
AN ACSL INTERFACE FOR DYMOLA

by

Sunil Idnani

A Thesis Submitted to the Faculty of the

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

In Partial Fulfillment of the Requirements
For the Degree of

MASTER OF SCIENCE

In the Graduate College

THE UNIVERSITY OF ARIZONA

1 9 9 1

2

STATEMENT BY AUTHOR

This thesis has been submitted in partial fulfillment of requirements for an
advanced degree at The University of Arizona and is deposited in the University
Library to be made available to borrowers under rules of the library.

Brief quotations from this thesis are allowable without special permission,
provided that accurate acknowledgement of source is made. Requests for permis-
sion for extended quotation from or reproduction of this manuscript in whole or
in part may be granted by the head of the major department or the Dean of the
Graduate College when in his or her judgment the proposed use of the material is
in the interests of scholarship. In all other instances, however, permission must be
obtained from the author.

SIGNED:

APPROVAL BY THESIS DIRECTOR

This thesis has been approved on the date shown below:

F. E. Cellier Date
Professor of Electrical and Computer Engineering

3

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to Dr. Francois Cellier for his
guidance and immeasurable support. I am especially grateful to him for his en-
couragement and constructive review of my work.

I would like to thank Dr. Fredrick Hill and Dr. Hal Tharp for taking the
time to participate on my thesis committee.

In addition, I wish to give special thanks to Qingsu Wang for her help in
offering valuable suggestions and general support.

Finally, I wish to express my deep appreciation to my wife for her constant
encouragement, endurance and moral support to help me reach my goal.

4

TABLE OF CONTENTS

LIST OF FIGURES . 6

ABSTRACT . 9

1. INTRODUCTION: Simulation Environment and Motivation 10

1.1 System and Model Specification 10

1.2 Modeling and Simulation 11

1.3 General Purpose, Simulation and Modeling Languages 12

1.4 Motivation and Other Translators in DYMOLA 13

1.5 Application Areas and Advantages of ACSL 14

1.6 Organization of Thesis 14

2. DEVELOPMENT SPECIFICATIONS 16

2.1 Code Generation . 16

2.2 Development Concept 16

2.3 ACSL Model Definition 17

2.4 Requirement Definitions 19

2.5 Detailed Specifications 21

2.5.1 ACSL Model Specifications 22

2.5.2 Control File Specifications 26

3. ALGORITHMS AND IMPLEMENTATION 33

3.1 Modularization . 33

3.2 Program Flow . 34

3.3 Variable Name Manipulation 37

3.4 ACSL Simulation Program 42

5

3.5 Parsing and Error Checking 46

4. VALIDATION WITH EXAMPLES 53

4.1 Electrical Network I 55

4.2 Electrical Network II 60

4.3 Hydraulic System . 64

4.4 Cable Reel . 70

4.5 Lunar Lander . 75

5. CONCLUSIONS AND REFINEMENTS 80

APPENDIX A – DYMOLA, THE MODELING LANGUAGE 83

APPENDIX B – DYMOLA EXAMPLE PROGRAMS 113

REFERENCES . 131

9

ABSTRACT

This MS Thesis proposes the use of DYMOLA, an object-oriented language

for modeling hierarchically structured systems, to generate ACSL simulation pro-

grams for continuous system analysis. An ACSL model described in terms of time

dependent non-linear differential equations or transfer functions can be generated

from a hierarchical model description of the system using DYMOLA. The model

description in DYMOLA can be an equation description or a non-linear hierarchical

bond graph abstraction to describe the system under investigation.

The interface provides an automated method to generate ACSL simulation

programs, hence eliminating the need for manual coding. The provision to specify

an experiment description for run-time analysis and additional model statements

is implemented. The implementation of the compiler’s code generator includes

parsing, error checking and system dependent file handling routines.

Implementation techniques, model and control file specifications, and vali-

dation with examples in several application areas are described.

10

CHAPTER 1

INTRODUCTION: Simulation Environment and Motivation

There has been significant development in systems modeling and computer sim-

ulation over the past several years. More sophisticated and powerful techniques

are now available in continuous and discrete system simulation. Simulation lan-

guages play a major role in systems design, modeling analysis and development.

They provide the basis for a good scientific methodology from specification to im-

plementation and maintenance of systems. A system consisting of hardware and

software components with a set of interfaces to manipulate information creates an

environment. The simulation environment includes system representation, model-

ing effort and behavior analysis. The general goal of the environment is to enhance

the development productivity and quality of any resulting system.

1.1 System and Model Specification

A system is generally classified by its definite and measurable attributes

such that functional relations exist between them. A collection of entities meet a

set of objectives through a process of interaction over time to form a system (Kheir,

1988).

A model is formed by simplification and approximation to represent the

system. In particular, John Casti defines a model to be “an encapsulation of

some slice of a real world within the confines of the relationships constituting a

formal mathematical system.” A relationship must exist between the model and

the system characteristics such that model behavior can be used to predict system

behavior (Bobillier, 1976). The representation of a system need not necessarily be

unique.

The fundamental structure of a model can have the attributes classified as

input, control and output variables. The input and control variables can arise from

outside or from within the system resulting in a certain behavior of the model

11

which can be observed and measured. The output variables are used to interpret

the results of the model.

A model is used to validate some hypothesis on the functional relations

between the different attributes of the system. This validation is accomplished

when an experiment is performed on the system. Cellier places experimentation on

a system in a simple yet elegant perspective. An experiment is a method by which

system performance can be studied with the application of certain conditions on

accessible input variables and analysis of accessible output variables (Cellier, 1991).

The objectives are to use the model to predict future events in the system, or further

properties of the system and to interpret and understand the fundamental structure

of a complex physical system.

1.2 Modeling and Simulation

Modeling is the bridge between real system and a model (Zeigler, 1976).

The functional description of a system can be developed and then studied by the

process of modeling. Effective modeling of a complex system involves a detailed

understanding of the mechanisms that control the operation of the system. The

performance of the system can be optimized and changes in the system can be

predicted with modeling.

The behavior of a continuous system is analyzed by describing the model in

terms of differential and/or difference equations. Models that represent continuous-

time systems have variables that undergo continuous change whereas those of dis-

crete models take values in discrete time steps. State change in discrete systems

takes place in discrete points in time separated by periods of inactivity. Continuous-

time system examples include RLC circuits, mechanical systems involving particle

motion, chemical systems and many more. Discrete-time system examples include

events in a synchronous digital circuit where the rate of the clock pulse generator

determines that changes occur only at discrete instants of time, models of telephone

exchanges, etc.

12

The behavior of a model can be examined using computer simulation. The

concept is well described by Granino Korn and John Wait, who state, “Simulation

is experimentation with models.” The practical approach to observe the behavior

of a system, to predict changes and to optimize system performance is detailed

simulation. Simulation studies avoid costly design errors and ensure safe designs.

Simulation is the connection to a computational device that can activate the

mechanism within the model (Zeigler, 1976). Most simulation attempts are based

on models that have a time dimension. This makes the models and in turn the

simulation dynamic. Effective simulation study involves multiple runs combined

with detailed analysis of results and validation with real data if available. Several

simulation runs can be used to study model changes, effects of varying initial

conditions and other parameters.

Time and state of variables are the two important coordinates in describing

simulation models. The mechanisms include explicit definitions, cause-and-effect

relations within the model and finally the termination conditions of simulation.

1.3 General Purpose, Simulation and Modeling Languages

General purpose high-level programming languages are used for simulation

studies. In particular, FORTRAN is used extensively by numerous simulation pro-

cessors and several simulation languages are FORTRAN-based. Pascal, BASIC,

PL/I, SNOBOL, and Ada continue to be used, both for a wide spectrum of appli-

cations and for special purpose uses, such as simulation. C, a language that does

not enforce strong typing, unlike Pascal or Ada, is extensively used for systems

programming and general applications.

Simulation languages capture problem semantics efficiently and like general

purpose high-level programming languages are compiler-based, but are specifically

used for simulation. Continuous systems, hybrid systems in which discrete time and

continuous variables coexist and discrete systems classify the different simulation

languages.

13

Discrete system simulation programs are written in high-level programming

languages like FORTRAN, Pascal, BASIC, and Ada, or in simulation languages

such as SIMSCRIPT, GPSS (General-Purpose Simulation System), GASP (Gen-

eral Activity Simulation Program), SIMULA, SLAM (Simulation Language for

Alternative Modeling), etc.

Continuous system simulation languages (CSSLs) described by Simulation

Councils, Inc. (SCi) are used to implement a simulation model and an experi-

ment. Some of the more prominent languages include ACSL (Advanced Continuous

Simulation Language), DARE-P (Differential Analysis Replacement Evaluation),

SIMNON and DESIRE.

Tools such as CTRL-C and MATLAB are more versatile than CSSL-type

simulation languages and provide simulation as one of the several different analysis

techniques (Cellier, 1991). A modeling language such as DYMOLA can be used as

a front end to several different simulation languages to develop hierarchically struc-

tured model descriptions. Other modeling languages include ENPORT-4, TUTSIM

and CAMP.

1.4 Motivation and Other Translators in DYMOLA

DYMOLA (Elmqvist, 1978) is a general purpose hierarchical modeling soft-

ware for continuous-time systems. A compiler switch determines the target simu-

lation language for which code is generated. The simulation languages before the

enhancement included DESIRE (Korn, 1989) and SIMNON (Elmqvist, 1975). The

general purpose high-level programming language for which the interface exists is

FORTRAN.

A better simulation engine was needed for practical and wide-spread appli-

cations. It was essential for the simulation language to model and evaluate the

performance of continuous systems described by time-dependent, non-linear differ-

ential and/or difference equations. The ability of the language to run and evaluate

the model on-line, the provision to handle the problem of high data volume and a

14

flexible explicit structure were all key characteristics that were desired in the simu-

lation language. The sophisticated simulation language ACSL was chosen for these

reasons. An ACSL program can be constructed from block diagram representation,

standard FORTRAN statements or a combination of both (Mitchell and Gauthier,

1986).

1.5 Application Areas and Advantages of ACSL

ACSL is a language based on FORTRAN, and designed to model and ana-

lyze the behavior of continuous systems. It can solve time- dependent non-linear

differential equations or transfer functions. Typical application areas of ACSL are

missile and aircraft simulation, control systems design, chemical processes, heat

transfer analysis and electronics. The diversified use of ACSL in less traditional

areas such as in biological, agricultural, and the like is a more recent application

of computer modeling techniques.

The language assists the user to analyze dynamic responses given a mathe-

matical description of the system in the form of a model. It provides access to in-

tegration algorithms like Gear’s Stiff, Runge-Kutta-Fehlberg and Adam’s Moulton

(Mitchell and Gauthier, 1986). Frequency response analysis, optimization studies,

matrix integration, root locus and Jacobian evaluation can also be done. ACSL has

been improved and expanded in several areas. In particular, improved methods of

modeling discrete events at specific intervals of time have been introduced.

Currently, ACSL is implemented for numerous operating systems on differ-

ent computers. The language can run on mainframes, minicomputers as well as

personal computers. A future enhancement is to develop an ACSL translator for

UNIX.

1.6 Organization of Thesis

The thesis begins with the introduction of general simulation environment

concepts in Chapter 1. Chapter 1 includes the definition and classification of ele-

ments in a simulation environment, the general conceptual architecture of systems

15

modeling, and required characteristics of simulation. Motivation behind the ACSL

interface implementation in DYMOLA is discussed in this chapter.

Basic requirements and detailed specifications for the development of the

ACSL interface in DYMOLA are described in Chapter 2. The development con-

cept is discussed, and the basic structure of an ACSL model definition is presented.

The desired ACSL model and control file specifications are described in this chap-

ter. The detailed specifications are critical for the detailed design phase involving

algorithm development and implementation.

Chapter 3 focuses on the detailed design of the software development. Par-

titioning of the functions, and the program flow outline with the integration of

the interface modules by PARSER in DYMOLA’s code are discussed. Variable

name manipulation, development of the ACSL simulation program, and parsing

and error checking the control file are described. Algorithms for implementation

of modules making up the program hierarchy are described with flow diagrams in

this chapter.

Chapter 4 describes several examples to validate the ACSL interface imple-

mentation. The specifications are verified with results from program execution.

DYMOLA programs, control files, and resulting ACSL simulation programs are in-

cluded. Simulation waveforms and results using ACSL and CTRLC are presented

in this chapter.

The conclusion in Chapter 5 summarizes the software development concept

and the ACSL interface implementation in DYMOLA. It concludes by discussing

possible refinements and the remaining future work.

Appendix A provides related background information on DYMOLA, the

general purpose hierarchical modeling software. DYMOLA as a modeling language

for continuous systems is discussed with its macro handling and program generation

capabilities. Language elements and DYMOLA commands are presented in this

appendix.

Appendix B includes DYMOLA example programs, command sequences,

resulting sets of model equations, ACSL simulation programs and waveform plots.

16

CHAPTER 2

DEVELOPMENT SPECIFICATIONS

A completely new language can be defined by the development of a compiler pro-

gram that reads this new language. Higher level symbolic constructs such as data

and control structures are made possible. The architectural design of this language

may be comprised of an interpreter, a program written in a common high-level

language that can decode and execute another syntax (or language). Interaction

with other languages becomes crucial, and the language becomes more powerful.

2.1 Compiler vs. Interface

A compiler is a program designed to read, translate and identify errors in a

source program. The compiler translates the source program in one language into

an equivalent program in a target language (Aho, Sethi and Ullman, 1988). An

interface is simply the translation program built into the compiler. The interface

provides for error checking with the translation capability of the compiler. The

extent of this error checking is determined by the parsing algorithm implemented

in the interface.

2.2 Development Concept

Software development of the ACSL interface proceeds with preliminary de-

sign, detailed design, and implementation and validation. Software development

begins by defining the user requirements that must be met by the software as a

subsystem. Implied requirements for the software which are necessary to meet the

the user reqirements are also derived. This initial design phase results in a prelim-

inary program design. This work is performed prior to the detailed analysis that is

required to fully design and implement the software system, which is an interface

for a modeling language.

17

2.3 ACSL Model Definition

The first element that is taken into consideration towards the development

phase is the general specification of an ACSL model definition. The ACSL simula-

tion system consists of model definition and runtime analysis commands. Mathe-

matical specification describing the dynamics of a continuous system are contained

in the ACSL model definition. The general structure of an ACSL model definition

is shown in Figure 2.1 (Mitchell and Gauthier, 1986).

PROGRAM
INITIAL

(Model Initialization prior to each simulation run)

END
DYNAMIC

DERIVATIVE

(Dynamic Model, differential equations in integral form)

END
DISCRETE

(Statements executed in discrete time steps)

END

(Statements executed every communication interval)

END
TERMINAL

(Statements executed when termination condition in TERMT becomes true)

END
END

Figure 2.1 Outline of an ACSL Model Structure

A simulation model in ACSL may consist of only PROGRAM and END

statements in which case the entire program specifies model dynamics. A more

18

complete model definition includes INITIAL, DYNAMIC and TERMINAL sec-

tions.

The INITIAL section contains statements that are executed once prior to

the simulation of the dynamic model, that is at the start of each simulation run.

They are used to compute initial conditions for state variables which are outputs of

integrators. Variables that do not change their values during a simulation run are

placed in the INITIAL section. It is not required to place CONSTANT statements

in the INITIAL section since they are not executable. The DYNAMIC section con-

tains statements that are executed every communication interval for the duration

of the simulation run. Any number of DERIVATIVE and DISCRETE sections

can be nested within the DYNAMIC section. The DERIVATIVE section contains

differential equations which describe the dynamics of the continuous system. This

section of the simulation program is performed at the request of the integration

routine to evaluate the state variable derivatives with respect to an independent

variable, usually time. It is not required for the statements in this section to be

ordered since they are sorted into the correct sequence by a sorting algorithm.

Multiple DERIVATIVE sections are allowed with a different integration algorithm

and step size for each. The ACSL integral operator is used to specify the differen-

tial equations in integral form. The DISCRETE section contains statements that

describe the behavior of the continuous system at discrete events. The statements

are executed at a discrete event or time point. Variables take values in discrete

time steps and any state changes take place in discrete points in time separated

by periods of inactivity. The TERMINAL section contains statements that are ex-

ecuted when the termination condition specified in a TERMT statement becomes

true indicating the end of a simulation run. This section can be used to prevent

19

repetitive calculations of variables every integration step or communication interval

during a simulation run.

The model equations are converted into FORTRAN statements by the ACSL

translator. This translation generates several intermediate variables and code seg-

ments in FORTRAN for efficient execution. The runtime commands are used to

exercise the model with one or more simulation runs. Output variables can be listed

and plotted at each communication interval. Initial conditions can be changed and

new simulation runs can be performed iteratively for performance evaluation and

optimization of the model characteristics. Thus, relatively complex phenomena can

be represented with ACSL models, and a series of experiments at runtime can be

used to analyze the behavior of the physical system. The runtime analysis com-

mands are not discussed in further detail since they do not affect the development

cycle of the ACSL interface.

2.4 Requirement Definitions

The basic requirement definitions lead to the formation of a basic algorithm

for the interface development. This will permit the later detailed development of

implementation and validation to work within structured bounds and constraints,

thereby resulting in a realistic and more robust interface.

A systematically executed functional analysis must be performed for the

desired ACSL model to satisfy the minimum requirements of the user. The most

obvious criterion is the syntactical correctness of the model for an error free com-

pilation in an ACSL environment. Several considerations such as variable name

manipulation, constraining to limits on maximum number of characters per line,

conformance to correct syntax for continuation, comments, etc. must be taken into

account. The coherence of the different elements in an ACSL simulation program

20

will contribute towards the realization of an algorithm for an initial program design.

The solved system of equations generated by DYMOLA from the set of equations

that define the behavior of a continuous system in a DYMOLA program need to

establish the dynamics of an ACSL simulation program, and thus constitute the

dynamic model. The set of differential equations must be expressed in integral form

with ACSL’s INTEG operator. Initial conditions specified for state variables in a

DYMOLA program must be made accessible to the integration routine in ACSL

for solving the model equations. Variables with initial values and constants in a

DYMOLA program must be declared in an ACSL simulation program as part of

model initialization. Detailed specifications for the desired ACSL model must be

defined for implementation.

The imperative need to implement a control file becomes apparent with the

different features that can possibly be accomodated in ACSL simulation program.

The control file must support the minimum specifications for simulation comprised

of an experiment description and/or additional constructs. The experiment descrip-

tion used to exercise the model consists of constraints on simulation, and possible

declarations of input variables specifying types and values. The explicit constraints

on simulation in the control file limit the duration of a simulation run and identify

the data recording or communication interval in ACSL. The implicit condition that

arises from these constraints is the maximum possible number of data points that

can be used for output listing and plotting at the end of a simulation run. The

calculation interval of the integration routine, also referred to as the integration

step size, is also implicitly defined, where its value depends on the communication

interval and number of integration steps in a communication interval.

The additional constructs of the control file must support the user in defining

termination conditions for simulation, model equations that have not already been

21

defined in the DYMOLA program, additional statements for model initialization,

and multiple occurrences of necessary section(s). For instance, equations, variable

assignments, and constant declarations must all be supported, and the user must

be allowed to specify multiple instances of the DISCRETE section.

The provision for maximum flexibility in specification of sections and state-

ments must be supported through implementation of the control file as part of the

ACSL interface. The experiment description portion of the control file must be

parsed for inclusion of relevant information into the ACSL program. The control

file must also be parsed to identify the different sections that form the additional

constructs. The statements within these sections must simply be copied into appro-

priate sections of the ACSL program, thus leaving the syntactical, and obviously

logical, correctness of the statements up to the user. Some basic error checking de-

termined by the parsing algorithm in the implementation of the control file must be

performed. For instance, atleast one occurrence of a TERMT statement specifying

the termination condition for simulation must be checked. Detailed specifications

for the control file must be defined to facilitate the user in writing it, as well as for

code implementation. The parsing and error checking will be done in accordance

with these specifications.

2.5 Detailed Specifications

The general specification and outline of an ACSL model definition serve as

the starting elements to help define the basic requirements for the ACSL inter-

face development. The essential interface requirements are derived from the basic

requirement definitions. The technical objectives are to completely specify the in-

terface requirements and establish the algorithm for the interface implementation

22

in accordance with these requirements. The detailed specifications for the desired

ACSL model and control file provide a baseline for the detailed design phase.

2.5.1 ACSL Model Specifications

The target ACSL model must conform to all syntactical rules of ACSL

for a successful compilation. Variable names must be less than or equal to six

characters, and must start with a letter, followed by zero to five letters or digits.

In several cases, the variables formed in DYMOLA exceed the maximum limit of

six characters, and hence an algorithm to compress such variable names must be

developed. The new variables thus formed may not be unique, and so a method of

making non-unique names unique must be determined. In an ACSL program, the

first seventy-two characters on a line are used for program information, whereas

seventy-three to eighty are for identification purposes only. It is best to remain

within this constraint not only for the model equations generated from a DYMOLA

program where the restriction has already been implemented, but also for other

sections, such as declarations with CONSTANT statements in the ACSL model’s

initialization section. These declarations consist of variables with initial values and

constants that result from a DYMOLA program, and may also consist of variables

with specified values and statements from the control file. A comma must be used

as the delimiter between declarations. An ACSL statement must be continued onto

the next line with an ellipsis, three consecutive periods, to remain within the limit

of maximum characters per line. More than one statement should be placed on

one line by separating the statements with a dollar sign ($). Comments in double

quotes and indentation of ACSL statements must be used to meet clarity and good

readability standards.

23

The desired ACSL model must begin with a PROGRAM statement fol-

lowed by a model name from the DYMOLA program, and have a corresponding

END statement as the last line. The model initialization section identified by the

keyword INITIAL and a corresponding END statement are included. This block

contains declarations from a DYMOLA program and/or control file. A DYNAMIC

section with one DERIVATIVE section nested within, and each with its own END

statement, is required. The differential equations from a DYMOLA program must

be represented in integral form using ACSL’s INTEG operator inside the DERIVA-

TIVE section. The INTEG operator must be able to handle initial conditions for

state variables that have been specified using submodel statements, or otherwise,

in a DYMOLA program. A submodel reference must be made to identify the model

element used to derive one or more equations in the form of a comment before the

generated equation(s). The DERIVATIVE section must be implemented not only

to include model equations from a DYMOLA program, but also equations from an

equivalent section and those derived from an input statement in the control file.

In other words, the ability to augment the DERIVATIVE section with the control

file must be provided. The DYNAMIC section must be implemented to include

multiple DISCRETE sections, following the existing DERIVATIVE section, from

the control file. Identity of each DISCRETE section must be maintained in the

ACSL model with a distinct name specified in the control file. This section must

also be designed to include termination conditions in one or more TERMT state-

ments if they appear outside of all sections in the control file. It must be ensured

with the implementation of the control file that atleast one TERMT statement is

included in the ACSL model, and the statement may not necessarily be a part of

the DYNAMIC section. The provision to augment the DYNAMIC section, follow-

ing the DERIVATIVE and any DISCRETE sections and/or TERMT statement(s),

24

with ACSL statements from an equivalent section in the control file must be facil-

itated. The capability to include a TERMINAL section, following the DYNAMIC

section, with ACSL statements from an equivalent section in the control file must

be provided.

The desired ACSL model must contain a minimum of INITIAL, DYNAMIC

and DERIVATIVE sections. Additionally, it can contain a TERMINAL and pos-

sibly multiple DISCRETE sections when specified in the control file.

The most simple ACSL model that can result from the interface conforms

to the specifications shown in Figure 2.2.

PROGRAM model name (Model name from DYMOLA program)

INITIAL

(Statements from DYMOLA program and control file)

END $ “of INITIAL”

DYNAMIC

DERIVATIVE

(Statements from DYMOLA program and control file)

END $ “of DERIVATIVE”

(Statements from control file, TERMT statement(s) if outside
of all sections in control file)

END $ “of DYNAMIC”

END $ “of PROGRAM”

Figure 2.2 Minimum ACSL Model

The most complete ACSL model that can result from the interface conforms

to the specifications shown in Figure 2.3.

25

PROGRAM model name (Model name from DYMOLA program)

INITIAL

(Statements from DYMOLA program and control file)

END $ “of INITIAL”

DYNAMIC

DERIVATIVE

(Statements from DYMOLA program and control file)

END $ “of DERIVATIVE”

DISCRETE name1

(Statements from control file)

END $ “of DISCRETE name1”
.
. (Multiple DISCRETE sections allowed with names and
. statements specified in control file)
.
DISCRETE nameN

(Statements from control file)

END $ “of DISCRETE nameN”

(Statements from control file, TERMT statement(s) if outside
of all sections in control file)

END $ “of DYNAMIC”

TERMINAL

(Statements from control file)

END $ “of TERMINAL”

END $ “of PROGRAM”

Figure 2.3 Detailed ACSL Model Specifications

26

2.5.2 Control File Specifications

The user specified control file consists of an experiment description portion

followed by sections that can be used to augment or enhance the minimum struc-

ture of an ACSL model. All the statements specified in the control file must be

reflected in one form or another within the resulting ACSL simulation program.

The specifications and subsequent implementation of the control file must provide

maximum flexibility for the user. The general syntax and other details of the

specifications are summarized in a template at the end of this section.

The control file must begin with a cmodel statement, and have a matching

end statement to identify the end of relevant information in the file. Each line

in the file must remain less than or equal to eighty characters. A maximum time

limit for a simulation run may be specified with variable assignment in a maxtime

statement. This statement is optional because the user may choose to specify the

maximum simulation time with a CONSTANT statement inside an initial section,

which may be present later, or the condition to terminate a simulation run in a

TERMT statement may not depend on it. The general syntax is maxtime followed

by a variable assignment with an “=” sign. Upon declaration in the control file, the

variable and its value must appear in the INITIAL section of the resulting ACSL

simulation model or program with a CONSTANT statement. The communica-

tion interval, the interval during which the DYNAMIC section is executed and the

output variables have their values recorded, may be specified with variable assign-

ment in a cinterval statement. This statement is optional because the user may

choose to use the default name and value of this quantity (CINT = 0.1), or may

opt to declare it inside a following initial section as desired. The general syntax

is cinterval followed by a variable assignment with an “=” sign. If this statement

27

is present in the control file, then the variable and its value must appear in the

INITIAL section of the resulting ACSL program with a CINTERVAL statement.

The explicit constraints on simulation thus specified imply the maximum number

of data points for output printing or plotting since:

maximum no. of data points = MAXTIME/CINTERVAL

The other quantity that is implicitly defined is the integration step size,

or the calculation interval, which depends on the communication interval and the

number of integration steps in a communication interval. The default value of the

latter quantity (NSTP = 10) may be reassigned in another section.

integration step size = CINTERVAL/NSTP

The condition to terminate a simulation run must be specified in the con-

trol file with a TERMT statement. A minimum of one TERMT statement must

be placed in a location either outside of all existing sections and before a possi-

ble input statement, or within one of three sections from dynamic, derivative and

discrete. Multiple TERMT statements are allowed in any of these locations i.e.,

any number of TERMT statements can be appear outside of all existing sections

and before a possible input statement, as well as within dynamic, derivative and

discrete sections. The user must specify according to ACSL, syntactically correct

TERMT statements and the logical expressions contained within. The placement

of this statement in the resulting ACSL program depends upon the location of

this statement in the control file. One or more TERMT statements outside of all

existing sections and before a possible input statement must be included as part

of the DYNAMIC section, following the existing DERIVATIVE section and any

DISCRETE sections from the control file. Any TERMT statement(s) in dynamic,

28

derivative, and discrete sections are placed respectively in DYNAMIC, DERIVA-

TIVE, and DISCRETE sections of the ACSL program, along with any other state-

ments that may be present within each section. A TERMT statement placed in

the DYNAMIC section of an ACSL program terminates the simulation run at a

communication interval when the logical expression in the statement becomes true.

When placed in a DERIVATIVE or a DISCRETE section the statement terminates

the simulation run at the integration step, or the calculation interval, following the

logical expression becoming true.

The input variables in a DYMOLA program, dependent or independent,

must be declared with an input statement in the control file. This statement is

required if there are any inputs in the model, and is not to be placed if none ex-

ist. The general syntax is input followed by the number of inputs and then input

declarations. A comma must separate the number of inputs and the first input dec-

laration, as well as separate each input declaration in the list. An input declaration

must consist of the variable name with its classification as an independent variable

and a value associated with it, or as a dependent variable and an expression asso-

ciated with it. An independent variable identified by the keyword independ must

be separated from its value by a comma as the delimiter. The keyword and the

value must be enclosed in parenthesis, preceeded by the variable name. The same

format applies for a dependent variable with the keyword depend , and instead of a

value an expresssion is used. A syntactically correct expression must be specified

by the user. Any combination of independent and dependent variables may form

the declaration list. The declarations may be continued on to the next line with a

complete input declaration on the previous line. The placement of these variables

in the resulting ACSL program depends upon their classification. Independent

29

variables and their values must be included in the INITIAL section with a CON-

STANT statement, whereas dependent variables and associated expressions must

be included as part of the DERIVATIVE section.

The statements thus far described constitute the experiment description

portion of the control file. The maxtime, cinterval , and TERMT statement(s), if

present, must appear before an input statement if there exist any inputs in the

model. In the case where there are no inputs, and hence no input statement, they

must directly preceed any sections or blocks in the control file. Multiple TERMT

statements, but only single instances of cinterval and maxtime statements are

allowed. None, all, or any combination of these statements can appear in any

order. The input statement, if present, must appear before any sections in the

control file.

The sections allowed to be placed in the control file are initial, dynamic,

derivative, discrete, and terminal with an end statement for each. Multiple dis-

crete sections, but only single instances of the rest are allowed. None, all, or any

combination of these sections can appear in any order. All sections are optional,

and none can be nested within another.

Compliance with ACSL rules, and syntactical correctness of the statements

and equations within each section is left up to the user. These statements are

copied as is into the respective sections of the resulting ACSL program. INITIAL,

DYNAMIC, and DERIVATIVE sections present in the ACSL program are simply

augmented, as determined by the control file. A TERMINAL section, and one

or more DISCRETE sections are created inside the ACSL program only when

equivalent sections appear in the control file, and statements are copied into each

section accordingly. Each discrete section in the control file can optionally be

identified by a name, and is created in the ACSL program with the same name.

30

All these sections constitute the so called additional constructs in the requirement

definitions.

The most basic control file that can be specified by the user for an ACSL

interface and a model with no inputs is shown in Figure 2.4.

cmodel

TERMT (<logical expression>)

end

Figure 2.4 Minimum Control File (model with no inputs)

where < ... > = specified by user.

The most basic control file that can be specified by the user for an ACSL

interface and a model with inputs is shown in Figure 2.5.

cmodel

TERMT (<logical expression>)
input <N>, <var1>(independ,<value1>), <var2>(depend,<expr1>),

<var3>(independ,<value2>), <var4>(depend,<expr4>),
.....
<varN>(depend,<exprN>) /∗ or ∗/
<varN>(independ,<valueN>)

end

Figure 2.5 Minimum Control File (model with inputs)

where < ... > = specified by user, /∗...∗/ = comment,
N = number of inputs,
var1 ... varN = input variable names,
value1 ... valueN = numerical values for independent variables, and
expr1 ... exprN = expressions for dependent variables.

31

The detailed specifications can be summarized in a template format. The

most complete control file that can be specified by the user for an ACSL interface

is shown in Figure 2.6.

cmodel /∗ required ∗/
/∗ maxtime, cinterval and TERMT can appear in any order ∗/
/∗ before a possible input statement and/or sections ∗/

maxtime <variable> = <value> /∗ optional, one statement only, ∗/
/∗ placed in INITIAL with CONSTANT ∗/

cinterval <variable> = <value> /∗ optional, one statement only, ∗/
/∗ placed in INITIAL with CINTERVAL ∗/

TERMT (<logical expression>) /∗ required if not in dynamic, derivative or ∗/
/∗ discrete; multiple TERMTs allowed, ∗/
/∗ placed in DYNAMIC following ∗/
/∗ DERIVATIVE and any DISCRETE ∗/

input <N>, <var1>(independ,<value1>), <var2>(depend,<expr1>),
<var3>(independ,<value2>), <var4>(depend,<expr4>),
.....
<varN>(depend,<exprN>) /∗ or ∗/
<varN>(independ,<valueN>)

/∗ required if number of inputs > 0, else should not be included; ∗/
/∗ must appear before a section when present; independ variables ∗/
/∗ placed in INITIAL with CONSTANT, depend variables ∗/
/∗ placed in DERIVATIVE as equations ∗/
/∗ sections can appear in any order, end required for each section, ∗/
/∗ and ACSL statements copied as is into respective sections of ∗/
/∗ an ACSL program ∗/

initial /∗ optional, one section only, valid ACSL statements ∗/
.... /∗ e.g., CONSTANT, CINTERVAL, MINTERVAL, MAXTERVAL, ∗/
.... /∗ NSTEPS, ALGORITHM, equations etc., placed in INITIAL ∗/
end

dynamic /∗ optional, one section only, valid ACSL statements ∗/
.... /∗ e.g., TERMT, equations etc., placed in DYNAMIC following ∗/
.... /∗ DERIVATIVE, any DISCRETE and/or any TERMT from above ∗/
end

Figure 2.6 Detailed Control File Specifications

32

derivative /∗ optional, one section only, valid ACSL statements ∗/
.... /∗ e.g., TERMT, SCHEDULE, equations etc., placed in DERIVATIVE ∗/
.... /∗ following any equations for dependent input variables, and solved ∗/
.... /∗ model equations from DYMOLA ∗/
end

discrete <name1> /∗ optional, valid ACSL statements ∗/
.... /∗ e.g., TERMT, INTERVAL, SCHEDULE, equations etc., placed ∗/
.... /∗ in new DISCRETE section, identity maintained with <name1> ∗/
end
.
. /∗ multiple discrete sections allowed, names optional ∗/
.
discrete <nameN>
....
....
end

terminal /∗ optional, one section only, valid ACSL statements ∗/
.... /∗ equations etc., placed in new TERMINAL section ∗/
end

end /∗ required for cmodel ∗/

Figure 2.6 Detailed Control File Specifications (contd.)

where < ... > = specified by user and /∗...∗/ = comment.

33

CHAPTER 3

ALGORITHMS AND IMPLEMENTATION

The detailed design of the software development involves analysis, documentation,

detailed program design with algorithms and implementation with coding. The

analysis activity involves the required grouping of functions into modules, mod-

ification approach for each of the components to be adapted from the existing

software with data structure analysis, software design analysis, and general pro-

gram flow. The detailed specifications provide the baseline for the detailed design

and algorithm development for implementation. The most important part of the

detailed design phase is detailed documentation. The documentation is the design,

and if it is incomplete, then the design is incomplete. The algorithms to be imple-

mented in the development phase are describe with flow charts which provide logic

flows. The implementation process is the translation of documented algorithms

and descriptions and into executable code.

3.1 Modularization

Preliminary software design involves organization of functions in the re-

quirement definitions into functional related groupings, also referred to as modules,

which are the first organizational level below the ACSL interface program. For each

level of organization through module-level design, the components are identified by

name and function. Descriptions of the modules making up the interface program

hierarchy lead to the development of algorithms for implementation purposes.

The partitioning of functions begins with the assignment of variable name

manipulation to the first module called ACSLNAME. Variable names that need

to be compressed and made unique for ACSL are handled in this module. The

formation of the ACSL simulation program into different sections determines the

functionality of the second module ACSLPRINT. This formation involves incor-

poration of information from a DYMOLA program to meet the minimum spec-

ifications, or from a DYMOLA program and a control file depending upon user

34

request for an ACSL model or an ACSL program. The control file is compiled with

the module ACCOMPILE, which performs parsing and error checking to meet all

requirements. Error reporting upon detection of a compilation error in the control

file is performed by the module ACSLERR. The integration of all these modules,

and the general program flow is defined by the module PARSER in DYMOLA’s

code. This module is modified to incorporate the ACSL interface into DYMOLA’s

implementation. The differential equations describing the model are manipulated

to be expressed in integral form with ACSL’s INTEG operator, and initial con-

ditions for state variables are made accessible to the integration routine with this

operator. Several DYMOLA modules are modified to implement this feature.

3.2 Program Flow

The primary thrust of the top-down design approach is to define how the

program will be structured to perform the functions. A first cut at sequencing

the executable elements and other aspects of module-level design is necessary to

accomplish this task. The PARSER module in DYMOLA’s code is modified to

integrate the ACSL modules, and incorporate the interface code with the rest of

the implementation.

The SCAN function in DYMOLA’s code is used extensively by PARSER.

The function is used to parse a user command, and one or more modules are invoked

by the PARSER in accordance with the request. SCAN can be used to fetch an

item from the screen or a file with each invocation. Each item fetched, referred to

as the nextitem, can be an identifier, number or delimiter. The function skips blank

lines and comments, and handles the continuation symbol (—>) as well as other

special symbols. Routines that perform system dependent file handling are invoked

by the function, and the item and its type are returned to the calling module.

The modules making up the interface program hierarchy are integrated with

PARSER. The general outline of the program flow is described by a flow diagram

in Figure 3.1.

37

3.3 Variable Name Manipulation

The variable names formed by DYMOLA may, in several cases, exceed the

maximum limit of six characters required by ACSL. This is a direct consequence of

a concatenation process during which a variable name is appended (with delimiter

“.”) to the name of a respective model or a submodel it belongs to, and thus

proper hierarchy is established to maintain distinction. Such variable names are

compressed to the maximum limit, and then compared with all other variable

names, that may or may not have, depending on their size, undergone an identical

compression algorithm earlier. They are also compared with reserved names and

other keywords for ACSL statements.

If a variable after compression is found to be not unique, as detected by name

collision, then the algorithm to make it unique is applied. The model or submodel

name is included in the variable name using the delimiter “X”. An alphabet is

chosen as the delimiter for names since any other special symbol is not acceptable

by the ACSL compiler. First, the model or submodel name identifier is compressed

to two or more characters depending upon the length of the non-unique variable

name. Next, the non-unique variable name is compressed to three or less characters

depending upon the length of the compressed model or submodel name. The length

of the newly formed variable is restricted to six characters, with the compressed

model or submodel name followed by the delimiter “X”, and the compressed non-

unique variable name. This new variable may still not be unique. It is then

compared again with all other variable names. The other variable names may or

may not have undergone the application of the same algorithm, depending on if

they were unique or not after initial compression.

If the variable from the first algorithm is found to be not unique, then

a second algorithm to make it unique is applied. It forces uniqueness by first

compressing the model or submodel name to one or more characters depending

upon the size of the original variable, which is the variable before any compression

or algorithm has been applied. Next, the original variable name is compressed

to three or less characters depending upon the length of the compressed model or

38

submodel name. The length of the newly formed variable is again restricted to six

characters, with the compressed model or submodel name followed by the delimiter

“X”, the compressed original variable name, and a number. This number forces

uniqueness this time since it is incremented for each non-unique variable name from

the first algorithm.

Finally, the derivatives of all state variables are formed by concatenating

the state variable names to the character “d”, and then compressing the resulting

names to six characters when they exceed the maximum limit required by ACSL.

Compression during variable name manipulation takes place by shifting

characters from right to left of a variable name, until the maximum limit is reached.

The number of characters shifted is determined appropriately. This reduction tech-

nique is performed without losing complete originality of the variable name, espe-

cially when submodel names are included in the variable names.

The flow diagram describing the algorithm for variable name manipulation

in ACSLNAME is shown in Figure 3.2.

42

3.4 ACSL Simulation Program

The module ACSLPRINT is used to form the different sections of the target

ACSL simulation program. It is invoked by two possible user commands in DY-

MOLA, output acsl model and output acsl program, provided the equations have

been partitioned earlier. When the user requests for an ACSL model, the module

is invoked directly, and the value of the control flag is false (Refer Figure 3.1). On

the other hand, when the user requests for an ACSL program, the control file is

first compiled by the module ACCOMPILE, and then if there are no errors, the

control flag is set to a true value before module invocation. Based on the value

of this control flag, the module incorporates appropriate information, with correct

syntax, into the ACSL simulation program.

Several other existing DYMOLA modules invoked by ACSLPRINT, dur-

ing the formation of the DERIVATIVE section, are modified. Every differential

equation is detected from the system of solved equations in DYMOLA, and ex-

pressed in integral form with ACSL’s INTEG operator. The initial condition for

a state variable is passed directly to the operator. The implementation of these

existing modules involves variable type detection, operand detection, several infix

techniques and complex equation manipulations.

The flow diagram describing the algorithm for the basic formation of an

ACSL simulation program in ACSLPRINT is shown in Figure 3.3.

46

3.5 Parsing and Error Checking

The different parts of an ACSL simulation program result from a DYMOLA

program, and a control file. The system of solved equations from DYMOLA that

form the dynamics of simulation, and the precise inclusion by printing of relevant

information into an ACSL program are completely determined by program design

and implementation of DYMOLA’s code, and embedded interface code. Hence,

error checking for results produced by these tasks is not necessary. On the other

hand, the control file written by the user is prone to errors, and is parsed to detect

errors before inclusion of any information into an ACSL program. Even with the

most flexible structures, strict guidelines exist and the user must conform to them.

The parsing algorithm is performed with system dependent file handling routines.

The control file is scanned to identify statements and syntax, and error checking

and reporting are performed in accordance with detailed specifications. All the

parsing and error checking are done by the module ACCOMPILE. All the error

reporting is done by the module ACSLERR, which contains a complete set of print

statements for meaningful error messages.

The SCAN function in DYMOLA’s implementation is used extensively to

parse the control file. The starting line of the file and the experiment description

portion is parsed to check for name identifiers such as cmodel , maxtime, cinterval

and TERMT. All delimiters including parentheses, commas, and carriage returns

are checked, as dictated by the specifications, and an error is reported if missing

from a statement. A flag is set upon detection of a TERMT statement, whether it

exists in this portion of the file, or within any section from dynamic, derivative or

discrete. If none exists, an error message is reported. Single instances of optional

maxtime and cinterval statements, and their placements with any TERMT state-

ments before an input statement (if it exists), or before the first section (if it exists

and the input statement does not) are checked. If the number of inputs specified

in an input statement differs from the number of model inputs in a DYMOLA

program, or if an input statement is not included for a model with inputs, or also

47

if an input statement does not preceed any existing section, then an appropriate

error is reported for each case.

The rest of the control file is parsed to identify the presence of optional

sections, and appropriate flags are set for incorporation of statements contained

within each section into an ACSL program. Single instances of all sections that are

present, except discrete, are checked and an error is reported for any violation. An

error also results if an end statement is missing for a particular section. Checks

for a TERMT statement within all dynamic, derivative, and discrete sections are

performed, and an error results if not found in any of these sections as well as

above and outside the first section in a control file. It is checked to make sure

that a section is not nested within another, that is if the name of another section

appears before the end statement for a particular section.

The end of all relevant information is detected with an end statement for

cmodel , and an error occurs if it is not present. All statements that might exist after

the end for cmodel are ignored, a message stating that is printed out, and execution

of the program continues. The presence of any blank lines at the end of the control

file, following the end for cmodel , is taken into account during implementation.

The SCAN routine in DYMOLA’s code skips blank lines (a useful feature for all

other cases), but as a result, it cannot be used after an end of file is encountered

with its previous invocation (just like readln in Pascal). This limitation causes

blank lines at the end of a control file to create a problem, especially when the

function is used in a while loop to parse the file. It is worth noting that any blank

lines elsewhere in the control file do not create such a problem. The situation is

handled with the removal of all blank lines in the file before parsing. End of file

is then encountered when it reads the last non-blank statement in the file, and the

loop terminates as desired.

The flow diagram describing the algorithm for parsing and error checking

the control file in ACCOMPILE is shown in Figure 3.4.

53

CHAPTER 4

VALIDATION WITH EXAMPLES

The validation of the ACSL interface implementation, and formal verification that

results satisfy the documented specifications proceeds with a testing process. The

basic objective is to validate the resulting software using an iterative process of

coding and testing activities as errors are uncovered during testing. The testing

process identifies not only errors in the code, but also functions that may not

have been specified initially, and as a result not implemented. These functions

may be capabilities that facilitate the user, or are absolutely essential to the user,

and hence are highly desirable. This process involves sofware modifications and/or

further development, and consequently further validation. The ACSL interface

code validation is performed with selected examples in a variety of application

areas. The chosen examples serve as good test suites.

Several examples use bond graphs as modeling elements to formulate model

descriptions of the systems. The @ operator in DYMOLA programs includes each

element definition stored in a separate file. The DYMOLA examples described

using the bond graph approach uses only a subset of all the basic bond graphs

available as modeling elements. The complete set of basic bond graphs is shown in

Figure 4.1.

54

model type bond
cut A(x/y), B(y/−x)
main cut C[A,B]
main path P<A−B>

end
model type SE

main cut A(e/.)
terminal E0
E0 = e

end
model type SF

main cut A(./−f)
terminal F0
F0 = f

end
model type R

main cut A(e/f)
parameter R=1.0
R∗f = e

end
model type C

main cut A(e/f)
parameter C=1.0
C∗der(e) = f

end
model type I

main cut A(e/f)
parameter I=1.0
I∗der(f) = e

end
model type TF

cut A(e1/f1), B(e2/−f2)
main cut C[A,B]
main path P<A−B>
parameter m=1.0
e1 = m∗e2
f2 = m∗f1

end
model type GY

cut A(e1/f1), B(e2/−f2)
main cut C[A,B]
main path P<A−B>
parameter r=1.0
e1 = r∗f2
e2 = r∗f1

end

Figure 4.1 DYMOLA Bond Graphs

57

connect R1 at vr1
connect R2 at v2
connect C1 at v2
connect B1 from v1 to ir1
connect B2 from ir1 to v2
connect B3 from ir1 to vr1

U0.E0 = u
y1 = C1.e
y2 = R2.f

end

Figure 4.4 DYMOLA Program for simple RLC Circuit (cont.)

The simple control file used for this example is shown in Figure 4.5.

cmodel

maxtime tmax = 2E-5
TERMT (t .GE. tmax)
cinterval cint = 2E-7
input 1, u(independ,10.0)

end

Figure 4.5 Control File for simple RLC Circuit

The ACSL program generated by DYMOLA’s ACSL interface is shown in Figure

4.6.

58

"---"
" ********* ADVANCED CONTINUOUS SIMULATION LANGUAGE ********* "
"---"

PROGRAM RLC

INITIAL

CONSTANT ...
R1XR=100.0, C=0.1E-6, I=1.5E-3, ...
R2XR=20.0

CINTERVAL cint = 2E-7
CONSTANT tmax = 2E-5
CONSTANT ...

u = 10.0

END $ "of INITIAL"

DYNAMIC

DERIVATIVE

"---Submodel: R2"
R2Xf = C1Xe/R2XR

"---Submodel: RLC"
B3Xy = u - C1Xe

"---Submodel: R1"
B3Xx = B3Xy/R1XR

"---Submodel: RLC"
C1Xf = B3Xx - R2Xf

"---Submodel: C1"
C1Xe = INTEG(C1Xf/C, 0)

"---Submodel: L1"
L1Xf = INTEG(u/I, 0.5)

"---Submodel: RLC"
y1 = C1Xe
y2 = R2Xf

END $ "of DERIVATIVE"

TERMT (t .GE. tmax)

END $ "of DYNAMIC"

END $ "of PROGRAM"

Figure 4.6 ACSL Program for simple RLC Circuit

61

submodel (SE) U0
submodel (SF) mI4
submodel (bond) B1, B2, B3, B4, B5, B6, B7, B8, B9

input u
output y1, y2
node v0, i1, dR1, v3, dR2, mv4, iL, dL, i2

connect U0 at v0, ->
B1 from v0 to i1, ->
B2 from i1 to dR1, ->
R1 at dR1, ->
B3 from i1 to v3, ->
C at v3, ->
R3 at v3, ->
B4 from v3 to i2, ->
B5 from i2 to dR2, ->
R2 at dR2, ->
B6 from i2 to mv4, ->
B7 from v0 to iL, ->
B8 from iL to dL, ->
L at dL, ->
B9 from iL to mv4, ->
mI4 at mv4

mI4.F0 = -4.0*C.e
U0.E0 = u
y1 = 10.0*R3.e
y2 = 10.0*C.f

end

Figure 4.9 DYMOLA Program for RLC Network (cont.)

The control file used for this example is shown in Figure 4.10.

cmodel
maxtime tmax = 50.0E-6
cinterval cint = 50.0E-9
TERMT (t .GE. tmax)
input 1, u(independ,10.0)
end

Figure 4.10 Control File for RLC Network

The resulting ACSL program is shown in Figure 4.11.

62

"---"
" ********* ADVANCED CONTINUOUS SIMULATION LANGUAGE ********* "
"---"

PROGRAM network

INITIAL

CONSTANT ...
R1XR=100.0, C=1.0E-6, I=10.0E-3, ...
R2XR=100.0, R3XR=20.0

CINTERVAL cint = 50.0E-9
CONSTANT tmax = 50.0E-6
CONSTANT ...

u = 10.0

END $ "of INITIAL"

DYNAMIC

DERIVATIVE

"---Submodel: network"
R1Xe = u - CXe
mI4Xf = -4.0*CXe
B6Xx = (mI4Xf + LXf)/(-1)

"---Submodel: R3"
R3Xf = CXe/R3XR

"---Submodel: R1"
B3Xx = R1Xe/R1XR

"---Submodel: network"
CXf = B3Xx - (B6Xx + R3Xf)

"---Submodel: C"
CXe = INTEG(CXf/C, 0.02)

"---Submodel: R2"
R2Xe = R2XR*B6Xx

"---Submodel: network"
B9Xy = CXe - R2Xe
LXe = u - B9Xy

"---Submodel: L"
LXf = INTEG(LXe/I, 0)

Figure 4.11 ACSL Program for RLC Network

64

Detailed descriptions for the following three examples are found in Continuous-

System Modeling (Cellier, 1991). The purpose here is to demonstrate the results

of DYMOLA’s ACSL interface using example programs and control files.

4.3 Hydraulic System

The system consists of a hydraulic motor with a four way servo valve. The DY-

MOLA program used to model the hydraulic system with the bond graph approach

is shown in Figure 4.13.

{ Bond Graph model of a Hydraulic System }

@h7_7.r
@h7_7.g
@h7_7.c
@h7_7.i
@h7_7.se
@h7_7.tf
@h7_7.mg
@h7_7.bnd

model type limit
cut A(e), B(u)
main cut C[A B]
main path P <A - B>
u = BOUND(-1.0,1.0,e)

end

model type contr
cut A(u), B(x)
main cut C [A B]
main path P <A - B>
parameter tausv=0.005
x + tausv*der(x) = u

end

model type hydro

submodel (R) rhom(R=1.5)
submodel (G) Gi(G=0.737E-13), Ge1(G=0.737E-12), Ge2(G=0.737E-12)

Figure 4.13 DYMOLA Program for Hydraulic System

65

submodel (mG) mG1, mG2, mG3, mG4
submodel (I) Jm(I=0.08)
submodel (C) C1(C=0.1707E-13), C2(C=0.1707E-13) { C=1/c1 }
submodel (SE) PS, P0
submodel (TF) tf(m=1.7391E+5) { m=1/psi }
submodel (bond) B1, B2, B3, B4, B5, B6, B7, B8, B9, B10, B11, ->

B12, B13, B14, B15, B16, B17, B18, B19, B20, ->
B21, B22, B23, B24, B25

cut A(x), B(thetam)
main cut C[A B]
main path P <A - B>

parameter x0=0.05, k=0.248E-6
local xp, xn
node nPS, nP0, p1, p2, q1, q2, q3, q4, dmG1, dmG2, dmG3, dmG4, ->

qL1, qL2, np1, np2, qi, dGi, qind, dTF1, dTF2, thmd, drho, dJm

connect PS at nPS, ->
P0 at nP0, ->
B1 from nPS to q4, ->
B2 from q4 to p2, ->
B3 from p2 to q3, ->
B4 from q3 to nP0, ->
B5 from nPS to q1, ->
B6 from q1 to p1, ->
B7 from p1 to q2, ->
B8 from q2 to nP0, ->
B9 from q1 to dmG1, ->
mG1 at dmG1, ->
B10 from q2 to dmG2, ->
mG2 at dmG2, ->
B11 from q3 to dmG3, ->
mG3 at dmG3, ->
B12 from q4 to dmG4, ->
mG4 at dmG4, ->
B13 from p1 to qL1, ->
B14 from qL1 to np1, ->
Ge1 at np1, ->
C1 at np1, ->
B15 from qL2 to p2, ->
B16 from np2 to qL2, ->
Ge2 at np2, ->
C2 at np2, ->
B17 from np1 to qi, ->
B18 from qi to np2, ->
B19 from qi to dGi, ->

Figure 4.13 DYMOLA Program for Hydraulic System (cont.)

66

Gi at dGi, ->
B20 from np1 to qind, ->
B21 from qind to np2, ->
B22 from qind to dTF1, ->
tf from dTF1 to dTF2, ->
B23 from dTF2 to thmd, ->
B24 from thmd to drho, ->
rhom at drho, ->
B25 from thmd to dJm, ->
Jm at dJm

PS.E0 = 0.137E+8
P0.E0 = 0.0
xp = k*AMAX1(x0+x,0.0)
xn = k*AMAX1(x0-x,0.0)
mG1.G = xp
mG2.G = xn
mG3.G = xp
mG4.G = xn
Jm.f = der(thetam)

end

model hydraulic

submodel limit
submodel contr
submodel hydro

input thset
output thetam
local e

connect limit - contr - hydro

e = thset - thetam
limit.e = e
hydro.thetam = thetam

end

Figure 4.13 DYMOLA Program for Hydraulic System (cont.)

67

The control file used for the model’s experiment description is shown in Figure

4.14.

cmodel

maxtime tmx = 0.2
cinterval cint = 0.002
TERMT (t.ge.tmx)
input 1, thset(independ,1.0)

end

Figure 4.14 Control File for Hydraulic System

The ACSL program generated from the DYMOLA program and the control file is

shown in Figure 4.15.

"---"
" ********* ADVANCED CONTINUOUS SIMULATION LANGUAGE ********* "
"---"

PROGRAM hydraulic

INITIAL

CONSTANT ...
R=1.5, GiXG=0.737E-13, C1XC=0.1707E-13, ...
I=0.08, m=1.7391E+5, tausv=0.005, ...
Ge1XG=0.737E-12, Ge2XG=0.737E-12, C2XC=0.1707E-13, ...
x0=0.05, k=0.248E-6

CINTERVAL cint = 0.002
CONSTANT tmx = 0.2
CONSTANT ...

thset = 1.0

END $ "of INITIAL"

Figure 4.15 ACSL Program for Hydraulic System

68

DYNAMIC

DERIVATIVE

"---Submodel: hydro::rhom"
rhomXe = R*JmXf

"---Submodel: hydro"
GiXe = C1Xe - C2Xe

"---Submodel: hydro::tf"
B22Xx = JmXf/m

"---Submodel: hydro::Gi"
B19Xx = GiXG*GiXe

"---Submodel: hydro::Ge1"
Ge1Xf = Ge1XG*C1Xe

"---Submodel: hydro"
xn = k*AMAX1(x0 - cotrXx,0.0)
B8Xy = 0.0
mG2Xe = C1Xe - B8Xy

"---Submodel: hydro::mG2"
B10Xx = xn*sqrt(AMAX1(mG2Xe,0.0))

"---Submodel: hydro"
xp = k*AMAX1(x0 + cotrXx,0.0)
B5Xx = 0.137E+8
mG1Xe = B5Xx - C1Xe

"---Submodel: hydro::mG1"
B9Xx = xp*sqrt(AMAX1(mG1Xe,0.0))

"---Submodel: hydro"
B14Xx = B9Xx - B10Xx
C1Xf = B14Xx - (B22Xx + B19Xx + Ge1Xf)

"---Submodel: hydro::C1"
C1Xe = INTEG(C1Xf/C1XC, 0)

"---Submodel: hydro"
e1 = C1Xe - C2Xe

"---Submodel: hydro::tf"
B23Xx = e1/m

"---Submodel: hydro"
JmXe = B23Xx - rhomXe

"---Submodel: hydro::Jm"
JmXf = INTEG(JmXe/I, 0)

"---Submodel: hydraulic"
thetam = hoXthm
hyicXe = thset - thetam

"---Submodel: limit"
liitXu = BOUND(-1.0,1.0,hyicXe)

"---Submodel: contr"
cotrXx = INTEG((liitXu - cotrXx)/tausv, 0)

Figure 4.15 ACSL Program for Hydraulic System (cont.)

70

4.4 Cable Reel

The system is comprised of a cable reel, a large DC motor that unrolls cable from

the reel, a speedometer that detects the speed of the cable as it comes off the reel,

and a simple proportional and integral (PI) controller used to keep the cable speed

v at its preset value Vset . The DYMOLA program that describes the behavior of

the cable reel system is shown in Figure 4.17.

model type CableReel
cut vport(v), fport(F)
cut mech(omega,tauL,JL)
local R
parameter Rempty, W, D, rho, BL, J0
constant pi = 3.14159
der(R) = -((D*D)/(2.0*pi*W))*omega
v = R*omega
JL = 0.5*pi*W*rho*(R**4 - Rempty**4) + J0
tauL = BL*omega - F*R

end

model type DCMotor
cut uport(ua)
cut mech(omega,tauL,JL)
local ia, if, ui, psi, taum, Twist, theta, uf
parameter Ra, Rf, kmot, Jm, Bm = 0.0
uf = 25.0
0.0 = uf - Rf*if
0.0 = ua - ui - Ra*ia
psi = kmot*if
taum = psi*ia
ui = psi*omega
der(Twist) = taum - tauL - Bm*omega
Twist = (Jm+JL)*omega
der(theta) = omega

end

model type Comparator
cut setport(Vset), measport(Vmeas), errport(error)
error = Vset - Vmeas

end

Figure 4.17 DYMOLA Program for Cable Reel System

71

model type Cable
cut finport(Fin), errport(error), fport(F)
parameter kship = 10.0
F = AMAX1(kship*error - Fin,0.0) + Fin

end

model type PIController
cut signal(error), command(u)
local err
parameter kint, kprop
der(err) = error
u = kprop*error + kint*err

end

model type Speedometer
cut vport(v), measport(Vmeas)
local x
parameter k = 3.0
der(x) = -k*x + v
Vmeas = k*x

end

model Cabsys

submodel Comparator
submodel PIController(kint=0.2, kprop=6.0)
submodel DCMotor(Ra=0.25, Rf=1.0, kmot=1.5, ->

Jm=5.0, Bm=0.2)
submodel CableReel(Rempty=0.6, W=1.5, D=0.0127, ->

rho=1350.0, BL=6.5, J0=150.0) ->
(ic R=1.2)

submodel Speedometer
submodel Cable

input Vdes, Fext
output radius, veloc, omega

connect Comparator:errport at PIController:signal
connect PIController:command at DCMotor:uport
connect DCMotor:mech at CableReel:mech
connect CableReel:vport at Speedometer:vport
connect Speedometer:measport at Comparator:measport
connect Comparator:errport at Cable:errport
connect Cable:fport at CableReel:fport

Figure 4.17 DYMOLA Program for Cable Reel System (cont.)

72

Cable.Fin = Fext
Comparator.Vset = Vdes
radius = CableReel.R
veloc = CableReel.v
omega = CableReel.omega

end

Figure 4.17 DYMOLA Program for Cable Reel System (cont.)

The control file used for this example is shown in Figure 4.18.

cmodel

maxtime tmx = 3500
cinterval cint = 1.0
TERMT (t.ge.tmx .or. R.lt.Rempty)
input 2, Vdes(independ,15.0), Fext(independ,100.0)

initial
NSTEPS NSTP = 1000
end

end

Figure 4.18 Control File for Cable Reel System

The ACSL program generated from the DYMOLA program and the control file is

shown in Figure 4.19.

73

"---"
" ********* ADVANCED CONTINUOUS SIMULATION LANGUAGE ********* "
"---"

PROGRAM Cabsys

INITIAL

CONSTANT ...
Rempty=0.6, W=1.5, D=0.0127, ...
rho=1350.0, BL=6.5, J0=150.0, ...
pi=3.14159, Ra=0.25, Rf=1.0, ...
kmot=1.5, Jm=5.0, Bm=0.2, ...
kship=10.0, kint=0.2, kprop=6.0, ...
k=3.0

CINTERVAL cint = 1.0
CONSTANT tmx = 3500
CONSTANT ...

Vdes = 15.0, Fext = 100.0
NSTEPS NSTP = 1000

END $ "of INITIAL"

DYNAMIC

DERIVATIVE

"---Submodel: CableReel"
DCrXJL = 0.5*pi*W*rho*(R**4 - Rempty**4) + J0

"---Submodel: DCMotor"
DrXoma = Twist/(Jm + DCrXJL)

"---Submodel: CableReel"
CaelXv = R*DrXoma
R = INTEG(-D*D/(2*pi*W)*DrXoma, 1.2)

"---Submodel: Speedometer"
SrXVms = k*x

"---Submodel: Comparator"
CrXerr = Vdes - SrXVms

"---Submodel: Cable"
CaleXF = AMAX1(kship*CrXerr - Fext,0.0) + Fext

"---Submodel: CableReel"
DrXtaL = BL*DrXoma - CaleXF*R

"---Submodel: PIController"
u = kprop*CrXerr + kint*err

"---Submodel: DCMotor"
uf = 25.0
DCrXif = uf/Rf

Figure 4.19 ACSL Program for Cable Reel System

75

4.5 Lunar Lander

The lunar landing example describes the vertical motion of a rocket that is just

about to perform a soft landing on the surface of the moon. The DYMOLA program

describing the the dynamics of the system is shown in Figure 4.21.

model Lunar

constant r = 1738.0E3, c2 = 4.925E12
input f1, f2
output h = 59404.0, v = -2003.0
parameter ff, cc
local m = 1038.358, thrust, c1, a, mdot, g

thrust = ff
c1 = cc
der(h) = v
der(v) = a
a = (1.0/m)*(thrust - m*g)
der(m) = mdot
mdot = -c1*ABS(thrust)
g = c2/(h + r)**2

end

Figure 4.21 DYMOLA Program for Lunar Lander

The control file shown in Figure 4.22 consists of an experiment description portion

and also initial , derivative, and multiple discrete sections.

76

cmodel

maxtime tmx = 230.0
cinterval cint = 0.2
TERMT (t.GE.tmx .OR. h.LE.0.0 .OR. v.GT.0.0)
input 2, f1(independ,36350.0), f2(independ,1308.0)

initial
CONSTANT ...
c11 = 0.000277, c12 = 0.000277, ...
tdec = 43.2, tend = 210.0
ff = f1
cc = c11
end

derivative
SCHEDULE shutlg .XP. 9934.0-h
SCHEDULE shutsm .XP. 15.0-h
end

discrete shutlg
ff = f2
cc = c12
end

discrete shutsm
ff = 0.0
cc = 0.0
end

end

Figure 4.22 Control File for Lunar Lander

The ACSL program generated for this example is shown in Figure 4.23.

77

"---"
" ********* ADVANCED CONTINUOUS SIMULATION LANGUAGE ********* "
"---"

PROGRAM Lunar

INITIAL

CONSTANT ...
r=1738.0E3, c2=4.925E12, ff=0, ...
cc=0

CINTERVAL cint = 0.2
CONSTANT tmx = 230.0
CONSTANT ...

f1 = 36350.0, f2 = 1308.0
CONSTANT ...
c11 = 0.000277, c12 = 0.000277, ...
tdec = 43.2, tend = 210.0
ff = f1
cc = c11

END $ "of INITIAL"

DYNAMIC

DERIVATIVE

"---Submodel: Lunar"
thrust = ff
c1 = cc
g = c2/(h + r)**2
a = 1/m*(thrust - m*g)
mdot = -c1*ABS(thrust)
h = INTEG(v, 59404.0)
v = INTEG(a, -2003.0)
m = INTEG(mdot, 1038.358)

SCHEDULE shutlg .XP. 9934.0-h
SCHEDULE shutsm .XP. 15.0-h

END $ "of DERIVATIVE"

Figure 4.23 ACSL Program for Lunar Lander

83

APPENDIX A

DYMOLA, THE MODELING LANGUAGE

A.1 General Principles of Macro Facility

The macro facility is used to generate subsystem descriptions in most CSSLs.

At first glance, the macro facility in simulation programs appears to resemble the

subprogram approach in general purpose high-level programming languages. Macro

expansion performed by the built-in macro handler in a simulation language gen-

erates equations which are sorted into an executable sequence. The macro facility

for a language such as DESIRE, which does not provide for an equation sorter, is

ineffective. Equation sorting involves a complete rearrangement of equations from

the various macros indicating that macro replacement must be performed before

the sorting process. As a result, macro compilation is not independent and macros

must be included as part of the model source code. This is a drawback of the

macro concept. Thus, the macro facility is distinctly different from subprograms

in high-level programming languages.

In practice, macros provide a mechanism to successfully partition model

structures, but do not allow hierarchical decomposition of the data structures.

The formal parameter list in macro headers must be complete, including even the

constants among the input parameters of the macro, to simulate with different

values for these parameters and thus increase the macro’s usability. Macro calls

may become unmanageable with parameter values passed between each hierarchical

level. This is yet another disadvantage of the macro concept.

Depending on the environment in which a model is used, several macro

representations of the same element may be needed. Most CSSL-type modeling

languages can sort equations, but obviously this is not sufficient. A modeling

software must be able to solve equations for any variable. It is not essential for a

simulation language to provide for a macro handler of its own. The shortcomings of

the macro facility introduces an alternative utility that replaces the macro handler

altogether.

84

A.2 DYMOLA

DYMOLA is a general purpose hierarchical modular modeling language for

continuous-time systems. The language has been developed for the purpose of

modeling hierarchically structured systems. The tool can also be used to model

complex physical systems through hierarchical bond graphs, which can include

arbitrary non-linearities. The language can be used to implement these hierarchical

non-linear bond graphs.

The DYMOLA program is intended to support the user in coding more

readable and better modularized hierarchically structural model descriptions. The

user can write an equation description of the problem using block diagrams for

instance, or utilize the non-linear hierarchical bond graph abstraction to describe

the system under investigation. The bond graph modeling technique is extensively

used in several application areas.

DYMOLA is a modeling software that can solve equations for arbitrary vari-

ables. It is a totally independent general purpose and powerful macro handler that

can be called as a separate program before a simulation engine is used. It replaces

the macro facility and its drawbacks. It is a program generator that can be used

as a front end to several different simulation languages. DYMOLA currently sup-

ports the simulation languages DESIRE, SIMNON and ACSL. It also supports the

general purpose high-level programming language FORTRAN. A compiler switch

decides for what target language code is to be generated.

There are two different versions of DYMOLA that exist at the present time.

The Simula version runs on UNIVAC computers. The Pascal version runs on

VAX/VMS and also on PC/MS-DOS (Turbo Pascal Version 4.0 or higher). A

UNIX version was generated by using the public domain p2c compiler that trans-

lates any PASCAL program into an equivalent C program.

85

A.3 Language Elements of DYMOLA

A.3.1 Variables

DYMOLA variables are classified into two different types, terminal and

local . Variables that may change their values during a simulation run are either

locals or terminals. In DYMOLA, all variables must be declared.

A.3.2 Terminals

Variables that are to be assigned using the dot notation or connected to an-

other variable outside the model must be declared as terminal variables. Terminal

variables are declared using terminal . Terminals can have default values. They are

assigned these values using a default statement. In this way, they don’t need to be

externally connected, but they can be. A comma must separate each variable in a

terminal statement; e.g.,

terminal ua, uf

default ua = 25.0, uf = 25.0

Terminal variables can be either inputs or outputs. The user can explicitly declare

them as input or output rather than simply as terminal . Inputs and outputs are

special types of terminals. Default values (or initial conditions) can be assigned to

inputs and outputs. Negative default values are allowed; e.g.,

input ua = 25.0, uf = 25.0
output omega = −2.0

Variables declared as terminals (or in cuts) are undirected variables. e.g., the

statement V = Vb − Va can be rearranged by the compiler into Vb = V + Va or

Va = Vb − V if needed. If V had been declared as an output, the compiler would

be prevented from rearranging this equation.

86

A.3.3 Locals

Variables that are totally connected inside the model are declared as local

variables. Local variables are declared using local . Locals can have default values.

They are assigned these values using a default statement. A comma must separate

each variable in a local statement; e.g.,

local ia, Twist

default ia = 5.0, Twist = 5.0

A.3.4 Constants

Constants are variables that obtain a constant value upon declaration. They

are declared with the keyword constant . Constants are not reassigned after the

declaration assignment. Negative constant values are allowed; e.g.,

constant Temp = 300.0

A.3.5 Parameters

Parameters are similar to constants. Their values do not change during a

simulation run. They can be reassigned, but only between simulation runs. This

enables the compiler to extract all parameter computations from the dynamic loop.

Parameters are one mechanism for data exchange between models. In this respect,

they are similar to formal read-only arguments of a subprogram call in a traditional

programming language.

DYMOLA constants can be declared to be of type parameter . Values are

assigned to parameters from outside the model. Parameters can have default val-

ues in which case it is not necessary to assign a value to them from outside the

model. The default parameter values can be overridden from outside the model.

87

Parameters cannot be reassigned within the model in which they are declared as

parameters, only within the calling program.

A comma must separate the different parameters. Negative default values are

allowed; e.g.,

parameter Ra, Rf
parameter La = 0.0, Lf = 0.0

Ra, Rf are assigned values in the call to the model in which these parameters are

declared.

A.3.6 Externals and Internals

Externals are similar to parameters, but they provide for an implicit rather

than an explicit data exchange mechanism. In this respect, they are similar to

COMMON variables in a FORTRAN program. Externals are used to simplify the

utilization of global constants or global parameters.

External variables declared in a called model are used in equations within

this model. The calling program must acknowledge the existence of these globals

by specifying them as internal . However, internal is not a declaration but only

a provision for the redundancy, that is all internal variables must be declared as

something else also, for example, as locals which must get defined in equations

within the calling program.

A.3.7 Models and Submodels

The model description must begin with model followed by a name identifier.

This name indentifies the main model; e.g.,

model RLC

88

A submodel description must begin with model type followed by a name identifier.

This name identifies a model element; e.g.,

model type R

A submodel statement in the main model is used to access a model element. The

submodel declaration must be followed by the model type in parenthesis. Multiple

instance calls to a model element can be made in one submodel statement with

distinct submodel names, which can be referenced later in the model description.

Parameters can be assigned values in each call. A comma must separate each call;

e.g.,

submodel (R) R1(R=100.0), R2(R=20.0)

A DYMOLA program may contain definitions for (or inclusions of) an arbitrary

numbers of model types followed by exactly one model which invokes the declared

model types as submodels. Initial values can be assigned to variables in a model

type using an ic declaration in a submodel statement; e.g.,

submodel (I) L1(I=1.5E-3) (ic f=0.5)

where f is a state variable in model type I.

E.g., model type DCMOT
terminal theta, omega, ua = 25.0, uf = 25.0, tauL, JL
local ia, if, ui, psi, taum, Twist
parameter Ra, Rf, Kmot, Jm
parameter La = 0.0, Lf = 0.0, Bm = 0.0

Lf∗der(if) = uf − Rf ∗ if
La∗der(ia) = ua − ui − Ra ∗ ia
psi = kmot ∗ if
taum = psi ∗ ia
ui = psi ∗ omega
der(Twist) = taum − tauL − Bm ∗ omega
Twist = (Jm + JL) ∗ omega
der(theta) = omega

end

89

The above model can then be called in the following way:

submodel (DCMOT) dcm1(Ra = 2.0, Rf = 5.5, kmot = 1.0, Jm = 15.0)

which can then be connected to the outside world using Pascal’s dot notation

(which has nothing to do with CSSL’s dot notation):

dcm1.ua = kalph ∗ err
dcm1.uf = 12.0
dcm1.JL = crl1.JL
dcm1.tauL = crl1.tauL
dcm1.omega = crl1.omega

where crl1 is a cable reel of model type CABREL with terminals JL, tauL and

omega in common with DCMOT.

A.3.8 End

Each model description must terminate with an end statement. That is,

each model and model type statement must have a corresponding end statement.

A.3.9 Include Operator

The @ operator instructs the DYMOLA preprocessor to include an external

file at this place. It corresponds to the include statement of most programming

languages. It can, for instance, be used to include the element definitions which

were stored on separate files; e.g.,

@resistor.elec

A.3.10 Connect, Cuts and Nodes

Cuts are hierarchical data structures (similar to Pascal records). Wires

are frequently grouped into cables or buses. DYMOLA provides for an equivalent

90

mechanism by so-called CUTs. A cut is like a plug or socket. It defines an interface

to the outside world. Variable common between model types can be placed in a

cut definition. The syntax is, cut followed by a cut name with the variable list in

parenthesis. A comma must separate the different cuts; e.g.,

cut A(v1, v2), B(v3, v4)

Cut declarations in model types that have variables in common with other model

types must be identical. The connect statement is used to connect cuts. The

DYMOLA statement:

connect x:A at y:B

plugs the cut A of model x into the socket B of model y.

E.g., Declare cut mech in model types DCMOT and CABREL with three vari-

ables omega, tauL and JL in common:

cut mech(omega, tauL, JL)

and invoke in the main program a DC-motor dcm1 of type DCMOT and a cable

reel crl1 of type CABREL. Next, connect the cut mech of dcm1 at the cut mech

of crl1 . This is coded as follows:

submodel (DCMOT) dcm1(Ra =...)
submodel (CABREL) crl1(Bl = ...)
connect dcm1:mech at crl1:mech

The connect statement automatically generates the three model equations:

dcm1.omega = crl1.omega
dcm1.tauL = crl1.tauL
dcm1.JL = crl1.JL

91

Cuts can be hierarchically structured; e.g.,

cut mech(omega, tauL, JL)
cut elect(ua, uf)
cut both[mech, elect]

in which case cut mech and cut elect can be connected separately, or connected

both together. During expansion of the connect statement, DYMOLA checks that

the connected cuts are structurally compatible with each other.

One cut can be declared as main cut. The main cut is the default cut in a

connection. The model name is specified to connect the main cut of a submodel.

Nodes are a convenient means to organize connections. The node declaration is

used for connections inside a model instead of across model boundaries. Nodes are

named, and cuts can be connected to nodes. Nodes are hierarchically structured

in the same manner as cuts are.

E.g., model M
cut A(v1,v2), B(v3,v4)
main cut D[A,B,C]
. . .

end
. . .
node N
connect M at (N,N,N)

The connect statement is equivalent to:

connect M:A at N, M:B at N, M:C at N

which is identical to:

connect M:A at M:B at M:C

which results in the following set of equations:

M.v1 = M.v3
M.v3 = M.v5

92

M.v2 = M.v4
M.v4 = M.v6

DYMOLA provides for a second type of cut and connect mechanism, which is

used extensively for bond graph modeling. The generalized form of this DYMOLA

cut looks as follows:

cut cut name(across variables/through variables)

DYMOLA supports the concept of across and through variables. Across variables

around a node assume the same value whereas through variables into a node add up

to zero. DYMOLA’s nodes can be used as 0-junctions in a bond graph model. In

bond graph terminology, across variables are called effort variables, while through

variables are called flow variables. In a 1-junction of a bond graph, all flow variables

are equal while all effort variables add up to zero. There is no DYMOLA equivalent

for 1-junctions, but 1-junctions are the same as 0-junctions with the effort and flow

variables interchanged.

In an electrical circuit, the potentials around a node must be equal, whereas

the currents into a node add up to zero. Variables of type potential are called

across variables, while variables of type current are called through variables. If

three models m1, m2 and m3 have each a cut of type A declared as:

cut A(V/I)

and the connect statement used is:

connect m1:A at m2:A at m3:A

then, the following model equations are generated:

m1.v = m2.v
m2.v = m3.v
m1.i + m2.i + m3.i = 0.0

93

Thus, all the across variables to the left of the slash operator are set equal, and all

the through variables to the right of the slash operator are summed up to zero. The

DYMOLA preprocessor automatically generates the necessary coupling equations.

Note that currents at cuts are normalized to point into the subsystem. If a current

is directed in the opposite way, it must take a minus on the cut definition.

In a mechanical system, all forces and torques are across variables, whereas

all positions, velocities and accelerations are flow variables. In a hydraulic system,

water levels are across variables, while water flow is a through variable. In a thermic

system, temperature and pressure are across variables, while heat flow is a through

variable, etc.

The DYMOLA model library describing the basic bond graphs that can be

used as modeling elements to formulate a bond graph description of a system is

shown in Figure A.1.

94

model type bond
cut A(x/y), B(y/−x)
main cut C[A,B]
main path P<A−B>

end
model type SE

main cut A(e/.)
terminal E0
E0 = e

end
model type SF

main cut A(./−f)
terminal F0
F0 = f

end
model type R

main cut A(e/f)
parameter R=1.0
R∗f = e

end
model type C

main cut A(e/f)
parameter C=1.0
C∗der(e) = f

end
model type I

main cut A(e/f)
parameter I=1.0
I∗der(f) = e

end
model type TF

cut A(e1/f1), B(e2/−f2)
main cut C[A,B]
main path P<A−B>
parameter m=1.0
e1 = m∗e2
f2 = m∗f1

end
model type GY

cut A(e1/f1), B(e2/−f2)
main cut C[A,B]
main path P<A−B>
parameter r=1.0
e1 = r∗f2
e2 = r∗f1

end

Figure A.1 DYMOLA Bond Graphs

95

The model type bond simply exchanges the effort and flow variables. 0-

junctions and 1-junctions always toggle in any bond graph model. Neighboring

junctions can both be described by regular DYMOLA nodes if they are connected

with a bond. In order to avoid maintaining different types of R, C, L, TF and

GY elements, all elements (except for the bonds) in DYMOLA must be attached

to 0-junctions only. If they need to be connected to 1-junction, a bond must be

placed inbetween.

A.3.11 Paths

A path is used to connect a variable through from a source to a destination.

DYMOLA allows the user to declare a directed path from an input cut to an output

cut.

E.g., A model used to describe a pump which is declared as follows:

model pump
cut inwater(w1), outwater(w2)
path water <inwater – outwater>
. . .

end

Two more models describing a pipe and a tank with compatibly declared cuts and

paths exist. Connect the water flow from the pump through the pipe to the tank

with the statement:

connect (water) pump to pipe to tank

One path can always be declared as the main path. If the main path is to be

connected, the path name can be omitted from the connect statement; e.g.,

model pump
cut inwater(w1), outwater(w2)
main path water <inwater – outwater>
. . .

96

end

The connect statement can now be:

connect pump to pipe to tank

A.3.12 Connect Operators

Connection mechanisms in DYMOLA are possible with operators. The at

operator is used to connect common variables in model types defined in a cut

definition. It can be abbreviated with the “=” symbol. The to operator is used

to connect paths and it denotes a series connection. It can be abbreviated with

the “−” symbol. The reversed operator is used to connect a path in the opposite

direction. It can be abbreviated with the “\” symbol. The par operator is used to

parallel connect two paths. It can be abbreviated with the “//” symbol. The loop

operator is used to connect paths in a loop.

A.3.13 Continuation

The “—>” symbol denotes continuation lines in DYMOLA; e.g.,

connect —>
R1 from N1 to N2, —>
R2 from N2 to N0, —>
. . .

A.3.14 Comment

Comments may be placed in a DYMOLA program by enclosing them within

left and right curly braces; e.g.,

{ Bond graph model of a Hydraulic System }

97

A.3.15 Derivative Operators

DYMOLA uses the dot notation. Derivatives are either expressed using

the der (.) operator or a prime (′). It is also allowed to use a der2 (.) operator

or a double prime (′′) to denote a second derivative. Even higher derivatives are

admissible; e.g.,

Lf ∗ der(if) = uf − Rf ∗ if

Contrary to most CSSLs, DYMOLA allows these operators to be used anywhere

in the equation, both to the left and to the right of the equal sign. Consequently,

it is not possible to set initial conditions for the integrators inside a model, which

is clearly a disadvantage of DYMOLA.

A.3.16 IF Statement

In order to sort all equations properly, DYMOLA provides an if statement

of the form:

<var> = if <cond> then <expr> else <expr>

E.g., tz = if IRB = 0.0 then 0.0 else tan(z)

A.3.17 Equation Syntax and Manipulation

DYMOLA uses the syntax expression = expression. It can solve equations

for any variable which appears linearly in the equation. This doest not mean that

the equation as a whole must be linear.

E.g., DYMOLA is able to handle the equation:

7 ∗ x + y ∗ y − 3 ∗ x ∗ y = 25

if the variable it wants to solve this equation for is x.

98

In this case, DYMOLA will transform the above equation into:

x = (25 − y ∗ y)/(7 − 3 ∗ y)

However, it cannot solve the original equation for the variable y.

During the process of model expansion, equations are solved for the ap-

propriate variable. For this reason, the Single Assignment Rule (SAL) no longer

applies. It is perfectly acceptable to have der(Twist) on the left hand side of one

equation, and Twist on the left hand side of another; e.g.,

der(Twist) = taum − tauL − Bm ∗ omega
Twist = (Jm + JL) ∗ omega

Terms which are multiplied by a zero parameter are automatically eliminated dur-

ing the model expansion. E.g., in the model equation:

La ∗ der(ia) = ua − ui − Ra ∗ ia

if La = 0.0, the equation is first replaced with the model equation:

0.0 = ua − ui − Ra ∗ ia

which then results in one of three simulation equations:

(1) ua = ui + Ra ∗ ia
(2) ui = ua − Ra ∗ ia
(3) ia = (ua − ui)/Ra

depending on the environment in which the model is used. However, if La is not

equal to 0.0, the model equation is transformed into the simulation equation:

der(ia) = (ua − ui − Ra∗ia)/La

This is a very elegant way to solve the “variant” macro problem of ACSL. Thus,

parameters with value 0.0 are treated in a completely different manner. Parameters

that are not set equal to zero are preserved in the generated simulation code, and

99

can be interactively altered through the simulation program directly without a

need to return to DYMOLA. Parameters with value 0.0 are optimized away by the

DYMOLA compiler, and are not represented in the simulation code. However, the

advantages of this decision are overwhelming, since this does away with an entire

class of structural singularities.

Code Optimization − DYMOLA provides for a feature to eliminate trivial equa-

tions of the type a = b, by eliminating one of the two variables, and replacing other

occurrences of this variable in the program by the retained variable. This can sig-

nificantly speed up the execution of the simulation program.

Linear Algebraic Loops − DYMOLA recognizes from an initial set of equations

those equations that contain a der(.) operator which must be solved for the deriva-

tives. It moves those variables from the list of unknowns to the list of knowns. It

further recognizes any variables that appear only in one of the remaining equations

each and moves those variables from the list of unknowns to the list of knowns.

Next, trivial equations of the type a=b are eliminated by discarding one of the two

variables, and replacing other occurrences of this variable in the program by the

retained variable. A set of solved equations is obtained along with a set of remain-

ing equations. If each remaining equation contains at least two unknowns, and

each of the unknowns appears in at least two equations, an algebraic loop results.

If all the unknowns appear linearly in all the remaining equations, DYMOLA can

rewrite the system of equations by finding the determinant of the linear equation

system, and explicitly expressing the solution using formula manipulation.

100

A.3.18 Structural Singularities

Usually, each component of a system that can store energy is represented

by one or more differential equations. Capacitors and inductances of electrical net-

works can store energy. Each capacitor and each inductor normally gives cause to

one first order differential equation. Mechanical masses can store two forms of en-

ergy, potential and kinetic energy. Each separately movable mass in a mechanical

system usually gives rise to one second order differential equation which is equiva-

lent to two first order differential equations. However sometimes, this is not so. If

we take two capacitors and connect them in parallel, the resulting system order is

still one. This is due to the fact that there exists a linear relationship between the

two voltages over the two capacitors (they are the same), and thus, they both do

not qualify for state variables.

Such situations are called system degeneracies or structural singularities.

DYMOLA is able to handle structural singularities with the differentiate command.

Usually, subsystems will be designed such that no such singularities occur. The two

parallel capacitors are simply represented in the model by one equivalent capacitor

with the value:

Ceq = C1 + C2

However, when subsystems are connected together, structural singularity

is a direct result of the coupling of the two subsystems. Let us assume the two

subsystem orders of subsystems S1 and S2 are n1 and n2. If the coupled system

Sc has a system order nc which is smaller than the sum of n1 and n2, a structural

singularity exists which is a result of the subsystem coupling.

101

A.4 DYMOLA Commands

At the operating system prompt ($), the DYMOLA preprocessor can be

entered in an interactive mode with the following command:

$ dymola
>

DYMOLA responds with its own prompt (>) requesting the user to enter fur-

ther commands. The set of commands available in DYMOLA and some of the

mechanisms involved behind command execution are described.

A.4.1 Enter Model

The command to specify a model to be compiled at the DYMOLA prompt

is:

> enter model
− @model file.dym

>

The enter model statement instructs DYMOLA to read in a model. DYMOLA

responds with the next level prompt (−). The user is requested to enter a complete

model specification. Equations can be entered here, but it is more practical to

invoke them indirectly (@). DYMOLA returns to its first level interactive prompt

(>) after it finds the model definition. The model filename and its extension are

user chosen.

At this point, DYMOLA expands the set of equations by the coupling equa-

tions. The resulting equations can be observed, for example, with the output equa-

tions command.

102

A.4.2 Enter Experiment

The command to specify an experiment description for the model is:

> enter experiment
− @control file.ctl

>

The enter experiment statement instructs DYMOLA to read in an experiment

description. DYMOLA responds with the next level prompt (−). The user is re-

quested to enter a complete experiment description indirectly (@). The experiment

filename and its extension are user chosen.

The experiment description for the model is specific for each of the target

languages. DYMOLA’s code generator portion can be used to generate a simulation

model for DESIRE, SIMNON, ACSL or FORTRAN.

A.4.3 Partition

The command to determine what variable to compute from each equation

is:

> partition

The partition algorithm assigns the causalities and sorts the equations into an

executable sequence. The command invokes the partition algorithm, but does

not display the results to the user. The resulting equations can be observed, for

example, with the output sorted equations command.

A.4.4 Partition Eliminate

The command to partition the equations and automatically perform all types

of elimination algorithms repetitively until the equations no longer change is:

103

> partition eliminate

The sorted equations contain variables enclosed in “[]” which must be solved for

each equation. This set of equations contains many trivial equations of the type

a = b. DYMOLA invokes all types of elimination algorithms to result in a much

reduced set of equivalent equations. The resulting equations can be observed, for

example, with the output sorted equations command.

A.4.5 Eliminate Equations

The command to eliminate trivial equations of type a = b, and replace all

occurrences of the variable a in all other equations by the variable b is:

> eliminate equations

The set of equations observed by the output sorted equations command contains

many aliases, i.e., the same physical quantity is stored several times under different

variable names. This slows down the execution of the simulation program. This

command will rid equations of such type. There is one exception to the rule: the

eliminate operation will never eliminate a variable that was declared as either input

or output. If, in an equation of the type a = b, a is an output variable, it will

throw the equation away as well, but in this case, all occurrences of b are replaced

by a. If both a and b are declared as output variables, the equation will not be

eliminated at all.

This algorithm can be applied either to the original equations or to the

partitioned equations, and it will work equally well in both cases. In reality, this

algorithm reduces all equations of the types:

±a = ±b

and:

104

±a±b = 0

which are variants of the previously discussed case. This algorithm works also if

either a or b is a constant.

A.4.6 Eliminate Parameters

The command to apply an elimination algorithm with respect to parameters

is:

> eliminate parameters

The elimination algorithm that is now executed will perform the following tasks:

1. All parameters with a numerical value of 0.0 or 1.0 are eliminated from the

model, and the numerical value is replaced directly into the equations.

2. A numerical value of 1.0 that multiplies a term is eliminated from that term.

3. A term that is multiplied by a numnerical value of 0.0 is replaced as a whole

by 0.0.

4. Additive terms of 0.0 are eliminated as a whole.

5. If, in an equation, an expression consists of parameters and constants only,

a new equation is generated that will evaluate this expression (assigned to a

new generic variable), and the occurrence of the expression in the equation

is replaced by the new generic variable.

6. If an equation contains only one variable, it must be solved for that vari-

able. This variable is then automatically redeclared as a parameter, and the

equation is marked as a parameter equation which can be moved from the

DYNAMIC portion of the simulation program into the INITIAL portion of

the simulation program.

105

A model with parameters whose values are not 1.0 or 0.0 is not affected by this

algorithm. This algorithm may have undesired effects. It is often desired to start

with a simple model (by setting some parameters equal to 0.0) and then successively

make the model more realistic by assigning in the simulation program, true values

to the previously defaulted parameters. In this case, eliminate parameters must

not be used, since this algorithm will cause these parameters to no longer appear

in the simulation program.

A.4.7 Eliminate Variables

The command to affect algebraic loops is:

> eliminate variables

This command must be used only after the equations have been partitioned. It

affects only algebraic loops and it affects each algebraic loop separately. DYMOLA

counts the times each loop is referenced in an algebraic loop. Obviously, each loop

variable must occur atleast twice, otherwise, it would not be a loop variable.

DYMOLA will investigate all loop variables that occur exactly twice in a

loop. If it finds such a variable, and if this variable appears linearly in atleast

one of the two equations, DYMOLA will solve the equation for that variable, and

replace the other occurrence of the variable by the evaluated expression, thereby

eliminating this variable altogether from the loop. If the eliminated variable is

referenced anywhere after the loop, the equation defining this variable is not thrown

away, but taken out of the loop and placed immediately after the loop. The same

is true if the eliminated variable has been declared as an output variable. Although

the same algorithm could be applied to variables that occur more than twice, this

106

is not done since it tends to explode the code (the same, possibly long, expressions

would have to be duplicated several times).

A.4.8 Eliminate Outputs

The command to take variables that appear only once in the set of equations

out of the state-space model is:

> eliminate variables

DYMOLA checks for all variables in the DYNAMIC section of the code that ap-

pear only once in the set of equations. Obviously, the equations containing these

variables must be used to evaluate them. Since these equations will not other-

wise influence the behavior of the dynamic model, they can be marked as output

equations, and can be taken out of the state-space model.

A.4.9 Differentiate

The command to handle structural singularities in DYMOLA is:

> differentiate

When subsystems are connected together, structural singularity is a direct result

of the coupling of the two subsystems. This command takes care of this situation.

A.4.10 Output Equations

The command to observe the set of equations after DYMOLA has compiled

the model and expanded the set of equations by the coupling equations is:

> output equations

107

Model compilation, as a result of the enter model command, replaces all submodel

references by their model definitions. It generates the additional equations that are

a result of the submodel couplings i.e., DYMOLA replaces the connect statements

by the coupling equations. The results of this text replacement are observed by

issuing the output equations command.

A.4.11 Output Sorted Equations

The command to observe the sorted and marked (but not yet solved) equa-

tions as a result of the partition algorithm, after it has determined which equation

needs to be solved for what variable, is:

> output sorted equations

The variables enclosed in “[]” are the variables for which each equation must be

solved. The resulting set of equations contains many trivial equations of the type

a = b, which can be eliminated with other commands.

A.4.12 Output Solved Equations

The command to perform the actual symbolic manipulation on the equations

after partitioning, eliminating and sorting is:

> output solved equations

The command produces a listing of solved variables with references to the corre-

sponding model and its submodels. The experiment description can be added to

the model after this command.

108

A.4.13 Output Variables <target language>

The command to list a complete set of variables and related information on

each variable in the model description is:

> output variables <target language>

The <target language> can be DESIRE, SIMNON, ACSL or FORTRAN. The re-

sulting variable list includes the type (terminal, parameter, input, output, state,

derivative, constant, etc.) of each variable and the value of each known variable.

The list also includes a cross-reference between old and new names for the specified

simulation language, i.e., before and after variable name changes. The original DY-

MOLA variable names in the model and target languuage specific variable names

after conversion to conform with required variable name length, etc., are specified.

A.4.14 Output <target language> Model

The command to generate a simulation model for a target language is:

> output <target language> model

DYMOLA supports DESIRE, SIMNON, ACSL and FORTRAN as possible target

languages for a simulation model . An experiment description is not needed to

generate a model for any of these languages. A compiler switch determines code

to be generated for the specified simulation or high-level programming language;

e.g.,

> output acsl model

generates an ACSL simulation model.

109

A.4.15 Output <target language> Program

The command to generate a simulation program for a target language is:

> output <target language> program

DYMOLA supports DESIRE and ACSL as possible target languages for a simula-

tion program. An experiment description in a control file is needed to generate a

program for DESIRE or ACSL, and it is compiled with this command; e.g.,

> output acsl program

compiles the control file and generates an ACSL simulation program.

A.4.16 Outfile <filename.ext>

The command to redirect output to a file (e.g. for printout) is:

> outfile <filename.ext>

This command must be issued prior to the command whose output is to be redi-

rected to a file. The output filename and its extension are user chosen; e.g.,

> outfile rlc.eq
> output equations

where the outfile statement specifies the output file name and the output equations

statement writes the generated equations to the output file.

A.4.17 Stop

The command to exit from DYMOLA is:

> stop
$

This command returns the user to the operating system prompt ($).

110

A.5 Limitations and Further Developments in DYMOLA

A.5.1 Non-Linear Equations

For some simple cases, it would be very easy to implement the appropri-

ate transformation rules to handle even non-linear equations, but most non-linear

equations don’t provide non-unique solutions. E.g., the problem:

x ∗ x + y ∗ y = 1

when solved for y has two solutions:

y = +sqrt(1 − x ∗ x)
y = −sqrt(1 − x ∗ x)

DYMOLA would have no way to know which of the two solutions to use. The

same is true when the non-linear equation is solved numerically by automatically

generating an IMPL block around the equation. The numerical algorithm will

simply approach one of the two solutions, often depending on the chosen initial

value, and that may be the wrong one.

There is no general answer to the automated solution of non-linear equa-

tions. The best that can probably be achieved is that DYMOLA preprocessor

stops when it comes across a non-linear equation, and requests help from the user.

It may then store this information away for later reuse in another compilation of

the same model. One possible answer that the user may provide is to request the

system to build an IMPL block around the equation, and tell it which initial value

to use for the iteration.

111

A.5.2 Non-Linear Algebraic Loops

The problem with non-linear algebraic loops is exactly the same as with

the solutions of non-linear equations. Depending on how the the set of equations

is iterated, it is possible to end up with one solution, or another, or none at all.

There is unfortunately no way how this problem can be solved once and for all.

The best that DYMOLA may be able to do is interrupt the compilation, print the

set of coupled algebraic equations on the screen together with the set of unknowns

contained in these equations, and ask for help. Proper help may not always be

easy to provide.

A.5.3 Further Extensions

A number of possible extensions in order for DYMOLA to handle certain

problems in a completely automated manner are:

1. DYMOLA should be able to eliminate variables not only from equations of

type a = b, but also from equations of type a + b = 0.

2. DYMOLA should be able to recognize equations that have been specified

twice, and eliminate the duplicate automatically.

3. DYMOLA should be able to handle superfluous connections, i.e., if we spec-

ify w2 = −w1, it is obviously true that also theta2 = −theta1 (except for

an integration constant). However, DYMOLA won’t let us specify this ad-

ditional connection at the current time. Superfluous connections should

simply be eliminated during the model expansion.

Several of the DYMOLA features discussed here are presented in Appendix B with

DYMOLA examples. The examples include DYMOLA programs and commands,

112

resulting outputs in solving the model equations and plots obtained with ACSL

simulation.

114

model type vsource
cut A(Va/I), B(Vb/−I)
main cut C[A,B]
main path P<A−B>
terminal V=0.0
V = Vb − Va

end
model type Common

cut A(V/.) B(./.)
main cut C[A]
main path P<A−B>
V = 0.0

end
model type resistor

cut A(Va/I), B(Vb/−I)
main cut C[A,B]
main path P<A−B>
parameter R=1.0
local V
V = Va − Vb
R∗I = V

end
model type capacitor

cut A(Va/I), B(Vb/−I)
main cut C[A,B]
main path P<A−B>
parameter C=1.0
local V
V = Va − Vb
C∗der(V) = I

end
model type inductor

cut A(Va/I), B(Vb/−I)
main cut C[A,B]
main path P<A−B>
parameter L=1.0
local V
V = Va − Vb
L∗der(I) = V

end

Figure B.2 DYMOLA Modeling Elements

115

The following DYMOLA program describes the RLC network using the electrical

component models.

@common.ele
@vsource.ele
@resistor.ele
@capacit.ele
@inductor.ele

model RLC

submodel (vsource) U0
submodel (resistor) R1(R=100.0), R2(R=20.0)
submodel (inductor) L1(L=1.5E-3) (ic I = 0.5)
submodel (capacitor) C1(C=0.1E-6)
submodel Common

input u
output y1, y2

connect Common - U0 - ((R1 - (C1//R2))//L1) - Common

U0.Va = 0.0
U0.V = u
y1 = C1.V
y2 = R2.I

end

Figure B.3 DYMOLA Program for RLC Circuit

Let us assume the above DYMOLA program is stored in a file called “rlc.dym”. The

@ operator includes the element definitions stored in separate files. The program

describes the RLC circuit using series and parallel connections of elements. Main

path and cut declarations in the element models are needed for these connections.

The DYMOLA preprocessor is invoked and the model to be compiled is specified

with the following command sequence:

$ dymola
> enter model
− @rlc.dym
> outfile rlc.eq
> output equations

116

The enter model statement expands the set of equations in the model by the cou-

pling equations. The generated equations redirected to the output file are shown

in the next code segment.

Common V = 0
U0 V = Vb - Va
R1 V = Va - Vb

R*I = V
C1 V = Va - Vb

C*derV = I
L1 V = Va - Vb

L*derI = V
R2 V = Va - Vb

R*I = V
RLC U0.Va = 0

U0.V = u
y1 = C1.V
y2 = R2.I
R2.Vb = C1.Vb
L1.Vb = R2.Vb
Common.V = L1.Vb
C1.Va = R1.Vb
R2.Va = C1.Va
C1.I + R2.I = R1.I
R1.Va = U0.Vb
L1.Va = R1.Va
R1.I + L1.I = U0.I

Figure B.4 Output Equations after Model Compilation

The partition algorithm to determine what variable to compute from each equation

is executed with the following DYMOLA commands:

>partition
>outfile rlc.sr1
>output sorted equations

117

which results in the following set of equations:

Common [V] = 0
RLC [U0.Va] = 0

[U0.V] = u
U0 V = [Vb] - Va
RLC [R1.Va] = U0.Vb

Common.V = [L1.Vb]
L1.Vb = [R2.Vb]
R2.Vb = [C1.Vb]

C1 V = [Va] - Vb
RLC C1.Va = [R1.Vb]
R1 [V] = Va - Vb

R*[I] = V
RLC R1.I + L1.I = [U0.I]

[R2.Va] = C1.Va
R2 [V] = Va - Vb

R*[I] = V
RLC [C1.I] + R2.I = R1.I
C1 C*[derV] = I
RLC [L1.Va] = R1.Va
L1 [V] = Va - Vb

L*[derI] = V
RLC [y1] = C1.V

[y2] = R2.I

Figure B.5 Sorted Equations after Partition

The variables marked with “[]” are the variables for which each equation must

be solved. This set of equations contains many trivial equations of the type a =

b. DYMOLA is capable of throwing those out. This is accomplished with the

following DYMOLA commands:

> partition eliminate
> outfile rlc.sr2
> output sorted equations

118

which results in the following set of equations:

RLC [U0.Va] = 0
U0 RLC.u = [Vb] - Va
Common [C1.Vb] = 0
C1 V = [R1.Vb] - Vb
R1 [V] = U0.Vb - Vb

R*[I] = V
RLC R1.I + L1.I = [U0.I]
R2 [V] = R1.Vb - C1.Vb

R*[RLC.y2] = V
RLC [C1.I] + y2 = R1.I
C1 C*[derV] = I
L1 [V] = U0.Vb - C1.Vb

L*[derI] = V
RLC [y1] = C1.V

Figure B.6 Sorted Equations after Partition Eliminate

This is a much reduced set of equivalent equations. The next step is to perform

symbolic manipulation on the equations. In DYMOLA, this is done in the following

way:

> outfile rlc.sov
> output solved equations

which results in the following set of equations:

RLC U0.Va = 0
U0 Vb = RLC.u + Va
Common C1.Vb = 0
C1 R1.Vb = V + Vb
R1 V = U0.Vb - Vb

I = V/R
RLC U0.I = R1.I + L1.I
R2 V = R1.Vb - C1.Vb

RLC.y2 = V/R
RLC C1.I = R1.I - y2
C1 derV = I/C
L1 V = U0.Vb - C1.Vb

derI = V/L
RLC y1 = C1.V

Figure B.7 Solved Equations

119

At this point, the circuit topology has been reduced to a trivial state-space model.

Now, DYMOLA’s code generator can be used to generate, for example, a ACSL

simulation program. The experiment to be used is shown in Figure B.8.

cmodel

maxtime tmax = 2E-5
TERMT (t .GE. tmax)
cinterval cint = 2E-7
input 1, u(independ,10.0)

end

Figure B.8 ACSL Experiment

The experiment description is specific for each target language. The version shown

in Figure B.8 is for ACSL. The simulation time, communication interval, input

statement and termination condition are specified.

Let us assume that the ACSL experiment is stored in a file called “rlc.act”. The

experiment description is added to the model and the ACSL program is generated

using the following DYMOLA commands:

> enter experiment
− @rlc.act
> outfile rlc.csl
> output acsl program

The resulting ACSL program is shown in Figure B.9.

120

"---"
" ********* ADVANCED CONTINUOUS SIMULATION LANGUAGE ********* "
"---"

PROGRAM RLC

INITIAL

CONSTANT ...
R1XR=100.0, C=0.1E-6, L=1.5E-3, ...
R2XR=20.0

CINTERVAL cint = 2E-7
CONSTANT tmax = 2E-5
CONSTANT ...

u = 10.0

END $ "of INITIAL"

DYNAMIC

DERIVATIVE

"---Submodel: RLC"
U0XVa = 0

"---Submodel: U0"
U0XVb = u + U0XVa

"---Submodel: Common"
C1XVb = 0

"---Submodel: C1"
R1XVb = C1XV + C1XVb

"---Submodel: R1"
R1XV = U0XVb - R1XVb
R1XI = R1XV/R1XR

"---Submodel: RLC"
U0XI = R1XI + L1XI

"---Submodel: R2"
R2XV = R1XVb - C1XVb
R2XI = R2XV/R2XR

"---Submodel: RLC"
C1XI = R1XI - R2XI

"---Submodel: C1"
C1XV = INTEG(C1XI/C, 0)

"---Submodel: L1"
L1XV = U0XVb - C1XVb
L1XI = INTEG(L1XV/L, 0.5)

Figure B.9 ACSL Program for RLC Circuit

122

B.2 Bond Graph Modeling of RLC Network

This example illustrates the use of DYMOLA as a bond graph modeling language.

The RLC circuit of Figure B.1 is used for this example. DYMOLA bond graphs

presented in Appendix A (Figure A.1), are repeated in Figure B.11 for easy refer-

ence.

123

model type bond
cut A(x/y), B(y/−x)
main cut C[A,B]
main path P<A−B>

end
model type SE

main cut A(e/.)
terminal E0
E0 = e

end
model type SF

main cut A(./−f)
terminal F0
F0 = f

end
model type R

main cut A(e/f)
parameter R=1.0
R∗f = e

end
model type C

main cut A(e/f)
parameter C=1.0
C∗der(e) = f

end
model type I

main cut A(e/f)
parameter I=1.0
I∗der(f) = e

end
model type TF

cut A(e1/f1), B(e2/−f2)
main cut C[A,B]
main path P<A−B>
parameter m=1.0
e1 = m∗e2
f2 = m∗f1

end
model type GY

cut A(e1/f1), B(e2/−f2)
main cut C[A,B]
main path P<A−B>
parameter r=1.0
e1 = r∗f2
e2 = r∗f1

end

Figure B.11 DYMOLA Bond Graphs

125

@bond.bnd
@se.bnd
@r.bnd
@c.bnd
@i.bnd

model RLC

submodel (SE) U0
submodel (R) R1(R=100.0), R2(R=20.0)
submodel (I) L1(I=1.5E-3) (ic f = 0.5)
submodel (C) C1(C=0.1E-6)
submodel (bond) B1, B2, B3

node v1, ir1, vr1, v2
input u
output y1, y2

connect U0 at v1
connect L1 at v1
connect R1 at vr1
connect R2 at v2
connect C1 at v2
connect B1 from v1 to ir1
connect B2 from ir1 to v2
connect B3 from ir1 to vr1

U0.E0 = u
y1 = C1.e
y2 = R2.f

end

Figure B.13 DYMOLA’s Bond Graph Program for RLC Circuit

Let us assume the DYMOLA program is stored in a file called “rlcb.dym”. The

program describes the RLC circuit using bonds. All elements, except for the bonds,

are attached to 0-juntions only. If an element needs to be attached to a 1-junction,

a bond is simply placed inbetween.

DYMOLA is entered and the model to be compiled is specified with the the same

command sequence as in Example B.1.

126

$ dymola
> enter model
− @rlcb.dym
> outfile rlcb.eq
> output equations

The generated equations are shown in Figure B.14.

U0 E0 = e
R1 R*f = e
C1 C*dere = f
L1 I*derf = e
R2 R*f = e
RLC U0.E0 = u

y1 = C1.e
y2 = R2.f
L1.e = B1.x
U0.e = L1.e
C1.e = B2.y
R2.e = C1.e
C1.f + R2.f = B2.x
B2.x = B3.x
B1.y = B2.x
B3.y + B2.y = B1.x
R1.e = B3.y
R1.f = B3.x

Figure B.14 Output Equations after Model Compilation

The first six equations are extracted from the models. The remaining equations

are automatically generated coupling equations. The next command sequence:

> partition
> outfile rlcb.sr1
> output sorted equations

127

results in the following equations:

RLC [U0.E0] = u
U0 E0 = [e]
RLC U0.e = [L1.e]

L1.e = [B1.x]
C1.e = [B2.y]
[B3.y] + B2.y = B1.x
[R1.e] = B3.y

R1 R*[f] = e
RLC R1.f = [B3.x]

[B2.x] = B3.x
[B1.y] = B2.x
[R2.e] = C1.e

R2 R*[f] = e
RLC [C1.f] + R2.f = B2.x
C1 C*[dere] = f
L1 I*[derf] = e
RLC [y1] = C1.e

[y2] = R2.f

Figure B.15 Sorted Equations after Partition

The elimination algorithms are applied and sorting is done with the following com-

mand sequence:

> partition eliminate
> outfile rlcb.sr2
> output sorted equations

which results in the following answer:

R2 R*[RLC.y2] = C1.e
RLC [B3.y] + C1.e = u
R1 R*[B3.x] = B3.y
RLC [C1.f] + y2 = B3.x
C1 C*[dere] = f
L1 I*[derf] = RLC.u
RLC [y1] = C1.e

Figure B.16 Sorted Equations after Partition Eliminate

128

This is a much reduced set of equivalent equations. Symbolic manipulation is

performed with the commands:

> outfile rlcb.sov
> output solved equations

which results in the following answer:

R2 RLC.y2 = C1.e/R
RLC B3.y = u - C1.e
R1 B3.x = B3.y/R
RLC C1.f = B3.x - y2
C1 dere = f/C
L1 derf = RLC.u/I
RLC y1 = C1.e

Figure B.17 Solved Equations

The experiment description used for Example B.1, shown in Figure B.8, is also used

here. It is specific for ACSL and entered as before with the command to generate

an ACSL program:

> enter experiment
− @rlc.act
> outfile rlcb.csl
> output acsl program

The generated ACSL program for this example is shown in Figure B.18.

129

"---"
" ********* ADVANCED CONTINUOUS SIMULATION LANGUAGE ********* "
"---"

PROGRAM RLC

INITIAL

CONSTANT ...
R1XR=100.0, C=0.1E-6, I=1.5E-3, ...
R2XR=20.0

CINTERVAL cint = 2E-7
CONSTANT tmax = 2E-5
CONSTANT ...

u = 10.0

END $ "of INITIAL"

DYNAMIC

DERIVATIVE

"---Submodel: R2"
R2Xf = C1Xe/R2XR

"---Submodel: RLC"
B3Xy = u - C1Xe

"---Submodel: R1"
B3Xx = B3Xy/R1XR

"---Submodel: RLC"
C1Xf = B3Xx - R2Xf

"---Submodel: C1"
C1Xe = INTEG(C1Xf/C, 0)

"---Submodel: L1"
L1Xf = INTEG(u/I, 0.5)

"---Submodel: RLC"
y1 = C1Xe
y2 = R2Xf

END $ "of DERIVATIVE"

TERMT (t .GE. tmax)

END $ "of DYNAMIC"

END $ "of PROGRAM"

Figure B.18 ACSL Program for RLC Circuit

131

REFERENCES

[1] Aho, A. V., Sethi, R. and Ullman, J. D. (1988). Compilers – Principles,

Techniques and Tools, Addison-Wesley, Reading, MA.

[2] Aho, A. V. and Ullman, J. D. (1972). The Theory of Parsing, Translation

and Compiling , Vol. 1: Parsing , Prentice-Hall, Englewood Cliffs, NJ.

[3] Bobillier, P. A. (1976). Simulation with GPSS and GPSS V , Prentice-Hall,

Englewood Cliffs, NJ.

[4] Casti, J. L. (1989). Alternate Realities: Mathematical Models of Nature and

Man, John Wiley, New York.

[5] Cellier, F. E. (1990). “Hierarchical Non-Linear Bond Graphs – A Uni-

fied Methodology For Modeling Complex Physical Systems”, in: Proceed-

ings ESM’90 , Nuernberg, FRG, pp. 1-13.

[6] Cellier, F. E. (1991). Continuous-System Modeling , Springer-Verlag, New

York.

[7] Cellier, F. E. (1986). “Enhanced Run-Time Experiments for Continuous

System Simulation Languages”, in: Proceedings of the 1986 SCSC Multicon-

ference (F. E. Cellier, ed.), SCS Publishing, San Diego, CA. pp. 78-83.

[8] Elmqvist, H. (1978). “A Structured Model Language for Large Continuous

Systems”, Ph.D. Dissertation, Report: CODEN: LUTFD2/(TRFT-1015),

Dept. of Automatic Control, Lund Institute of Technology, Lund, Sweden.

132

[9] Elmqvist, H. (1975). SIMNON – An Interactive Simulation Program for

Non-Linear Systems – User’s Manual , Report CODEN: LUTFD2/ (TFRT-

7502), Dept. of Automatic Control, Lund Institute of Technology, Lund,

Sweden.

[10] Kheir, N. A., ed. (1988). Systems Modeling and Computer Simulation, Mar-

cel Dekker, New York.

[11] Korn, G. A. (1989). Interactive Dynamic-System Simulation, McGraw-Hill,

New York.

[12] Korn, G. A. and Wait, J. V. (1978). Digital Continuous- System Simulation,

Prentice-Hall, Englewood Cliffs, NJ.

[13] Mitchell, E. E. L. and Gauthier, J. S. (1986). ACSL: Advanced Continuous

Simulation Language – User Guide/Reference Manual , Mitchell and Gau-

thier Assoc., Concord, MA.

[14] Zeigler, B. P. (1976). Theory of Modeling and Simulation, John Wiley, New

York.

