral NPN, the substrate is connected to the base. The PNP transistor model is the

same except that the diode polarities are reversed. This is the same model as given in [5].

Figure 6. A Vertical And Lateral NPN Transistor Model

Describing these four types of BJTs is straightforward using the concept of inheritance

as supported by Dymola. Using inheritance, the internal components of the BJT can be

described in a generic BJT model which can then be called upon to describe the NPN and

PNP, vertical and lateral, BJTs specifically. Using this method, the following model

describes the laterally diffused NPN BJT.

 24

model type (BJT) NPNlateral

 { Plug the internal circuits together. }

connect rbb from B to IntB

connect rcc from C to IntC

connect ree from IntE to E

connect dbc from IntB to IntC

connect dbe from IntB to IntE

connect dbs from IntB to IntS

connect wire from S to IntS

connect cbcx from B to IntC

connect ibe0 from IntB to IntE

connect ice0 from IntC to IntE

end

Models for the three other BJT types are contained in Appendix B. The model of the

interface convention given previously is part of the generic BJT model as it is common

across all BJT types. The rest of this generic BJT model is presented next.

3.3. The External Base-Collector Capacitance

The external base-collector capacitance, Cbcx, is used to model the physical

distribution of the junction charge and current flow across the base. Cbcx is actually part

of the base-collector junction depletion capacitance. In [5], Cellier modeled this

capacitance as a separate capacitor. The parameter XCJC is used to set the fraction of the

base-collector capacitance to be found within (internal to) the junction diode model,

whereas 1-XCJC is used to set the fraction of capacitance in Cbcx, the capacitance

distributed across (external to) the junction diode. Rather than compute the base-collector

capacitance twice and then multiply each result by XCJC and (1-XCJC) in

 25

determining the associated capacitance currents, we can compute the total capacitance

current once and multiply this by XCJC and (1-XCJC) to obtain the associated

capacitance currents internal to and distributed across the junction. This approach to

modeling the external base-collector capacitance also resolves the degenerate system

problem with the BJT model as described in [5, p 228].

Using this approach and choosing to compute the base-collector capacitance in the

junction diode model, the Cbcx capacitance can be modeled as a dependent current source:

model type Csource

 cut A(. / I) B(. / -I)

main path P <A - B>

 terminal I0

 I = I0

end

where the terminal I0 statement is used to connect the dependent current to its

determinants, in this case, the base-collector junction diode where the total capacitance

current and its distribution across the base are computed.

3.4. The Two Dependent Current Sources

The two dependent current sources IC0 and IB0 represent the DC component of the

collector current and the base current. These current sources can be modeled with the

following set of equations.

 26

IC0 = (ibe-ibc)/qb - ibc/BR - icn

IB0 = ibe/BF + ibc/BR + ien + icn - ibe

icn = ISC*(exp(vbc/(VT*NC)) - 1)

ien = ISE*(exp(vbe/(VT*NE)) - 1)

In these equations, ibc and ibe are the base-collector and base-emitter diode currents;

icn and ien are also diode currents, but they are based on the leakage saturation current

parameters ISC and ISE and the leakage emission coefficients NC and NE. VT is the

thermal voltage. BF and BR are the ideal maximum forward and reverse beta coefficients

that represent the DC current gain factors IE/IB and IC/IB. The term qb is the base

charge. SPICE models the base charge with the following set of equations.

q1 = 1/(1 - vbc/VAF - vbe/VAR)

q2 = ien/IKF + icn/IKR

qb = 0.5*q1*(1 + (1 + 4*q2)**0.5)

Here, vbc and vbe are the voltages across the base-collector and base-emitter diodes

respectively; VAF and VAR are the forward and reverse early voltages; and IKF and IKR

are the forward and reverse high current beta roll-off (degradation) parameters.

Also, as will be discussed later, the derivatives, with respect to vbe, of these base

charge equations will be needed for the base-emitter diode model. These derivative

equations are listed here.

dq1 = der(q1)

 = (der(vbe)/VAR)/(q1*q1)/der(vbe)

 = I/(VAR*q1*q1)

 27

dq2 = der(q2)

 = der(ien)/IKF/der(vbe)

 = (ien+ISE)*der(vbe)/(VT*NC*IKF)/der(vbe)

 = (ien+ISE)/(VT*NC*IKF)

dqb = der(qb)

 = 0.5*der(q1)(1+sqrt(1+4*q2))

 + q1*der(q2)/sqrt(1+4*q2)

 = qb*der(q1)/q1 + q1*der(q2)/sqrt(1+4*q2)

The above equations are included as part of the top level BJT model. The computed

currents IC0 and IB0 are connected to the dependent current source submodels ice0

and ibe0 respectively. The current sources ice0 and ibe0 use the same dependent

current source model as given for the external base-collector model above.

3.5. The Collector And Emitter Resistances

The collector and emitter resistors of the BJT model are modeled as area dependent

resistors. The area parameter is a scaling parameter. These resistors are modeled as:

model type varresistor

 cut A(Va / I) B(Vb / -I)

 main path P <A - B>

 cut Par(Rv)

 parameter AREA

 local u

 u = Va - Vb

 u = I*Rv/AREA

end.

 28

Note that the same model type can be used to describe both the collector resistor, rcc,

and the emitter resistor, ree. In this model, only the AREA is declared as a parameter; the

resistive value Rv has been declared as a cut. Typically, transistor circuits are fabricated

on a single chip. To minimize the number of fabrication processes, and thus the cost of

manufacturing a chip, the transistors on a chip will be very similar and have the same

parameters with the exception of the area occupied by each transistor. So, declaring all but

the AREA parameter as cuts in these models will allow all the parameter declarations to be

consolidated in a separate parameter specification model, BJTpar. The parameters for

multiple transistors can be set once in BJTpar and then connected to the individual BJTs

of the circuit being modeled.

This scheme is very similar to the .MODEL statement of SPICE. This scheme will

also allow for consolidation of BJT related constants and temperature compensation

factors and equations. One such equation is for the temperature sensitive resistor

presented below. This scheme can save CPU cycles at runtime by evaluating a common

set of equations once for several transistors. The scheme also saves on the variable name

space by minimizing the number of unique variables instantiated for multiple transistors.

The elements of an integrated circuit are temperature sensitive. From the HSPICE

manual and the BBSPICE source code, the resistance found in the collector and emitter is a

quadratic function of temperature, which is modeled with the equation:

Rv = R*(1 + TR1*DTemp + TR2*DTempSq)

 29

where TR1 and TR2 are the first and second order temperature coefficients. DTemp and

DTempSq are the difference and the difference squared of the device and room

temperature. As stated above, these temperature adjustment equations are consolidated in

the BJTpar model.

3.6. The Base Resistance

The base resistance is the most important resistance in the BJT model and

correspondingly has a more complex model than the collector and emitter resistances. It

is a variable resistor where the resistance is dependent on the current through the base as

well as the area associated with the BJT. The SPICE model for the base resistance is:

rbb = RBM + 3*(RB - RBM)*(tan(z) - z)/(z*tan(z))**2

with

z = (-1 + sqrt((1+144*ib)/(IRB*pi**2)))

 /(24*sqrt(ib/IRB)/pi**2).

RBM is the minimum resistance given a high base current; RB is the maximum resistance

given a low base current; ib is the base current; pi is the constant 3.14159; and IRB is the

base current where the base resistance falls halfway between RB and RBM.

The above equation for z fails, however, if the parameter IRB is set to zero. In that

case, SPICE automatically switches to the simpler equation:

rbb = RBM + (RB - RBM)/qb

 30

where qb is the base charge discussed earlier. The following Dymola model for rbb

implements this SPICE model. This implementation has commented out the base current

model and uses only the simpler base charge equations.

model type rbb

 cut A(Va / I) B(Vb / -I)

 main path P <A - B>

 cut Par(RBv RBMv IRBv PiSq)

 parameter AREA

 external qb

 local u R {z tz)

 u = Va - Vb

 { R = if IRBv > 0.0 ->

 then (RBMv + 3.0*(RBv-RBMv)*(tz-z)/(z*tz*tz))/AREA ->

 else (RBMv + (RBv - RBMv)/qb)/AREA

 z = if IRBv > 0.0 ->

 then (-1 + sqrt(1 + 144*I/(PiSq*IRBv*AREA))) ->

 /(24*sqrt(I/(IRBv*AREA))/(PiSq)) ->

 else 0.0

 tz = if IRBv > 0.0 then tan(2) else 0.0

 }

 R = (RBMv + (RBv - RBMv)/qb)/AREA

 R*I = u

end

For this model, PiSq is a global constant that is included in the Par cut along with the

other model parameters. Again, this mechanism allows consolidation of these factors in

BJTpar. The base resistor is temperature sensitive and uses the same compensation

equation as ree and rcc for the high and low current resistance temperature adjustment.

 31

3.7. The Base-Collector Diode

A model for the p-n junction diode was presented earlier and will form the basis of our

base-collector diode (dbc) model. Our deviation from the p-n junction diode model is

based on the development of the external base-collector capacitance model. The goal was

to calculate the base-collector depletion capacitance once and use the internal base-

collector fraction parameter XCJC to distribute the current between the internal and

external models. In the following dbc model, Ix is the external capacitance current and

the terminal declaration of Ix allows it to be connected to the Cbcx model.

model type dbc

cut Anode(Va / I) Cathode(Vb / -I)

main path P <Anode - Cathode>

cut Par(VTNR ISv TRv CJCv XCJCv VJCv MJCv GMINDCv VT)

parameter AREA

terminal Id u Ix

local ISe Ic Cdif Cdep denom

{ Electrical equations }

 u = Va - Vb

 I = Id + Ic

 Id = (ISe - ISv)* AREA + GMINDCv*u

 ISe = ISv*exp(u/(VTNR))

 Ic = der(u)*(Cdif+XCJCv*Cdep) {Internal cap current}

 Ix = der(u)*(1-XCJCv)*Cdep {External cap current}

{ Junction capacitance equations }

 Cdif = TRv * (ISe/(VTNR) + GMINDCv) {Diffusion cap}

 Cdep = AREA*CJCv/denom {Depletion cap}

 denom = (1 - (u - 0.5*VT*exp((u-VJCv)/VT))/VJCv)**MJCv

end

 32

3.8. The Base-Emitter Diode

Again, the p-n junction diode model forms the basis of our base-emitter diode (dbe)

model. The base-emitter diffusion capacitance term, however, is a bit more complex as it

is dependent on the base charge as well as the base-emitter current. The HSPICE user's

manual provides the following equation for this capacitance:

Cdif = der(TF*Id/qb)/der(u)

and by expansion, we can get

Cdif = TF*(der(Id)/qb + Id*der(1/qb))/der(u)

 = TF*((IS*exp(u/(VT*ND))/(VT*ND) + GMIN)/qb

 - Id*der(qb)/(qb*qb)).

Applying this modification to the p-n junction diode model results in the following dbe

model.

 33

model type dbe

 cut Anode(Va / I) Cathode(Vb / -I)

 main path P <Anode - Cathode>

 cut Par(VTNF ISv TFv CJEv VJEv MJEv GMINDCv VT)

 parameter AREA

 external qb dqb

 terminal Id u

 local ISe Ic Cdif Cdep denom

 { Electrical equations }

 u = Va - Vb

 I = Id + Ic

 Id = (ISe - ISv)*AREA + GMINDCv*u

 ISe = ISv*exp(u/(VTNF))

 Ic = der(u) * (Cdif + Cdep)

 { Junction capacitance equations }

 Cdif = TFv*((ISe/(VTNF)+GMINDCV)/qb - Id*dqb)/(qb*qb)

 {Diffusion cap}

 Cdep = AREA*CJEv/denom {Depletion cap}

 denom = (1 - (u - 0.5*VT*exp((u-VJEv)/VT))/VJEv)**MJEv

end

This implementation of the dbe model declares qb and its derivative dqb as external

parameters. Equations for these two globals are defined in the higher level BJT model as

presented earlier.

 34

3.9. The Substrate Diode

For the substrate diode, the generic p-n junction diode model can actually be simplified.

In the case of the substrate diode, the capacitance due to diffusion becomes negligible and

this term can be eliminated from the model. Also, if the substrate diode is always assumed

to be reverse biased, the singularity problem at Vbi is avoided and the simpler depletion

capacitance equation can also be used. With these simplifications, the substrate diode

model becomes:

model type dbs

 cut Anode(Va / I) Cathode(Vb / -I)

 main path P <Anode - Cathode>

 cut Par(VTNS ISSv CJSv VJSv MJSv GMINDCv VT)

 parameter AREA

 local ISe Ic u Id Cdep

 { Electrical equations }

 u = Va - Vb

 I = Id + Ic

 Id = (ISe - ISSv)*AREA + GMINDCv*u

 ISe = ISSv*exp(u/(VTNS))

 Ic = der(u)*Cdep

 { Junction capacitance equations }

 Cdep = AREA*CJSv/(1-u/VJSv)**MJSv {Depletion cap}

 end.

 35

3.10. BJT Parameters, Constants, And Temperature Compensation Factors

Many of the parameters in the BJT model are dependent on the device temperature

and on the relative difference between device and room temperature. These temperature

compensation factors and other global constants are included in the BJTpar model. A

single instantiation of this model can then be connected to multiple BJTs in a circuit

where the parameters and temperature factors are the same across the BJTs. The

complete Dymola BJT model library is listed in Appendix B.

 36

4. VERIFYING THE BJT MODEL

Now that the BJT has been modeled, the validity and usefulness of this model as a

tool to describe electrical circuits for the purpose of simulation is investigated. SPICE

previously served as the basis for developing many of the equations to build this BJT

model. Now SPICE will be used as the baseline to test the validity of this model. All that

needs to be done is to model simple transistor circuits in SPICE and in Dymola – using

the same parameters in both – and compare the results from simulating each. For this

exercise, the two SPICE dialects BBSPICE [6] and PSpice [7] were used.

In BBSPICE, BJTs contain 54 different model parameters. In PSpice, BJTs contain

40 different model parameters. The Dymola model has implemented 48 of the BBSPICE

parameters and 34 of the PSpice parameters. The Dymola model has omitted the same

six parameters from both BBSPICE and PSpice; of the six remaining, one is a frequency

multiplier to determine excess phase, to account for flicker noise, and three provide

additional detail for high base-emitter current modeling. For verifying the 48 parameters,

we can simplify the process by setting several of them to zero, one, or infinity. These

settings effectively "turn-off these parameters and simplify the overall BJT model from a

Gummel-Poon type transistor model to an Ebers-Moll type model. With this approach,

the number of active parameters can be reduced to sixteen for a very simple BJT model.

Assuming that the simulation results of the simple BJT in both Dymola and SPICE are a

reasonably close match, we can then turn on the other parameters one by one and further

verify the completeness and accuracy of the Dymola BJT model as an equivalent SPICE

model.

 37

4.1. Processing Dymola Models For Simulation

Dymola is not a simulation program; it provides no simulation support. Dymola is a

modeling language. It facilitates object-oriented modeling, allowing the modeler to

formulate very complex continuous system models. After composing the model, the

modeler can use Dymola as a model preprocessor to (1) determine the computational

causalities, (2) reduce the structural singularities, and (3) solve the algebraic loops arising

from the interconnection of the subsystems (submodels). Finally, the modeler can use

Dymola as a model generator to produce a state-space description of the continuous system

in a variety of simulation languages for model simulation and analysis. While each of the

above concepts are summarized in the following paragraphs, they are more fully addressed

by Cellier and Elmqvist in [3].

Most of the continuous system simulation languages (CSSLs) in use today employ

numerical integration algorithms that are designed to solve state-space models of the type

x_dot = f(x,u,t).

Because the same expression may appear several times in the various state equations

forming a model, it is often more convenient and efficient to assign these expressions to

auxiliary variables. Thus, the CSSLs typically support extended state-space model

descriptions of the form

x_dot = f(x,z,u,t)

z = g(x,z,u,t)

where the auxiliary algebraic expressions are assigned to the auxiliary variables, z, and

these auxiliary variables must be mutually independent. This mutual independence

restriction is to ensure that no algebraic loops are formed in the various equations of the

 38

model. This is important, as the simulation languages employ an equation sorter to

establish an executable sequence for the state-space equations, but an equation sorter is

unable to resolve the execution sequence of mutually dependent equations. Dymola, as a

model preprocessor, facilitates the generation of state-space models that can meet these

requirements.

The computational causality of a model determines how the physical laws, as encoded

in the model equations, must be interpreted in order to obtain a program that can be

executed on a sequential machine using existing numerical algorithms. For example,

Dymola allows the resistor model to be described by Ohm's Law: U = R*I. With this

description, the current through the resistor seems to "cause" a potential drop across the

resistor. However, depending on how the resistor is interconnected with the surrounding

components of a more complex circuit model, the Ohm's Law resistor description may

require algebraic manipulation to describe the resistor as I = R/U in order to obtain an

appropriate state-space model description of the circuit for simulation in a CSSL-type

language.

The partition command in Dymola uses a set of algorithms to symbolically

manipulate the model equations and solve the causality assignment problem. Dymola

assumes by default that the state variables of the model are all variables that appear

differentiated. Since the target simulation language is expected to use an explicit

integration algorithm, Dymola automatically declares all these state variables as known

variables in accordance with the state-space description format: x_dot = f(x,u,t).

Based on this set of known variables, Dymola determines the required causality

 39

assignments on the state-space and auxiliary equations in order to solve for the remaining

unknown variables.

Algebraic loops commonly occur when submodels are interconnected. A simple

example is a set of two resistors in series that form a voltage divider. The current through

each of the resistors is the same based on the series connection. The current through

either of the resistors, however, is dependent on the voltage drop across that resistor. But,

the voltage drop across either of the resistors can only be determined if the current

through the resistor were already known. CSSL-type languages cannot solve such

algebraic loops as the equation sorter cannot determine an executable sequence for

mutually dependent equations.

In Dymola, the partition command detects algebraic loops when it can no longer

uniquely solve the causality assignment problem. At this point, Dymola isolates the

involved equations, determines the involved variables, and checks whether the algebraic

loop is a linear or nonlinear problem. Given a linear algebraic loop, Dymola solves the

loop through symbolic formula manipulation. Dymola can also identify common sub-

expressions and will define auxiliary variables and equations for them to further support

computational efficiencies in the simulation language model. Depending on the setting of

Dymola's compiler options, the partition command may further simplify the problem by

eliminating unnecessary equations and expressions such as "a=0" and any terms multiplied

by "a" in other equations.

Structurally singular problems occur in systems that contain more energy storing

elements than eigen modi. Such systems are also known as degenerate systems. A

 40

structurally singular linear electrical circuit, for example, contains more capacitors and/or

inductors than is indicated by the order of its transfer function. In structurally singular

problems, the additional differentiators are true differentiators – they cannot be eliminated

from the system or solved as integrators. As with algebraic loops, structurally singular

systems often result from the interconnection of subsystems. Dymola can detect

structurally singular problems during solution of the causality assignment problem by

noting any integrators – energy storage elements – that assume differential rather than

integral causality.

Dymola supports solving structurally singular problems with the differentiate

command. The command initiates an algorithm that assumes all state variables –

variables that appear differentiated – are known. It then looks for constraints between

these variables. For each constraint, it generates new equations that are symbolically

differentiated versions of the constraint equations. In the case of a chain of equations

resulting from auxiliary variables, all equations in the chain are differentiated. The

process is repeated to account for second or higher order derivatives that would also be

considered known. After executing the differentiate command, Dymola no longer assigns

any variables to the set of known variables automatically. It is up to the user to explicitly

declare which variables are to be used as state variables, i.e. known variables. In this

manner, all constraints are retained and the dimension of the state vector is reduced. The

state variables that are removed from the state vector by the differentiation process are

computed from the constraints.

 41

4.2. Processing The BJT Circuit Models For Simulation

In verifying the BJT model, three different circuit models were used to test the model:

an NPN inverter circuit, a PNP circuit, and a twelve transistor Operational Amplifier

(OPAMP) circuit. As can be seen in appendices D, G, and J, the Dymola script files to

process each of these circuits follows the same basic approach. This approach can be

described as follows.

First, the differentiate command is executed to ensure structurally singular problems

are avoided by reducing the dimension of the state vector. At the end of the

differentiation process, Dymola does not automatically assume any state variables as

known variables; the state variables must be explicitly chosen. Within the BJT model, the

energy storage elements are the three junction diodes. In [5], the capacitive junction

current is defined as Ic = der(Qc). Using this equation, defining Qc as the state

variable for each junction diode would seem to be a natural choice. However, using Qc

as a state variable leads to a nonlinear algebraic loop, which can only be solved iteratively

at run time. Instead, choosing the junction voltage Ud as the state variable solves the

problem. After differentiation, a linear set of equations for Ud, Id, and Ic results, which

can be solved through formula manipulation by the partition command. The partition

command is discussed below. The BJT model described in this paper further avoids this

problem by eliminating the junction capacitive charge equation for Qc. Instead, the

junction diffusion and depletion capacitance equations are defined and used to define the

capacitive junction current Ic. Thus, the natural choice for the BJT state variables now

becomes Ud.

 42

After differentiating the model and declaring its state variables, the initial conditions for

these state variables are set. In SPICE, the initial conditions may be automatically found

and set by iterating on a DC operating point. This solution corresponds to algorithms

already employed in modem differential algebraic equation (DAE) solvers, which can find

a consistent set of initial conditions. While Dymola embraces the DAE notation, ACSL

does not yet support this feature. To compensate, the initial conditions automatically

computed in BBSPICE were copied into the Dymola script file to set the initial conditions

for ACSL. In PSpice, the internal voltages of a BJT are unavailable to the modeler. This

inhibited further checks for consistencies between the three models on initial conditions.

Next, the partition command is given to determine causality assignments and solve

algebraic loops in the model equations. This processing step results in a set of solved

equations. This solved set of equations is then used to generate an ACSL program ready

for simulation.

4.3. Numerical Integration Of Electrical Circuits

During the verification of the BJT models, three different numerical integration

algorithms – as implemented in ACSL – were tried: 2nd Order Runge-Kutta(ialg=4),

4th Order Runge-Kutta (ialg=5), and Gear(ialg=2). Due to the limitations of these

numerical integration algorithms in solving stiff problems, careful selection of the

integration step size and certain model parameters – the diode saturation currents IS and

ISS; the diode depletion capacitances CJC, CJE, and CJS; and the transit times TF and TR

– was required in order to have a model that is stable and solvable without an

 43

excessive number of integration steps. The most sensitive trade-off is between the

saturation currents, the depletion capacitances, and the integration step size. Holding the

saturation current parameters constant and increasing the capacitance values allows one to

also increase the integration step size. However, the increased capacitance also causes the

response time of the transistor to increase such that the total simulation time must also

increase to capture a complete simulation of the transient analysis. Thus, increasing the

capacitance values relative to the saturation currents can cause the number of integration

steps required to go up. Decreasing the capacitance allows one to reduce the total

simulation time required, but the decrease in capacitance also causes faster transient

response times in the transistor. Now the integration step size must be reduced to keep

numerical integration of the problem stable. Reducing the integration step size now

requires additional integration steps to be computed to integrate over the total simulated

time.

In both cases, the required number of integration steps goes up. And as the number of

steps goes up, the CPU clock cycles and the required memory for the execution of the

simulation goes up. In the case of the NPN and PNP circuit simulations discussed next,

the parameter sets used still required 8000 integration steps in ACSL to maintain

numerical integration stability while simulating over the full transient analysis. While the

saturation current and capacitance parameters used may not reflect any real BJT, these

parameters do allow the NPN and PNP circuits to be simulated and the accuracy of the

Dymola models verified against the equivalent SPICE models.

Running the simulation on a VAXcluster, a typical simulation time for the NPN

model was approximately 5 seconds for BBSPICE and 31 seconds for the Dymola

 44

generated ACSL model. For the PNP model, simulation times were approximately 6

seconds for BBSPICE and 45 seconds for ACSL. For the OPAMP model, simulation times

were approximately 15 seconds for BBSPICE and 254 seconds for ACSL. The PSpice

models were run on an 80286 based personal computer (no math co-processor) making

simulation time comparisons less meaningful. For the record, PSpice simulation times

were approximately 4, 5, and 15 minutes for the NPN, PNP, and OPAMP models

respectively.

4.4. The NPN BJT

The simple inverter circuit of Figure 1 is used to verify the NPN BJT model. The

simulation is a transient analysis of the circuit with a stepped (pulsed) input signal.

Appendix D contains the Dymola files used to describe the inverter circuit, the

experiment file describing the transient analysis, and the command file to process the first

two files in Dymola and generate a file for an ACSL [10] simulation. Appendix C

contains the BBSPICE and PSpice files describing this same inverter circuit and transient

analysis. The Dymola, BBSPICE, and PSpice models are all configured with the same

parameter sets. For conciseness of these appendices, only these simple (most parameters

turned off) inverter circuit model descriptions are provided. The simulation results are

given in Appendix E and for those simulations with parameters turned on, the parameter

name and its value are annotated on the simulation plots.

Figure 7 depicts the simulation plots for the simple NPN inverter circuit - most

parameters turned off. For the voltage plots, the input voltage at the base and the output

voltage at the collector are plotted. The emitter and substrate voltages are not of much

 45

Figure 7. Simple NPN Inverter Simulation Plot

 46

interest as they are held constant by the ground (common) and voltage supply terminals

respectively, see Figure 1. The current plots IC, IB, IE, and IS correspond to the collector,

base, emitter, and substrate currents respectively. As can readily be seen, simulation of the

Dymola NPN BJT model provides a fairly accurate representation of its SPICE

counterparts. In fact, a quick glance through Appendix E reveals that as many of the other

parameters are turned on the correspondence of this Dymola model to the SPICE models

improves.

4.5. The PNP BJT

To model and test the Dymola PNP BJT, a circuit very similar to the NPN inverter

circuit was used. The PNP test circuit is depicted in Figure 8. Again, the simulation is a

transient analysis of the circuit with a stepped (pulsed) input signal. Appendix F contains

the BBSPICE and PSpice files describing this circuit and transient analysis. Appendix G

contains the Dymola files modeling the circuit, the transient analysis experiment file, and

the command file to process the other two files to generate the ACSL simulation file. The

Dymola, BBSPICE, and PSpice models use the same set of parameters. The simulation

results are plotted in Appendix H with parameter values annotated in the title when that

parameter deviates from the simple sets listed in Appendices F and G. Some of the plots in

Appendix H only depict the Dymola and BBSPICE trajectories. In these plots, PSpice was

unable to process and simulate the model for that specific parameter set. In particular,

PSpice was unable to simulate the model when the two dependent current sources IC0 and

IB0 were effectively turned off.

 47

Figure 8. PNP Test Circuit

Figure 9 depicts the simulation plots of the PNP circuit with the ideal maximum

forward BETA coefficient, BF, turned on and most other parameters turned off. For the

voltage plots, the input voltage at the base and the output voltage at the emitter are

plotted. The collector and substrate voltages are not of much interest as they are held

constant. The current plots IC, IB, IE, and IS correspond to the collector, base, emitter,

and substrate currents respectively. As is readily seen in Figure 9, simulating the Dymola

PNP model with BF turned on provides a very accurate representation of its PSpice

counterpart and a fairly accurate representation of its BBSPICE counterpart. Looking

through the additional results plotted in Appendix H it is seen that only when the

parameters BF, BR, ISE, ISC or IKR are turned on does the Dymola PNP model begin to

match the BBSPICE and PSpice models.

 48

Figure 9. PNP BF=10.0 Circuit Simulation Plot

 49

4.6. NPN And PNP Model Discrepancies

The discrepancies in the plotted trajectories could be the result of numerical

integration errors, differences in the models, or both. To check for integration errors, the

simulation programs were executed using different integration algorithms. In BBSPICE,

the same plots are obtained when using either GEAR or TRAP as the integration

algorithm. In Dymola, the same plots are obtained when using 2nd or 4th Order Runge-

Kutta or Gear. The student version of PSpice had no options for integration algorithm

selection. Thus, numerical integration error can be discounted as the source of

discrepancies.

The differences in the resulting trajectories are characteristic of the differences in the

equations used to form the BJT models. For the Dymola model, the equations were

developed from Cellier's efforts to develop a BJT model in [5], Meta-Software's equations

listed in [9], Van Halen's work on an improved junction capacitance equation in [8], and

the scanning of BBSPICE source code. While the BBSPICE source code serves as the

most comprehensive source of information, it is also the most difficult to read and

interpret. For this reason, the BBSPICE source code was used primarily to verify the use

of equations extracted from other sources. Thus, some of the equations in the Dymola

BJT model are different from those in BBSPICE and PSpice. These equation differences

cause the discrepancies in trajectories resulting from the simulations of all three models:

Dymola, BBSPICE, and PSpice. It is these model equation differences that also result in

PSpice being unable to simulate some of the parameter combinations used in the PNP

circuit models.

 50

5. MORE COMPLEX CIRCUIT MODELING

Now that fairly decent NPN and PNP BJT models have been designed, we can explore

using these models in more complex circuits. For this purpose, consider the twelve

transistor operational amplifier (OPAMP) of Figure 10. This OPAMP consists of both

NPN and PNP transistors. Its Dymola description is in Appendix J.

Figure 10. An Operational Amplifier Model

Now consider using the OPAMP of Figure 10 in a higher level circuit. Figure 11

depicts an inverter circuit based on the OPAMP as a sub circuit. The Dymola description

of this inverter is also found in Appendix J. Appendix I contains the BBSPICE and PSpice

equivalent descriptions.

 51

Figure 11. An OPAMP Inverter Circuit

The OPAMP inverter circuit is simulated over a stepped input signal for a transient

signal analysis. The results of this simulation are shown in Figure 12 and in Appendix K.

From these simulation results, it is seen that the Dymola model provides a fairly accurate

description of the circuit when compared to the SPICE models.

 52

Figure 12. OPAMP Simulation Plot

 53

6. CONCLUSIONS

Dymola is a very powerful, object-oriented, continuous-system modeling tool. Its

automated formula manipulation capabilities allow it to determine causality assignments,

reduce structural singularities, and solve algebraic loops formed from the coupling of

subsystems. From these formula manipulations, Dymola can generate state-space models

for system simulation and analysis in a variety of different simulation languages. Dymola

currently supports ACSL, DESIRE, Simnon, SimuLink, and DSblock.

The Dymola BJT models developed in this study are very readable and quickly

understandable descriptions of NPN and PNP transistors. The NPN model is a fairly

accurate representation of its SPICE equivalents. The accuracy of the PNP model,

however, is dependent upon the complexity of the model used. For the more complex

PNP model, i.e. the parameters BF, BR, ISE, ISC, IKF, IKR turned on, the model

provides a very accurate representation of its SPICE equivalents.

The Dymola BJT model can be easily adapted to an improved set of equations that

better model real devices. One possible adaptation may be to better account for

temperature dynamics in a system. Most SPICE dialects, if not all, assume a static

temperature environment. The Dymola BJT could be adapted to model temperature

dynamics by adding in a set of equations to account for the power dissipated by the

components and to account for heat flow between components. Similarly, the BJT could

be easily adapted for interconnection with other types of subsystems – chemical,

mechanical, or biological – providing more diversity in the types of systems modeled and

simulated.

 54

Dymola has been proven to support the modeling of complex electrical circuits and is

capable of preprocessing them into state-space models ready for simulation. Simulation

of circuits involving nonlinear devices like BJTs, however, requires numerical integration

algorithms capable of handling these numerically stiff – very negative eigenvalued –

problems. The algorithms available in ACSL proved to be poorly suited to deal with the

numerical stiffness of these BJT circuit models. Even the Gear algorithm performed

poorly on these highly nonlinear models. All algorithms required very small step sizes,

which then required additional CPU cycles and memory to numerically integrate and save

the results of the problem. This was the sole reason for the careful BJT parameter

selection described in subsection 4.3. In order to overcome these difficulties, a DAE

formulation may be more suitable, a formulation that is already supported by Dymola, but

not yet by ACSL, the simulation language that was available to me, since the process of

converting the model to an explicit ODE form destroys some of the natural scarcity of the

model equations, and since the DAE solver is believed to be better suited to suppress

spurious solutions of the numerical integration.

 55

APPENDIX A

DYMOLA MODEL OF

ELECTRICAL COMPONENTS

{ File: elcomp.dym

 Library of electrical components.

 Author: Hilding Elmqvist

 Date: Jan, 1992

 Latest revision: May 20, 1992

 Version: 1.1

}

model type resistor

 parameter R

 cut A (Va / i) B (Vb / -i)

 main cut C [A B]

 main path AB <A - B>

 local u

 u = Va - Vb

 R*i = u

end

 56

model type capacitor

 parameter C

 cut A (Va / i) B (Vb / -i)

 main cut C [A B]

 main path AB <A - B>

 local u

 u = Va - Vb

 C*der(u) = i

end

model type varcapacitor

 terminal C

 cut A (Va / i) B (Vb / -i)

 main cut C [A B]

 main path AB <A - B>

 local u udot Q

 u = Va - Vb

 Q = C*u

 der(Q) = i

 udot = der(u)

end

 57

model type inductor

 parameter L

 cut A (Va / i) B (Vb / -i)

 main cut C [A B]

 main path AB <A - B>

 local u

 u = Va - Vb

 L*der(i) = u

end

model type diode

 parameter I0 K

 cut A (Va / i) B (Vb / -i)

 main cut C [A B]

 main path AB <A - B>

 local u

 u = Va - Vb

 i = I0*(exp(K*u) - 1)

end

 58

model type voltage

 cut A (Va / i) B (Vb / -i)

 main cut C [A B]

 main path AB <A - B>

 terminal U0

 U0 = Vb - Va

end

model type current

 cut A (. / i) B (. / -i)

 main cut C [A B]

 main path AB <A - B>

 terminal I0

 i = I0

end

model type common

 cut A (V / .) B (V / .)

 main cut C [A B]

 main path AB <A - B>

 V = 0

end

 59

APPENDIX B

DYMOLA MODEL OF

BIPOLAR JUNCTION TRANSISTORS

{ File: BJT.dym

 Library of bipolar junction transistors.

 Author: Francois Cellier, ECE, University of Arizona

 Date: 1991

 Version: 2.1

 Last revision by: Daryl Hild May 1993

 Reference: Francois Cellier: "Continuous System Modeling"

 Springer Verlag, 1991

 Status: Model works, but poses a very stiff problem.

 Rewrote diode Ic equations in terms of der(u).

 Consolidated all but AREA parameter into BJTpar

 so that parameters for multiple BJTs can be set

 once with BJTpar.

}

model type varresistor

 cut A(Va / I) B(Vb / -I)

 main path P <A - B>

 cut Par(Rv)

 parameter AREA

 local u

 u = Va - Vb

 u = I*Rv/AREA

end

 60

model type rbb

 cut A(Va / I) B(Vb / -I)

 main path P <A - B>

 cut Par(RBv RBMv IRBv PiSq)

 parameter AREA

 external qb

 local u R {z tz}

 u = Va - Vb

 { R = if IRBv > 0.0 ->

 then (RBMv + 3.0*(RBv-RBMv)*(tz-z)/(z*tz*tz))/AREA ->

 else (RBMv + (RBv - RBMv)/qb)/AREA

 z = if IRBv > 0.0 ->

 then (-1 + sqrt(1 + 144*I/(PiSq*IRBv*AREA))) ->

 /(24*sqrt(I/(IRBv*AREA))/(PiSq)) ->

 else 0.0

 tz = if IRBv > 0.0 then tan(z) else 0.0

 }

 R = (RBMv + (RBv - RBMv)/qb)/AREA

 R*I = u

End

model type Csource

 cut A(. / I) B(. / -I)

 main path P <A - B>

 terminal I0

 I = I0

end

 61

model type wire {Added to set IS direction into BJT}

 cut A(Va / I) B(Vb / -I)

 main path P <A - B>

 Va = Vb

end

model type dbc

 cut Anode(Va / I) Cathode(Vb / -I)

 main path P <Anode - Cathode>

 cut Par(VTNR ISv TRv CJCv XCJCv VJCv MJCv GMINDCv VT)

 parameter AREA

 terminal Id u Ix

 local ISe Ic Cdif Cdep denom

 { Electical equations }

 u = Va - Vb

 I = Id + Ic

 Id = (ISe - ISv)*AREA + GMINDCv*u

 ISe = ISv*exp(u/(VTNR))

 Ic = der(u)*(Cdif+XCJCv*Cdep) (Internal cap current}

 Ix = der(u)*(1-XCJCv)*Cdep (External cap current)

 { Junction capacitance equations }

 Cdif = TRv * (ISe/(VTNR) + GMINDCv) {Diffusion cap}

 Cdep = AREA*CJCv/denom {Depletion cap}

 denom = (1 - (u - 0.5*VT*exp((u-VJCv)/VT))/VJCv)**MJCv

end

 62

model type dbe

 cut Anode(Va / I) Cathode(Vb / -I)

 main path P <Anode - Cathode>

 cut Par(VTNF ISv TFv CJEv VJEv MJEv GMINDCv VT)

 parameter AREA

 external qb dqb

 terminal Id u

 local ISe Ic Cdif Cdep denom

 { Electrical equations }

 u = Va - Vb

 I = Id + Ic

 Id = (ISe - ISv)*AREA + GMINDCv*u

 ISe = ISv*exp(u/(VTNF))

 Ic = der(u) * (Cdif + Cdep)

 { Junction capacitance equations }

 Cdif = TFv*((ISe/(VTNF)+GMINDCv)/qb - Id*dqb)/(qb*qb)

 {Diffusion cap}

 Cdep = AREA*CJEv/denom (Depletion cap}

 denom = (1 - (u - 0.5*VT*exp((u-VJEv)/VT))/VJEv)**MJEv

end

 63

model type dbs

 cut Anode(Va / I) Cathode(Vb / -I)

 main path P <Anode - Cathode>

 cut Par(VTNS ISSv CJSv VJSv MJSv GMINDCv VT)

 parameter AREA

 local ISe Ic u Id Cdep

 { Electrical equations }

 u = Va - Vb

 I = Id + Ic

 Id = (ISe - ISSv)*AREA + GMINDCv*u

 ISe = ISSv*exp(u/(VTNS))

 Ic = der(u)*Cdep

 { Junction capacitance equations)

 Cdep = AREA*CJSv/(1-u/VJSv)**MJSv {Depletion cap.)

end

 64

model type BJT

 submodel (varresistor) rcc(AREA=AREA) ree(AREA=AREA)

 submodel rbb(AREA=AREA)

 submodel dbc(AREA=AREA)

 submodel dbe(AREA=AREA)

 submodel dbs(AREA=AREA)

 submodel (Csource) ice0 ibe0 cbcx

 submodel wire

 parameter AREA=1.0

 cut C(VC / 1C) B(VB / IB) E(VE / - IE) S (VS / ISUB)

 main cut CBES [C B E S]

 cut par (BFv BRv ISv ISSv VTNF VTNR VTNS ->

 CJCv CJEv CJSv XCJCv MJCv MJEv MJSv VJCv VJEv VJSv ->

 ISCv ISEv VTNC VTNE VAFv VARv IKFv IKRv ->

 IRBv RBv RBMv RCv REv TFv TRv GMINDCv VT PiSq)

 path BE<B-E> BC<B-C> BS<B-S> CE<C-E> CS<C-S> ES<E-S>

 path EB<E-B> CB<C-B> SB<S-B> EC<E-C> SC<S-C> SE<S-E>

 node IntC IntB IntE IntS

 node rccPar(RCv)

 node reePar(REv)

 node rbbPar(RBv RBMv IRBv PiSq)

 node dbcPar(VTNR ISv TRv CJCv XCJCv VJCv MJCv GMINDCv VT)

 node dbePar(VTNF ISv TFv CJEv VJEv MJEv GMINDCv VT)

 node dbsPar(VTNS ISSv CJSv VJSv MJSv GMINDCv VT)

 local vbc vbe ibc ibe icn ien IB0 IC0 q1 q2 dq1 dq2

 internal qb dqb

 65

 { Define parameters and globals for components }

 connect rccPar at rcc:Par

 connect reePar at ree:Par

 connect rbbPar at rbb:Par

 connect dbcPar at dbc:Par

 connect dbePar at dbe:Par

 connect dbsPar at dbs:Par

 { Define frequently used internal voltages and currents }

 vbc = dbc.u

 vbe = dbe.u

 ibc = dbc.Id

 ibe = dbe.Id

 cbcx.I0 = dbc.Ix

 { Compute the base charge }

 q1 = 1/(1 - vbc/VAFv - vbe/VARv)

 q2 = (ibc/IKRv + ibe/IKFv) / AREA

 qb = q1*0.5*(1 + (1 + 4*q2)**0.5)

 { Compute derivatives of base charge }

 dq1 = I/(VARv*q1*q1)

 dq2 = (ien+ISEv)/(VTNC*IKFv)

 dqb = qb*dq1/q1 + q1*dq2/(1+4*q2)**0.5

 (Compute the nonlinear current sources }

 icn = AREA*ISCv*(exp(vbc/(VTNC))-1)

 ien = AREA*ISEv*(exp(vbe/(VTNE))-1)

 IC0 = (ibe-ibc)/qb - ibc/BRv – icn

 IB0 = ibe/BFv + ibc/BRv + ien + icn – ibe

 Ice0.I0 = IC0

 Ibe0.I0 = IB0

end

 66

model type (BJT) NPNIateral

 connect rbb from B to IntB

 connect rcc from C to IntC

 connect ree from IntE to E

 connect dbc from IntB to IntC

 connect dbe from IntB to IntE

 connect dbs from IntB to IntS

 connect wire from S to IntS

 connect cbcx from B to IntC

 connect ibe0 from IntB to IntE

 connect ice0 from IntC to IntE

end

model type (BJT) NPNvertical

 connect rbb from B to IntB

 connect rcc from C to IntC

 connect ree from IntE to E

 connect dbc from IntB to IntC

 connect dbe from IntB to IntE

 connect dbs from IntS to IntC

 connect wire from S to IntS

 connect cbcx from B to IntC

 connect ibe0 from IntB to IntE

 connect ice0 from IntC to IntE

end

 67

model type (BJT) PNPlateral

 connect rbb from B to IntB

 connect rcc from C to IntC

 connect ree from IntE to E

 connect dbc from IntC to IntB

 connect dbe from IntE to IntB

 connect dbs from IntS to IntB

 connect wire from S to IntS

 connect cbcx from B to IntC

 connect ibe0 from IntE to IntB

 connect ice0 from IntE to IntC

end

model type (BJT) PNPvertical

 connect rbb from B to IntB

 connect rcc from C to IntC

 connect ree from IntE to E

 connect dbc from IntC to IntB

 connect dbe from IntE to IntB

 connect dbs from IntC to IntS

 connect wire from S to IntS

 connect cbcx from B to IntC

 connect ibe0 from IntE to IntB

 connect ice0 from IntE to IntC

end

 68

model type BJTpar

 parameter ->

 {DC Model Parameters} ->

 BF=100.0 BR=1.0 IS=1.0E-16 ISS=0.0 ->

 NF=1.0 NR=1.0 N3=1.0 GMINDC=1.0E-12 ->

 {Low Current BETA Degradation Effect Parameters} ->

 ISC=0.0 ISE=0.0 NC=2.0 NE=1.5 ->

 {Base Width Modulation Parameters} ->

 VAF=9E+30 VAR=9E+30 ->

 {High Current BETA Degradation Effect Parameters} ->

 IKF=9E+30 IKR=9E+30 ->

 {Parasitic Resistor Parameters} ->

 IRB=0.0 RB=0.0 RBM=0.0 RC=0.0 RE=0.0 ->

 {Junction Capacitor Parameters} ->

 CJC=0.0 CJE=0.0 CJS=0.0 XCJC=1.0 ->

 MJC=0.33 MJE=0.33 MJS=0.33 {0.3<=m<=0.5} ->

 VJC=0.75 VJE=0.75 VJS=0.75 ->

 {Transit Time Parameters} ->

 TF=0.0 TR=0.0 ->

 {Temperature Compensation and Area Parameters} ->

 TRB1=0.0 TRM1=0.0 TRC1=0.0 TRE1=0.0 ->

 TRB2=0.0 TRM2=0.0 TRC2=0.0 TRE2=0.0 ->

 TNOM=25.0 TEMP=25.0 XTI=3.0 XTB=0.0 EG=1.16

 main cut Par (BFv BRv ISv ISSv VTNF VTNR VTNS ->

 CJCv CJEv CJSv XCJCv MJCv MJEv MJSv VJCv VJEv VJSv ->

 ISCv ISEv VTNC VTNE VAFv VARv IKFv IKRv ->

 IRBv RBv RBMv RCv REv TFv TRv GMINDCv VT PiSq)

 local Tref Tdev DTemp DTempSq RTemp Rxtb EGref EGdev ->

 facin ISfact VDfact

 69

constant Pi = 3.14159 ->

 Charge=1.6021918E-19 (Electron Charge} ->

 Boltz=1.3806226E-23 {Boltzmann's constant} ->

 CtoK=273.15 {Celius to Kelvin conversion} ->

 GapC1=7.02E-4 {1st bandgap correction factor Silicon} ->

 GapC2=1108.0 {2nd bandgap correction factor Silicon}

{ Define temperature globals and constants }

 PiSq = Pi*Pi

 Tref = TNOM + CtoK {Reference (room) temperature}

 Tdev = TEMP + CtoK (Device temperature}

 DTemp = Tdev - Tref (Temp Delta}

 DTempSq = DTemp*DTemp (Temp Delta Squared}

 RTemp = Tdev/Tref (Temp Ratio}

 Rxtb = RTemp**XTB {Temp Ratio exponentiated}

 VT = Boltz*Tdev/Charge {Thermal Voltage}

{ Electron Gap of Silicon at Tref and Tdev }

 EGref = EG - GapC1*Tref*Tref/(Tref + GapC2)

 EGdev = EG - GapC1*Tdev*Tdev/(Tdev + GapC2)

{ Temperature compensation factors }

 facln = (RTemp-1)*EGdev/VT + XTI*ln(RTemp)

 ISfact = exp(facln)

 VDfact = EGdev - EGref*RTemp - 3*VT*ln(RTemp)

{ Define temperature adjusted resistors }

 RCv = RC*(1 + TRC1*DTemp + TRC2*DTempSq)

 REv = RE*(1 + TRE1*DTemp + TRE2*DTempSq)

 RBv = RB*(1 + TRB1*DTemp + TRB2*DTempSq)

 RBMv = RBM*(1 + TRM1*DTemp + TRM2*DTempSq)

 IRBv = IRB

 70

{ Define temperature adjusted diode parameters }

 VTNF = VT*NF

 VTNR = VT*NR

 VTNS = VT*NS

 ISv = IS*ISfact

 ISSv = ISS*ISfact

 VJCv = VJC*RTemp + VDfact

 VJEv = VJE*RTemp + VDfact

 VJSv = VJS*RTemp + VDfact

 CJCv = CJC*(1 + MJC*(1 - VJCv/VJC + 4.0E-4*DTemp))

 CJEv = CJE*(1 + MJE*(1 - VJEv/VJE + 4.0E-4*DTemp))

 CJSv = CJS*(1 + MJS*(1 - VJSv/VJS + 4.0E-4*DTemp))

 MJCv = MJC . MJEv = MJE

 MJSv = MJS

 XCJCv = XCJC

 GMINDCv = GMINDC

 TFv = TF

 TRv = TR

{ Define nonlinear current source parameters }

 VTNC = VT*NC

 VTNE = VT*NE

 BFv = BF*Rxtb

 BRv = BR*Rxtb

 ISCv = ISC*exp(facln/NC)/Rxtb

 ISEv = ISE*exp(facin/NE)/Rxtb

 VAFv = VAF

 VARv = VAR

 IKFv = IKF

 IKRv = IKR

end

 71

APPENDIX C

SPICE MODELS OF THE

NPN INVERTER CIRCUIT

This appendix contains the BBSPICE and pSpice models of the NPN SIMPLE Inverter

Circuit. The BBSPICE model is as follows.

 72

The pSpice model is as follows.

 73

 74

APPENDIX D

DYMOLA FILES MODELING THE

NPN INVERTER CIRCUIT

{ File: npn.txt)

NPN Inverter Circuit

This problem contains the following files:

 npn.txt : This file of explanations

 eicomp.dym : Dymola library file of electrical components

 bjt.dym : Dymola library file of BJT transistors

 hpn.dym : The NPN inverter circuit model description

 npn.ctl : Dymola experiment description (ACSL)

 npn.dcm : Dymola command file for this problem

During execution of the dymola command file "npn.dcm" the

following files are generated:

 npn.sol : A history file of the dymola execution

 to include a listing of the solved equations

 npn.csl : The dymola generated ACSL program to simulate

 the inverter model

 75

{ File: npn.dym

 Logical inverter with NPNlateral transistor.

 Author: Daryl Hild

 Date: May 1993

 Version: 1.2

}

model inverter

 submodel (NPNlateral) Q1(AREA=1.0)

 submodel (BJTpar) Q1par ->

 (ISC=0.0 ISE=0.0 ->

 NC=1.0 NE=1.0 ->

 BF=1.0E+30 BR=1.0E+30 ->

 VAF=1.0E+30 VAR=1.0E+30 ->

 IKR=1.0E+30 IKF=1.0E+30 ->

 NR=1.0 IS=0.11E-9 TR=1E-12 VJC=0.64 CJC=3.6E-12 MJC=0.5 ->

 NF=1.0 TF=1E-12 VJE=0.77 CJE=5.7E-12 MJE=0.5 ->

 NS=1.0 ISS=0.11E-9 VJS=0.75 CJS=11.0E-12 MJS=0.5 ->

 XCJC=1.0 ->

 RB=1000.0 TRB1=0.005 TRB2=0.0005 ->

 RBM=500.0 TRM1=0.005 TRM2=0.0005 IRB=0.0 ->

 RC=750.0 TRC1=0.005 TRC2=0.0005 ->

 RE=13.3 TRE1=0.005 TRE2=0.0005 ->

 XTI=3.0 XTB=0.0 GMINDC=1.0E-12 TNOM=25.0 TEMP=25.0)

 submodel (voltage) Ein Es1 Es2

 submodel (resistor) Rin(R=5.6E+3) Rbias(R=10E+3) ->

 Rload(R=1E+3)

 submodel common

 76

 input A Us1 Us2

 output Y IC IB IE IS

 { Set Q1 parameters }

 connect Q1par at Q1:par

 { Connect up circuit }

 connect common - Ein - Rin - ->

 ((Rbias - Es1) // Q1..BE) – common

 connect common - Es2 - Rload - Q1..CE

 connect Q1..BS – Rload

 { Set inputs and outputs }

 Es1.U0 = Us1

 Es2.U0 = Us2

 Ein.U0 = A

 Y = Rload.Vb

 IC = Q1.IC

 IB = Q1.IB

 IE = Q1.IE

 IS = Q1.ISUB

end

 77

{ File: npn.ctl }

cmodel

 maxtime tmax=400.0E-9

 cinterval cint=0.5E-10

 input 3, A(depend,Ain), Us1(depend,Us1in), Us2(depend,Us2in)

 INITIAL

 algorithm ialg=5

 nsteps nstp=1000

 CONSTANT thigh=20.0E-9, tlow=200.0E-9

 Ain=0.0

 Us1in=6.0

 Us2in=6.0

 schedule high .at. thigh

 schedule low .at. tlow

 END

 DISCRETE high

 Ain=6.0

 END

 DISCRETE low

 Ain=0.0

 END

end

 78

{ File: npn.dcm }

set

set LogCommands on

outfile npn.sol

{ DEFINE THE MODEL }

enter model

@elcomp.dym

@bjt.dym

@npn.dym

{ PROCESS THE MODEL }

differentiate

variable state Q1::dbc.u

variable state Q1::dbe.u

variable state Q1::dbs.u

variable value Q1::dbc.u=-8.1538

variable value Q1::dbe.u=-2.1538

variable value Q1::dbs.u=-8.1538

partition

set Statistics on

output solved equations

{ GENERATE AN ACSL MODEL FOR SIMULATION }

set LogCommands off

set ACSLold on

language acsl

enter experiment

@npn.ctl

outfile npn.csl

output program

outfile

 79

APPENDIX E

SIMULATION PLOTS OF THE

NPN INVERTER CIRCUIT

This appendix contains the simulation plots of the NPN Inverter Circuit. The first set

of plots, NPN SIMPLE, are based on the parameters given in the BBSpice and pSpice

models found in Appendix C and the Dymola model of Appendix D. For convenience,

these parameter settings – for the NPN SIMPLE plot – are repeated below. The remaining

plots use the same parameters with deviations being noted in the plot title.

The basic parameter settings are as follows.

NPN

AREA=1.0

ISC=0.0 ISE=0.0

NC=1.0 NE=1.0

BF=1.0E+30 BR=1.0E+30

VAF=1.0E+30 VAR=1.0E+30

IKR=1.0E+30 IKF=1.0E+30

NR=1.0 IS=0.11E-9 TR=1E-12 VJC=0.64 CJC=3.6E-12 MJC=0.5

NF=1.0 TF=1E-12 VJE=0.77 CJE=5.7E-12 MJE=0.5

NS=1.0 ISS=0.11E-9 VJS=0.75 CJS=11.0E-12 MJS=0.5

XCJC=1.0

RB=1000.0 TRB1=0.005 TRB2=0.0005

RBM=500.0 TRM1=0.005 TRM2=0.0005 IRB=0.0

RC=750.0 TRC1=0.005 TRC2=0.0005

RE=13.3 TRE1=0.005 TRE2=0.0005

XTI=3.0 XTB=0.0 GMINDC=1.0E-12 TNOM=25.0 TEMP=25.0

 80

 81

 82

 83

 84

 85

 86

 87

 88

 89

 90

 91

 92

 93

 94

APPENDIX F

SPICE MODELS OF THE PNP CIRCUIT

This appendix contains the BBSPICE and pSpice models of the PNP SIMPLE Circuit.

The BBSPICE model is as follows.

 95

The pSpice model is as follows.

 96

 97

APPENDIX G

DYMOLA FILES MODELING THE PNP CIRCUIT

{ File: pnp.txt}

PNP Circuit

This problem contains the following files:

 pnp.txt : This file of explanations

 elcomp.dym : Dymola library file of electrical components

 bjt.dym : Dymola library file of BJT transistors

 pnp.dym : The PNP circuit model description

 pnp.ctl : Dymola experiment description (ACSL)

 pnp.dcm : Dymola command file for this problem

During execution of the dymola command file “pnp.dcm” the

following files are generated:

 pnp.sol : A history file of the dymola execution

 to include a listing of the solved equations

 pnp.csl : The dymola generated ACSL program to simulate

 the circuit model

 98

{ File: pnp.dym

 Circuit with PNPvertical transistor.

 Author: Daryl Hild

 Date: May 1993

 Version: 1.2

}

model circuit

 submodel (PNPvertical) Q1(AREA=1.0)

 submodel (BJTpar) Q1par ->

 (ISC=0.0 ISE=0.0 ->

 NC=1.0 NE=1.0 ->

 BF=1.0E+30 BR=1.0E+30 ->

 VAF=1.0E+30 VAR=1.0E+30 ->

 IKR=1.0E+30 IKF=1.0E+30 ->

 NR=1.0 IS=0.11E-9 TR=1E-12 VJC=0.64 CJC=3.6E-12 MJC=0.5 ->

 NF=1.0 TF=1E-12 VJE=0.77 CJE=5.7E-12 MJE=0.5 ->

 NS=1.0 ISS=0.11E-9 VJS=0.75 CJS=11.0E-12 MJS=0.5 ->

 XCJC=1.0 ->

 RB=1000.0 TRB1=0.005 TRB2=0.0005 ->

 RBM=60.0 TRM1=0.005 TRM2=0.0005 IRB=0.0 ->

 RC=450.0 TRC1=0.005 TRC2=0.0005 ->

 RE=23.3 TRE1=0.005 TRE2=0.0005 ->

 XTI=3.0 XTB=0.0 GMINDC=1.0E-12 TNOM=25.0 TEMP=25.0)

 submodel (voltage) Ein Es1 Es2

 submodel (resistor) Rin(R=5.6E+3) Rbias(R=10E+3) ->

 Rload(R=4E+3)

 submodel common

 99

 input A Us1 Us2

 output Y IC IB IE IS

 { Set Q1 parameters }

 connect Q1par at Q1:par

 { Connect up the circuit }

 connect common - Ein - Rin - ->

 ((Rbias - Es1) // Q1..BC) – common

 connect common - Es2 - Rload - Q1..EC

 connect Es2 - Q1..SB

 { Set up inputs and outputs }

 Es1.U0 = Us1

 Es2.U0 = Us2

 Ein.U0 = A

 Y = Rload.Vb

 IC = Q1.IC

 IB = Q1.IB

 IE = Q1.IE

 IS = Q1.ISUB

end

 100

{ File: pnp.ctl }

cmodel

 maxtime tmax=400.0E-9

 cinterval cint=5.0E-11

 input 3, A(depend,Ain), Us1(depend,Us1in), Us2(depend,Us2in)

 INITIAL

 algorithm ialg=5

 nsteps nstp=1000

 CONSTANT thigh=20.0E-9, tlow=200.0E-9

 Ain=0.0

 Us1in=6.0

 Us2in=6.0

 schedule high .at. thigh

 schedule low .at. tlow

 END

 DISCRETE high

 Ain=6.0

 END

 DISCRETE low

 Ain=0.0

 END

end

 101

{ File: pnp.dcm }

set

set LogCommands on

outfile pnp.sol

{ DEFINE THE MODEL }

enter model

@elcomp.dym

@bjt.dym

@pnp.dym

{ PROCESS THE MODEL }

differentiate

variable state Q1::dbc.u

variable state Q1::dbe.u

variable state Q1::dbs.u

variable value Q1::dbc.u=0.39

variable value Q1::dbe.u=0.39

variable value Q1::dbs.u=-5.65

partition

set Statistics on

output solved equations

{ GENERATE AN ACSL MODEL FOR SIMULATION }

set LogCommands off

set ACSLold on

language acsl

enter experiment

@pnp.ctl

outfile pnp.csl

output program

outfile

 102

APPENDIX H

SIMULATION PLOTS OF THE

PNP CIRCUIT

This appendix contains the simulation plots of the PNP Circuit. The first set of plots,

PNP SIMPLE, are based on the parameters given in the BBSpice and pSpice models

found in Appendix F and the Dymola model of Appendix G. For convenience, these

parameter settings – for the PNP SIMPLE plot – are repeated below. The remaining plots

use the same parameters with deviations being noted in the plot title. Note that in some

of these plots only the Dymola and BBSPICE trajectories are depicted. In these cases,

pSPice was unable to process and simulate the model for that specific parameter set. In

particular, one can note that pSpice was unable to simulate the model when the two

dependent current sources IC0 and IB0 were effectively turned off.

The basic parameter settings are as follows.
PNP

AREA=1.0

ISC=0.0 ISE=0.0

NC=1.0 NE=1.0

BF=1.0E+30 BR=1.0E+30

VAF=1.0E+30 VAR=1.0E+30

IKR=1.0E+30 IKF=1.0E+30

NR=1.0 IS=0.11E-9 TR=1E-12 VJC=0.64 CJC=3.6E-12 MJC=0.5

NF=1.0 TF=1E-12 VJE=0.77 CJE=5.7E-12 MJE=0.5

NS-1.0 ISS=0.11E-9 VJS=0.75 CJS=11.0E-12 MJS=0.5

XCJC=1.0

RB=1000.0 TRB1=0.005 TRB2=0.0005

RBM=60.0 TRM1=0.005 TRM2=0.0005 IRB=0.0

RC=450.0 TRC1=0.005 TRC2=0.0005

RE=23.3 TRE1=0.005 TRE2=0.0005

XTI=3.0 XTB=0.0 GMINDC=1.0E-12 TNOM=25.0 TEMP=25.0

 103

 104

 105

 106

 107

 108

 109

 110

 111

 112

 113

 114

 115

 116

 117

APPENDIX I

SPICE MODELS OF THE

OPAMP CIRCUIT

This appendix contains the BBSPICE and pSpice models of the OPAMP Circuit.

The BBSPICE model is as follows.

 118

 119

The pSpice model is as follows.

 120

 121

 122

APPENDIX J

DYMOLA FILES MODELING THE

OPAMP CIRCUIT

{ File: opamp.txt}

OpAmp Circuit

This problem contains the following files:

 opamp.txt : This file of explanations

 elcomp.dym : Dymola library file of electrical components

 bjt.dym : Dymola library file of BJT transistors

 opamp.dym : The OpAmp circuit model description

 opamp.ctl : Dymola experiment description (ACSL)

 opamp.dcm : Dymola command file for this problem

During execution of the dymola command file "opamp.dcm" the

following files are generated:

 opamp.sol : A history file of the dymola execution

 to include a listing of the solved equations

 opamp.csl : The dymola generated ACSL program to simulate

 the OpAmp circuit model

 123

{ File: OpAmp.dym

 Operational Amplifier

 Author: Daryl R. Hild

 Date: May 1993 Version: 1.0

 Reference: Francois Cellier: "Continuous System Modeling"

 Springer Verlag, 1991 }

model type opamp

 submodel (PNPvertical) Q1(AREA=2.0) Q2 Q3(AREA=4.0) ->

 Q6 Q7 Q9

 submodel (NPNvertical) Q4 Q5 Q8 Q10(AREA=2.0) Q11 Q12

 submodel (BJTpar) ->

 PNPpar(ISE=1.0E-9 IS=0.11E-9 ISS=0.11E-9 TR=1E-12 ->

 TF=1E-12 CJC=3.6E-12 CJE=5.7E-12 CJS=11.0E-12 ->

 RC=750.0 RE=123.3 RB=200.0 RBM=100.0 BR=0.1) ->

 NPNpar(ISC=0.1E-6 IS=0.11E-9 ISS=0.11E-9 TR=1E-12 ->

 TF=1E-12 CJC=3.6E-12 CJE=5.7E-12 CJS=11.0E-12 ->

 RC=750.0 RE=123.3 RB=200.0 RBM=100.0 BR=0.1)

 submodel (resistor) R1(R=350.0)

 submodel (capacitor) C1(C=5.0E-12) ->

 C2(C=1.0E-12) C3(C=1.0E-12) C4(C=1.0E-12)

 cut VIplus (Vviplus/Iviplus)

 cut VIminus (Vviminus/Iviminus)

 cut Vout (Vvout/-Ivout)

 cut VCC (Vvcc/Ivcc)

 cut VEE (Vvee/Ivee)

 path Power <VCC - VEE>

 path PlusInOut <VIplus - Vout>

 path MinusInOut <VIminus - Vout>

 node n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12

 124

 { Set PNP and NPN parameters }

 connect PNPpar at Q1:par at Q2:par at Q3:par ->

 at Q6:par at Q7:par at Q9:par

 connect NPNpar at Q4:par at Q5:par at Q8:par ->

 at Q10:par at Q11:par at Q12:par

 { Connect OpAmp circuit together }

 connect ->

 Q12 at (n1, n2, n3, n3) ->

 Q5 at (n4, n4, n5, n3) ->

 Q3 at (n4, n6, n7, n7) ->

 Q1 at (n6, n6, n7, n7) ->

 Q2 at (n8, n6, n7, n7) ->

 Q4 at (n7, n4, n9, n3) ->

 Q6 at (n2, n10, n8, n7) ->

 Q7 at (n1, n11, n8, n7) ->

 Q8 at (n5, n5, n12, n3) ->

 Q9 at (n3, n12, n9, n7) ->

 Q10 at (n12, n1, n3, n3) ->

 Q11 at (n2, n2, n3, n3) ->

 C1 at (n1, n12) ->

 R1 at (n3, n6) ->

 C2 at (n7, n6) ->

 C3 at (n1, n3) ->

 C4 at (n7, n4) ->

 VCC at n7 ->

 VEE at n3 ->

 VIminus at n10 –>

 VIplus at n11 ->

 Vout at n9

end

 125

model OpampCircuit

 submodel opamp

 submodel (voltage) Uin Vcc Vee

 submodel (resistor) Rf(R=150.0E3)

 submodel common

 input A Us1 Us2

 output n1 n2 n4 n5 n6 n8 n9 n12

 connect common - Vcc - opamp..Power - Vee – common

 connect common - opamp..PlusInOut

 connect common - Uin - opamp..MinusInOut - Rf - ->

 opamp..MinusInOut

 Vcc.U0 = Us1

 Vee.U0 = Us2

 Uin.U0 = A

 n1 = opamp::Q7.VC

 n2 = opamp::Q6.VC

 n4 = opamp::Q3.VC

 n5 = opamp::Q8.VC

 n6 = opamp::Q1.VC

 n8 = opamp::Q2.VC

 n9 = opamp.Vvout

 n12= opamp::Q9.VB

end

 126

{ File: opamp.ctl }

cmodel

 maxtime tmax=400.0E-9

 cinterval cint=5.0E-11

 input 3, A(depend,Ain), ->

 Us1(depend,Us1in), ->

 Us2(depend, Us2in)

 INITIAL

 algorithm ialg=5

 nsteps nstp=1000

 CONSTANT thigh=270.0E-9, tlow=20.0E-9

 Ain=2.0

 Us1in=5.0

 Us2in=5.0

 schedule high .at. thigh

 schedule low .at. tlow

 END

 DISCRETE high

 Ain=2.0

 END

 DISCRETE low

 Ain=-2.0

 END

end

 127

{ File: opamp.dcm }

set

set LogCommands on

outfile opamp.sol

{ MODEL DEFINITION }

enter model

@elcomp.dym

@bjt.dym

@opamp.dym

{ PROCESS THE MODEL }

differentiate

variable state opamp::C1.u

variable state opamp::C2.u

variable state opamp::C3.u

variable state opamp::C4.u

variable state opamp::Q1::dbc.u

variable state opamp::Q1::dbe.u

variable state opamp::Q1::dbs.u

variable state opamp::Q2::dbc.u

variable state opamp::Q2::dbe.u

variable state opamp::Q2::dbs.u

variable state opamp::Q3::dbc.u

variable state opamp::Q3::dbe.u

variable state opamp::Q3::dbs.u

variable state opamp::Q4::dbc.u

variable state opamp::Q4::dbe.u

variable state opamp::Q4::dbs.u

variable state opamp::Q5::dbc.u

variable state opamp::Q5::dbe.u

variable state opamp::Q5::dbs.u

variable state opamp::Q6::dbc.u

variable state opamp::Q6::dbe.u

variable state opamp::Q6::dbs.u

variable state opamp::Q7::dbc.u

 128

variable state opamp::Q7::dbe.u

variable state opamp::Q7::dbs.u

variable state opamp::Q8::dbc.u

variable state opamp::Q8::dbe.u

variable state opamp::Q8::dbs.u

variable state opamp::Q9::dbe.u

variable state opamp::Q9::dbe.u

variable state opamp::Q9::dbs.u

variable state opamp::Q10::dbe.u

variable state opamp::Q10::dbe.u

variable state opamp::Q10::dbs.u

variable state opamp::Q11::dbe.u

variable state opamp::Q11::dbe.u

variable state opamp::Q11::dbs.u

variable state opamp::Q12::dbe.u

variable state opamp::Q12::dbe.u

variable state opamp::Q12::dbs.u

variable value opamp::C1.u=-2.09338

variable value opamp::C2.u=1.70094

variable value opamp::C3.u=1.57716

variable value opamp::C4.u=2.40042

variable value opamp::Q1::dbc.u=0.379591

variable value opamp::Q1::dbe.u=0.452165

variable value opamp::Q1::dbs.u=-0.655184

variable value opamp::Q2::dbc.u=0.368327

variable value opamp::Q2::dbe.u=0.459308

variable value opamp::Q2::dbs.u=-0.882448

variable value opamp::Q3::dbc.u=0.376657

variable value opamp::Q3::dbe.u=0.454543

variable value opamp::Q3::dbs.u=-0.723755

variable value opamp::Q4::dbc.u=0.378742

variable value opamp::Q4::dbe.u=0.465322

variable value opamp::Q4::dbs.u=-6.56189

variable value opamp::Q5::dbc.u=0.384462

 129

variable value opamp::Q5::dbe.u=0.457409

variable value opamp::Q5::dbs.u=-6.40434

variable value opamp::Q6::dbc.u=-6.82695

variable value opamp::Q6::dbe.u=-1.00862

variable value opamp::Q6::dbs.u=-9.82695

variable value opamp::Q7::dbc.u=-0.439423

variable value opamp::Q7::dbe.u=0.447386

variable value opamp::Q7::dbs.u=-5.40937

variable value opamp::Q8::dbc.u=0.384462

variable value opamp::Q8::dbe.u=0.457409

variable value opamp::Q8::dbs.u=-4.43982

variable value opamp::Q9::dbc.u=0.364157

variable value opamp::Q9::dbe.u=0.464419

variable value opamp::Q9::dbs.u=-5.56911

variable value opamp::Q10::dbc.u=0.36553

variable value opamp::Q10::dbe.u=0.457387

variable value opamp::Q10::dbs.u=-0.80985

variable value opamp::Q11::dbc.u=6.9984E-5

variable value opamp::Q11::dbe.u=0.173034

variable value opamp::Q11::dbs.u=-0.172976

variable value opamp::Q12::dbc.u=-1.40395

variable value opamp::Q12::dbe.u=0.173054

variable value opamp::Q12::dbs.u=-1.57701

partition

output solved equations

{ GENERATE AN ACSL MODEL FOR SIMULATION }

set LogCommands off

set ACSLold on

language acsl

enter experiment

@opamp.ctl

outfile opamp.csl

output program

outfile

 130

APPENDIX K

SIMULATION PLOTS OF THE

OPAMP CIRCUIT

This appendix contains the simulation plots of the OPAMP Circuit. The parameter

settings for the NPN and PNP BJTs arc as follows.

PNP BF=100.0 BR=1.0 IS=0.11E-9 ISS=0.11E-9

 NF=1.0 NR=1.0 NS=1.0 GMINDC=1.0E-12

 ISC=0.0 ISE=1.0E-9 NC=2.0 NE=1.5

 VAF=9E+30 VAR=9E+30 IKF=9E+30 IKR=9E+30

 RB=200.0 RBM=100.0 RC=750.0 RE=123.3

 CJC=3.6E-12 CJE=5.7E-12 CJS=11.0E-12

 MJC=0.33 MJE=0.33 MJS=0.33

 VJC=0.75 VJE=0.75 VJS=0.75

 TF=1E-12 TR=1E-12 IRB=0.0 XCJC=1.0

 TRB1=0.0 TRM1=0.0 TRC1=0.0 TRE1=0.0

 TRB2=0.0 TRM2=0.0 TRC2=0.0 TRE2=0.0

 TNOM=25.0 TEMP=25.0 XTI=3.0 XTB=0.0 EG=1.16

NPN BF=100.0 BR=1.0 IS=0.11E-9 ISS=0.11E-9

 NF=1.0 NR=1.0 NS=1.0 GMINDC=1.0E-12

 ISC=0.1E-6 ISE=0.0 NC=2.0 NE=1.5

 VAF=9E+30 VAR=9E+30 IKF=9E+30 IKR=9E+30

 RB=200.0 RBM=100.0 RC=750.0 RE=123.3

 CJC=3.6E-12 CJE=5.7E-12 CJS=11.0E-12

 MJC=0.33 MJE=0.33 MJS=0.33

 VJC=0.75 VJE=0.75 VJS=0.75

 TF=1E-12 TR=1E-12 IRB=0.0 XCJC=1.0

 TRB1=0.0 TRM1=0.0 TRC1=0.0 TRE1=0.0

 TRB2=0.0 TRM2=0.0 TRC2=0.0 TRE2=0.0

 TNOM=25.0 TEMP=25.0 XTI=3.0 XTB=0.0 EG=1

 131

 132

REFERENCES

[1] H. Elmqvist (1978), A Structured Model Language/or Large Continuous Systems,

Ph.D. dissertation, Report CODEN: LUFTFD2/(TFRT-1015), Dept. of Automatic

Control, Lund Institute of Technology, Lund, Sweden.

[2] H. Elmqvist (1993), Dymola - Release Notes, Pre-Release Version 1.8.1, Lund,

Sweden.

[3] F. Cellier and H. Elmqvist (1993), "Automated Formula Manipulation Supports

Object-Oriented Continuous-System Modeling", IEEE Control Systems, volume 13,

no. 2, pp. 28-38, April 1993.

[4] M. Vlach (1992), "System Performance Simulator", U.S. Patent Number:

5,092,780; March 3,1992.

[5] F. Cellier (1991), Continuous System Modeling, Springer-Verlag New York Inc.,

New York, New York.

[6] Burr Brown Corp. (1987), BBSPICE - User's Manual, Tucson, Arizona.

[7] MicroSim Corporation (1988), PSpice Manual, Irvine, California.

[8] P. Van Halen (1988), "A New Semiconductor Junction Diode Space Charge Layer

Capacitance Model," Proceedings IEEE 1988 Bipolar Circuits & Technology

Meeting, (J. Jopke, ed.), Minneapolis, Minnesota, IEEE Publishing Services, New

York, pp. 168-171.

[9] Meta-Software Inc. (1990), HSPICE User's Manual, Campbell, California.

[10] E. E. L. Mitchell and J. S. Gauthier (1986), ACSL: Advanced Continuous

Simulation Language – User Guide and Reference Manual, Mitchell & Gauthier

Associates, Concord, Massachusetts.

