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ABSTRACT

In the past research has been done to solve stiff systems described by ordinary differen-
tial equations (ODEs). An important result are the famous Backward Difference Formulae
(BDF') [10]. These methods are capable of solving stiff ODE-systems up to accuracy order
six — accuracy order six means that the error made at each integration step is roughly
proportional to the seventh power of the step-size. So far, no BDF algorithms of seventh
order and higher, have been found that are stable.

This thesis proposes the Regression Backward Difference Formulae (RBDF) as new numeri-
cal solution methods for stiff systems described by first order ordinary differential equations.
The RBDF algorithms derived in this thesis, by means of a new regression technique, will
be of sixth and seventh order, and it will be shown that some of the sixth order RBDF
algorithms compare favorably against the sixth order BDF.

The results for the new seventh order RBDF algorithms are shown, but not compared to
BDF since no stable seventh order BDF technique exists.

It can be expected that RBDF methods of order higher than seven may be found by using
the proposed regression approach.

In particular, celestial analysis demands highly accurate calculation and integration. There-
fore, this might be one area where even higher order RBDF techniques than seventh order

RBDF could be applied.
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CHAPTER 1

Introduction

1.1 Ordinary Differential Equations (ODE)

A first order scalar ODE can be written as

dr _ i) = fla,ut) (L.1)

with initial condition

IL‘(to) = Xy. (1.2)

Here t is the independent variable (which usually, but not necessarily, denotes time), u is a
given input, and the function f indicates any explicit functionality between the dependent
variable x and the independent variable t.

Without loss of generality only systems, as shown in equation (1.3), are considered.

i(t) = flz,u), (1.3)
.’B(to) = Xg. (1.4)
i.e., systems, where the independent variable ¢t does not appear explicitly in the equations.

In addition to the first-order scalar equation (1.3) it is possible to consider a set of

simultaneous first-order equations, or an equivalent higher-order single equation. Thus we
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may write

2i(t) = filu,x1,...20,) i=1,2,...n, (1.5)

as representing a set of ng simultaneous first-order ODEs with the corresponding initial

conditions

ZL‘i(to) = Zy;- (1.6)

As long as the derivatives 1, ...x,, appear only on the left-hand side of the differential
equations, then (1.5) is equivalent to one nt-order equation. The equations (1.5) and (1.6)

can be written in vector form:

(1.7)

Q(tO) = Zy,
These relations represent the autonomous initial value problem that this thesis will solve

with RBDF techniques.

1.2 Numerical methods to solve ODEs

There is a variety of numerical techniques which may be applied to solve system (1.7).
Two major approaches are used to solve these systems: The single-step methods and the
multistep methods. Both techniques try to approximate a Taylor-Series expansion of the
unknown solution around the current time instant.

In single-step methods, the higher order derivative information is discarded. This informa-
tion is thrown out by only using the function value xj at the preceding time instant, and

maybe its derivative, @, to calculate the unknown variable x4 1. The multistep approach,
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however, preserves some of the higher order derivative information by using data of earlier
values x; and z;.

In general a multistep integration algorithm can be expressed as

Th+1 = boihfry1 +aoxr +bohfr +a12p—1+ ...+ Gm—1Zkt1-m + Om—1hfrr1-m
m—1 m—1
= > aim—i+ Y bihfi,
i=0 P—
(1.8)

where f; = &; is the derivative of the system variable x at the time instant ¢ = tg + iAt.
Note that this method (1.8) is implicit when b_; # 0 and it is explicit when b_; = 0. The
number m denotes the number of steps, so the algorithm shown in (1.8) can be called an
m-step integration algorithm.

Note also that the algorithm depicted in equation (1.8) only uses values of = and & and
not higher derivatives, such as #j. It is also required that (1.8) be applied with equispaced
steps. These restrictions may limit the performance of solutions based on (1.8). However,
(1.8) represents a very important and extensive class of formulas which will be used to
derive RBDF methods.

The two most famous and frequently used multistep integration methods are the Adams
methods and the Backward Difference Formulae (BDF).

The Adams algorithms use the function value zj one time step back and the derivative

values of several of the preceding function values such that they can be written in the form

Tp41 = boahfryr +aozk +bohfr +b1hfr—1+ ...+ bn_1hfrt1-m- (1.9)

If b1 = 0 then equation (1.9) is reduced to the explicit Adams-Bashforth algorithms.

However, if b_1 # 0 then equation (1.9) reduces to the implicit Adams-Moulton methods.
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Unlike the Adams methods, the BDF techniques are always implicit and take into account
the current derivative fry1 = @41 as well as the state values calculated at earlier time
instants. Figures 1.1 and 1.2 show which data points the Adams methods and BDF use to

compute the unknown value xy41 of the function x.

Point to be
Data points calculated

dx/dt i : i dx/dt 5 i i i

-2 ti-1 ty b1 t k-2 tie-1 ty i1 t

Figure 1.1: Data points used by the Adams-Bashforth algorithms (left) and the Adams-
Moulton algorithms (right)

X

dx/dt

t—2 -1 ty 1 t

Figure 1.2: Data points used by the BDF
algorithms
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1.3 Stability versus accuracy

1.3.1 Introduction

In this section two key considerations will be discussed that are important for the ana-
lysis of numerical integration algorithms: These are accuracy and stability. Both consid-
erations are strongly linked to the calculation error in a single step and the accumulation
of errors in multiple steps. The issue of accuracy is detailed in section 1.3.2 where vari-
ous types of calculation errors are discussed. The issue of stability is discussed in section
1.3.3. Finally, the relationship between so-called “spurious” or “extraneous” eigenvalues
and stability /accuracy will be introduced in section 1.3.4, since this phenomenon occurs in

multistep integration methods.

1.3.2 Errors incurred in numerical integration

The error introduced by approximating the differential equation by the difference equa-
tion (1.8) is termed local truncation error (LTE). It can be shown [14] that the LTE, at

time ty, is given by
T(z,h) = Cpprh™ (1) + O(h"F?), (1.10)

where the coefficient C), 11 is called the error constant of the method (see chapter 3 for
additional details), h is the steplength of the method, z(®*1) is the (n 4 1) derivative of
the function at time ¢, and n is the order of the integration algorithm.

Moreover, errors also occur during integration which are due to the deviation of the numer-
ical solution from the exact theoretical solution of the difference equation. Included in this

class of errors are round-off errors and convergence errors which are incurred since (1.8) is
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implicit and must be solved by Newton-iteration.

Another class of errors is called the startup error and it is introduced because a multistep
method requires values of m earlier steps. Typically, a single-step method is used to gen-
erate m starting steps. Hence, an error is introduced into the calculation because of the
numerical approximation of the initial steps.

In work done by Cellier [4], it was shown that the effect of the startup error being accumu-
lated during a simulation is eliminated if the system being integrated is analytically stable
and if the integration method in use is numerically stable.

Hence, the approximated initial conditions of an integration step don’t excessively affect the
result of the overall simulation of an analytically stable system, i.e. the initial conditions of
a m-step method that are produced by a single-step algorithm, are not of large significance
for the resulting accuracy of the overall simulation.

Cellier [4] notes two other classes of errors, the parametric model error and the structural
model error. Parametric model errors occur because the model parameters are inaccurately
estimated, whereas structural model errors are due to the fact that the model fails to de-
scribe important dynamics of the real system.

Thus, these types of errors have nothing to do with the accuracy and stability of the nu-

merical integration technique since they are present in the model already.

The LTE and the startup errors accumulate to produce the global truncation error (GTE)

or accumulated error [14]. The GTE can be expressed as

€L = x(tk)—mk, (1.11)
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where x () is the exact function value of the analytical solution, and zj is the numerical
approximation of z(t).
Note that the global truncation error cannot be calculated as the sum of the local errors.

It must be computed as a solution to the linear k-step difference equation

p(E)er + ho(E) e, + T +m, = 0,

which will be derived in section 1.3.4.
While the LTE is proportional to h"*! for a n!* order algorithm, Lambert shows in [14]
that the GTE is roughly proportional to A" for analytically stable systems. Therefore, one

power of h has been lost during the process of accumulation.

1.3.3 Stability of numerical methods

Dahlquist states in [7] that:

Definition 1.3.1 A method is said to be A-stable, if the values h = h\ have negative real
parts, where h is the steplength of the applied numerical method and \ denotes the (complez)

eigenvalue of the test-system & = Ax.

The highest order of an A-stable linear multistep method is two [7]. The smallest truncation
error is obtained by using the trapezoidal rule.

In order to be able to apply the definition of A-stability to higher order linear multistep
techniques, the requirements of A-stability have to be relaxed:

The first step is to only regard a wedge in the left half side of the complex Ah-plane. This

motivates the definition [20]:
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Definition 1.3.2 A method is said to be A(a)-stable, a € (0,7/2) if
R 2 {h| —a<m—arg{h} < a},

it is said to be A(0)-stable if it is A(«)-stable for some oo € (0,7/2), where R 4 is the region

of absolute stability, and h = hA.

Gear proposes in [10] an alternative way of relaxing the requirements of A-stability by using

Cartesian rather than polar coordinates:

Definition 1.3.3 A method is said to be stiffly stable if R4

1

R1 U Re, where R1 =
{h|Re{h} < —a} and Ry = {h| —a < Re{h} < 0,—c < Im{h} < ¢}, a and c are positive

real numbers and h = h\.

It is characteristic for stiffly stable systems to have eigenvalues which lie far left in the left
half plane. They represent the fast transients of the system. In order to eliminate these
transients a large damping is required as the real part of the eigenvalues goes to —oo. This

results in another definition [2],[8]:

Definition 1.3.4 A one-step method is said to be L-stable if it is A-stable and, in addition,
when applied to the scalar test equation & = Ax, A a complex constant with Re{\} < 0, it

yields xp11 = R(hA\)xy, where |[R(hA)| — 0 as Re{h\} — —oc.

Note that L-stable methods mustn’t be applied to unstable systems since the unstable
behavior would be removed such that the systems would appear stable [14].

Figure 1.3 illustrates the given definitions of stability:
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A-stable A( ov)-stable stiffly stable

Figure 1.3: Stability definitions for numerical integration methods.

1.3.4 Spurious eigenvalues

Given the linear multistep method

m—1 m—1
Tht1 = Z a;Tp—; + Z bihfr_;. (1.12)
=0

i=—1

The generating polynomials can be introduced [15]

p(§) = —€"+a™ 4. +ama (1.13)

o(6) = DA€™ +boE™ ot b (1.14)
along with the shift operator &,
EMxp = Tkim, (1.15)
to reformulate equation (1.12) more compactly as
p(E)xk—mi1 + ho(E) f—ms1 = 0. (1.16)

The true solution, x(ty), is substituted into equation (1.16) which results in

p(E)a(ty) +ho(E)f (tr, z(tk)) =T = 0, (1.17)
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where T), = T'(tg, h).
Note that the index of  has been changed from k£ —m + 1 to k for convenience.

For the numerical solution the relationship

p(c‘f)xk—l—ha(g)f(tk,xk)—i—nk = 0 (1.18)

holds, where n represents the error which results from not having solved the difference
equation exactly.

Subtracting equation (1.17) from equation (1.18) and then applying the mean-value theorem

fQtr,wr) — f (e, 2(te)) = fate, @) (zp — 2(tr)) (1.19)

where z < T < x(ty), denoting fz(tx, Z) as Ay and introducing the accumulated error

e, = x —x(ty), (1.20)

the m-step difference equation of the accumulated error ¢

p(E)ex + ho(E)Aper + T +m = 0. (1.21)

is obtained. Assuming that Ty, \; and 7 are constants, equation (1.21) yields

p(E)ek + hha(E)e, + T +n = 0. (1.22)

Therefore, the accumulated error €, obeys a linear, inhomogeneous, m-step difference equa-

tion with constant coefficients. By solving the characteristic equation of (1.22),

p(p) + hro(p) = 0, (1.23)

the characteristic roots u;,7 = 1,2,...m are obtained.

When equation (1.22) is solved and the constant particular solution €y, is ignored, only the
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homogeneous solution €, remains as shown in equation (1.24).

€ = €kpt+ €xp =
~ €rp = (124)

cl,ulf + 02//2“ +...+ cmuﬁl.

Since the numerical solution zj obeys the same difference equation as the accumulated

erTor €, T can be expressed as

zp = dipk 4 doph 4+ ..+ dppt. (1.25)

The root p1, which is called the “principal root,” approximates the Taylor Series expansion
of the true solution. This approximation has a truncation error which corresponds to the
order of the method.

7 “parasitic,” or “extraneous’ roots or eigen-

The other m — 1 roots are termed “spurious,
values.

Lapidus [10] shows that a multistep method, given by (1.12), is absolutely stable if, for
h < hg, where hg is a real constant, the extraneous solutions in (1.25) vanish as k — oo
[15].

Alternatively, the method is absolutely stable for those values of hA where both the prin-
cipal root and the spurious roots are within the unit circle.

The spurious eigenvalues don’t exist in the original system and have been introduced by

the multistep algorithm, that substitutes a first-order differential equation by a m!* order

difference equation. Since they bear no connection to the exact solution, they can cause
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numerical instability [15]. The impact of the extraneous eigenvalues on the stability prop-
erties of a multistep method can also be observed when regarding the stability domain of

the method (see chap. 3).

1.4 Stiff systems

Many physical systems give rise to ordinary differential equations which have eigenvalues
that vary greatly in magnitude. For instance, such situations can arise in studies of chem-
ical kinetics, network analysis and simulation, CAD techniques, and the Method-of-Lines
solution to parabolic partial differential equations.

Practical problems that exhibit such properties include the attitude control system of a

rocket [18], and switched-mode power supplies [19].

An illustrating example of a stiff system (taken from [9]) shall now be discussed.

The analytical solution of the linear system & = Az with the system-matrix

998 1998
-999 -1999
and the initial conditions z1(0) = z2(0) =1 is
z1(t) = de ! — 3710008 (1.26)

To(t) = —2e' 4 371000 (1.27)

A plot of (1.26) and (1.27) is shown in figure 1.4.
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x1,x2
o

X2

% 005 0.1 0.15 0.2 025 03 035 0.4
Figure 1.4: Simulation of a stiff linear system.
After a short time the solution can be closely approximated by the dominant terms as
r1(t) = 4de! (1.28)
ro(t) = —2e77, (1.29)
since the fast decaying component vanished. Therefore, an informal definition of a stiff

problem is one in which the solution components of interest are slowly varying but solu-

tions with rapidly changing components are possible [18].

Lambert [14] gives, among others, one essential definition of stiffness in his book:

Definition 1.4.1 (A system is called stiff if a) numerical method with a finite region
of absolute stability, applied to a system with any initial conditions, is forced to use in
a certain interval of integration a steplength which is excessively small in relation to the

smoothness of the exact solution in that interval.
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Using this definition, an algorithm with finite region of absolute stability (such as explicit
integration methods) used to integrate a stiff system has to apply a very small steplength
which gives rise to long and expensive simulation runs. This is the real problem when
integrating stiff ordinary differential equations.

The statement made above still doesn’t define the term stiffness exactly because of the
fuzzy expression “excessively small.” Therefore, Cellier [4] further specifies the stiffness of

a system in the following manner:

Definition 1.4.2 A system is called stiff if, when integrated with any explicit RKn algo-
rithm and a local error tolerance of 107", the step-size of the algorithm is forced down to
below a value indicated by the local error estimate due to constraints imposed on it by the

limited size of the numerically stable region.

This is probably the most exact definition of stiffness available. However, it still has an
inherent drawback, namely that a system may be regarded as stiff when integrated with
one RKn whereas it is not stiff when integrated with another [4].

Although explicit methods — like the explicit RKn algorithms — may be good for checking
the stiffness of a system, they are not capable of integrating stiff systems because their
stability domain in the left half plane is too small.

Dahlquist [14] states that “an explicit linear multistep method cannot be A-stable” and
“the order of an A-stable linear multistep method cannot exceed two.” These statements are
referred to as the “second Dahlquist barrier.” It can also be noted that an “explicit method
cannot be A(0)-stable” [16],]20].

Because of these properties of explicit methods they don’t lend themselves to the integration



25

of stiff systems. Those should be integrated by a method which is at least A(«)-stable.

If the closed instability domain doesn’t intersect with the negative real axis of the complex
(Ah)-plane, and if the system being integrated is stable and only has real eigenvalues, then
any steplength may be used to scale the eigenvalues of the system without fear of causing
numerical instability. In this case the steplength is not restricted by stability requirements,
but instead by accuracy requirements. Since explicit methods don’t have this feature,
implicit techniques have to be used to simulate stiff systems [14]. However, a Newton
iteration is required to solve the implicit algebraic equation, since fixed-point iteration
again destroys the stability properties of the stiffly stable method [4]. This causes higher

computation cost.
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CHAPTER 2

Derivation of RBDF by regression

2.1 Introduction

In chapter 1 it has been shown that linear m-step integration algorithms of order n
use p (p > n + 1) function values or derivatives to calculate the unknown value ;.
As a consequence, numerical integration by a multistep method can be considered as an
interpolation procedure where a higher-order interpolation (extrapolation) polynomial is
used to approximate a function g through p given data points and calculate the unknown
point which is represented by zp+1. Note that ¢ is not identical with the function x being
integrated by the multistep technique. It is instead formed by both x and its derivative f
at special time instants.

If there are p = n+ 1 (n = accuracy order of the integration method) distinct data points,
then the interpolation problem has a unique solution and the resulting polynomial doesn’t
only approximate the function through the given data points but it interpolates the points
that it passes through [6], [12].

An interesting question arises about using more data points, that is, p > n+ 1. In practice,
this means that the multistep integration algorithm applies p > n+ 1 earlier function values

or derivatives to calculate the unknown function value x4 with the accuracy order of n.
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Thus, the order is not increased by using more data points. Instead, the interpolation
results in an n'* order method which might have better properties because it uses more
information.

As far as the interpolation problem is concerned, having more data points necessarily means
that we are confronted with an overdetermined system which may be used to attain two

different types of smoothing [6]:

1. A reduction of the effect of random errors in the values of the function.

2. A smoother shape between the net points (even when the function values are perfect).
The solution to this overdetermined system using a regression approach will be discussed

in the next section.

2.2 Formulation and solution of the regression problem

An nt"-order multistep algorithm is defined through an n'*-order polynomial fitted
through p points which can be either function values or derivatives of the function to
be integrated.

By introducing the auxiliary variable

s = , (2.1)

such that s = 1.0 corresponds to t = t;1 and s = 0.0 corresponds to ¢t = i, the interpo-

lating n**-order polynomial can be written in the form

p(s) = ap+ais+axs®+...a,s", (2.2)
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where the coefficients a; are unknown.

The time derivative of equation (2.2) is given by

hp(s) = aj + 2a9s + 3azs® + ... + na,s" L. (2.3)

Since the polynomial p(s) interpolates the function x in the data points zx_;,i = 0,1,...,m,

relation (2.2) results in

p(0) = agp = I
p(-1) = a—ar+az—az+...+a,(-1)" = x4
p(—=2) = ag—2a1 +4as—8az+ ...+ an(—2)" = x)_o (2.4)
p(—=m) = ag—mai+m2ag+...+an(—m)" = Tp_m,.

Accordingly, it follows from (2.3) that

hp(l) = ai + 2a9 + 3as + ... + na, = hfr+1
hp(0) = a1 = hfy
hp(—1) = a1 —2as +3a3 + ...+ na,(—1)"! = hfr (2.5)

hp(—m) = aj — 2asm + 3azm? + ... +na,(—m)" ' = hfp_m.
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Equations (2.4) and (2.5) can be combined such that they fit the matrix form

hfr+1 0 1 2 3 ... n a0
Tk 1 0 0 0o --- 0 a1
h fi 0 1 0 0 ... 0 a
Tk—1 1 —1 1 -1 ... (_l)n
- . (26)
hfr—1 0 1 -2 3 .. p(=1)1
Lk—m 1 —m m2 . (_m)n
hfk—m 0 1 —2m 3m2 . n(_m)n—l a,
H
which can be abbreviated by
z = He (2.7)

Hence, vector z has 2m + 3 elements for an m-step algorithm and contains all the in-
formation about the state vector and its derivative at the given data points. Vector a
contains n + 1 unknown coefficients (n = order of the integration algorithm) and H is the
[(2m + 3) x (n + 1)] transformation matrix.

In the special case where n + 1 = 2m + 3, the matrix H will be quadratic and nonsingu-
lar. Therefore, H can be inverted and equation (2.7) has the unique solution a = H 'x.
However, the RBDF techniques derived in this thesis use more than n + 1 data points such
that the case 2m 4+ 3 > n 4+ 1, has to be considered — note that 2m + 3 is the maximum
number of data points. Consequently, equation (2.7) results in an overdetermined system.

Since this system cannot be solved exactly any more, a vector a has to be found such that
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H a is the “best” approximation to z [6]. The solution vector a is the least-squares solution

of the overdetermined system.

Definition 2.2.1 The vector a is defined as the vector which minimizes the FEuclidean

length of the residual vector, i.e. minimizes

Izl = (Tr)2,

=3
I
o

2

(2.8)

In [1] it is stated that when the columns of H are linearly independent, i.e. H has full rank
(p(H) = n + 1), then the matrix H” H is nonsingular and can be inverted.

Hence, in order to solve system (2.7) it first has to be shown that the columns of matrix
H are linearly independent. This is done by defining two generating row vectors p and ¢

shown in equations (2.9) and (2.10).

p =11 —s s2 ... (=s)" | (2.9)

a = [0 1 —25 382 ... n(=s)" '] (2.10)

The rows of H that correspond to zy_s are formed by the components of vector p and
and the rows corresponding to hfy s are formed by the components of vector g. The
components of these two row vectors (2.9) and (2.10) are elements of polynomials. Such
elements are linearly independent [3] and thus, all the column vectors of H, that are formed
by the components of the generating row vectors p and ¢ when varying the parameter s,

are linearly independent, too, which was to be shown.

Therefore, matrix H can be inverted and it follows from (2.7) that

HYy = HTHa (2.11)
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or
a = (H'H)'HTg. (2.12)

Dahlquist [6] proves that this is the unique solution which solves the overdetermined system
(2.7) in a least-squares sense.

In the literature the matrix
HY = (HTH)'HT (2.13)

is referred to as the Penrose-Moore Pseudoinverse.

By using (2.12) to calculate a, the elements of a can be substituted into (2.2) to determine

Th+1-

T = p(l) = aotar+...+ap (2.14)
Note that the coefficients a; are not constants. Each of them represents a linear combination

of the elements of the vector z, given in (2.6) and (2.7).

2.3 Development of an algorithm for the search of RBDF

In the preceding section it has been described how an integration algorithm can be
derived if p data points are chosen out of the possible 2m + 3 points.
Since m and p are free parameters, the search is (theoretically) not restricted, and to get an
nt'-order integration algorithm, more data points may be used as long as p > n + 1 holds.
In practice, the search is limited by efficiency considerations. Since the H-matrix becomes
larger as m grows, the integration algorithm is likely to consume more execution time.

Thus there are two questions that have to be answered:



32

1. How many data points should be used?

2. Where should these data points lie to result in an integration algorithm with minimum

stability properties?

In this context, having “minimum stability properties” means that the stability locus of
an implicit method doesn’t intersect with the negative real axis of the complex (Ah)-plane
(see chapter 3).

To answer the first question, multiple experiments have been performed with only a few data
points. These experiments have shown that the probability of getting implicit algorithms
with minimum stability properties shrinks as the number of employed data points grows.
Hence, the search starts with p,,,;, = n+ 2 employed data points and it stops at pimee = 2n
data points. No decent RBDF algorithms have been found for values p > 2n.

Concerning the second question, a lot of calculations with a small number of data points
have shown that most of the data points that yield decent integration algorithms lie within
the time range [tx—n—2,tx+1]. The stability properties of the resulting RBDF algorithms
worsen as the data points get farther away from the defined interval. For this reason the
search is limited to the interval [t;_n—2, tkt1]-

This search for RBDF methods can be automated by testing all possible combinations of p
data points within the range [tx_,—2, tg+1] where p is incremented step by step from n + 2

to 2n.
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CHAPTER 3

Analysis of RBDF

3.1 Introduction

In this chapter some methods will be discussed to analyze integration methods, in par-
ticular RBDF.
These integration methods will be used in chapters 5 and 6 to assess the RBDF methods
that will be derived.
The technique being discussed in the second section of this chapter is the analysis of the
stability domain of the numerical integration method.
In the third section the error constant will be computed.
Another important method for investigating the quality of RBDF is the analysis of the
damping plot which will be described in section four.
The order star will be introduced in the fifth section to make some additional statements
about stability and accuracy. Finally, the Bode plot of the integration algorithm will be

analyzed in section six to see how the algorithm behaves in the frequency domain.
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3.2 Stability domain

3.2.1 Introduction

In chapter 1, some definitions of numerical stability are given. Chapter 1 also mentions
that the stability properties of the integrator depend strongly on both the steplength used
during the integration, and the eigenvalues of the system.

Before the numerical stability domain is determined, the analytical stability of the system

being integrated can be determined using the following definition:
Definition 3.2.1 The solution of the autonomous, time-invariant linear system
z = Az (3.1)

with the initial conditions specified by z(t = tg) = xq is called analytically stable if all the

eigenvalues of A have negative real parts.

Figure 3.1 shows the domain of analytical stability in the A-plane.

Suppose that the system (3.1) is analytically stable and that it is integrated by a linear

-

Ret)

Figure 3.1: Domain of analytical stability

technique. Then, the domain of analytical stability changes and it becomes a function of

the step-size h. Hence, the stability domain of a linear integration method (with fixed
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step-size h), when used to integrate the autonomous system (3.1) is defined as the region
in the complex (Ah)-plane where the eigenvalues of the equivalent discrete time system all
lie within the unit circle. Note that all the eigenvalues have negative real parts. This is

illustrated by means of the implicit Backward Euler algorithm expressed by:
L1 = Tk + hik+1’ (32)

where Ik+1 =Tpq.

Substituting equation (3.1) into (3.2), equation (3.2) results in
Ty = zp+hAzg,,
or
Ty = (1) — ARz, (3.3)

where n; is the dimension of system (3.1) and I(™) is the (ns x n) identity matrix.
Consequently, the continuous linear system (3.1) has been converted into the equivalent

discrete system (3.3) with the new system matrix
F = [I™) — Ap]~L. (3.4)

This discrete system is analytically stable if all of the eigenvalues of F' are located within
the unit circle [4].

Since matrix F' depends on the steplength h, the eigenvalues of F' depend on h, too.
Therefore, the stability domain indeed depends on h. Figure 3.2 displays the stability
region of the implicit Backward Euler integration algorithm. Figure 3.2 shows that a

typical property of implicit methods is to have a region of instability in the right half plane,



36

% 2 \”": CA: ’

A

Figure 3.2: Stability domain of the BE-algorithm

close to the origin.

When integrating a stable system, whose eigenvalues are in the left half plane, the instability
region shown in figure 3.2 shouldn’t extend into the left half plane. However, this property,
called A-stability in chapter 1, cannot be obtained by linear multistep methods of higher
than second order.

At the very least an implicit integration algorithm must have an instability domain that
doesn’t include the origin. In other words, the stability locus, i.e. the border line of the
stability domain, mustn’t intersect with the negative real axis. Recall that this has been

the main requirement for RBDF algorithms to be good candidates in chapter 2.

3.2.2 Stability domain of RBDF

In order to depict the stability domain, the F-matrix, the discrete time system that
results from applying the RBDF method to system (3.1) is calculated.

The general RBDF algorithm is given by

m—1 m—1
Tpyr = Y @iy + Y bihf, . (3.5)
=0 i=—1
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By applying this algorithm to system (3.1), relation (3.5) can be rewritten in the form of
Zpyr = bo1Ahxy g+ aozy +boAhzy + .+ am1Zy 1 + 01 ARZE i,

or
Tpyr = [I0) —b AR [(agI ™) + boAh)zy, + (a1 T™) + by AR)zy_y + ...+ -
+(am-1 I + bmn—1AR)Ty_ 4],

where ng is the dimension of system (3.1) and I(™) is the (ns x ns) identity matrix.
Equation (3.6) is a m!-order difference equation which can be transformed into m first

order difference equations by applying the transformation

21(te) = z(tk-m+1)
2o(tk) = 2(tk-m+t2)
(3.7)
ém(tk) = i(tk)
or
zi(tet1) = Z(tp—my2) = 2zo(tk)
(3.8)
Zm(tir1) = zZ(tks)-
By substituting z;,; from equation (3.6) into (3.8), it follows that
2(tkt1) = Fza(te), (3.9)
where the mng-vector z is given by
21 ()
25(ti) )
z(ti) = , 1=k, k+1, (3.10)

gm(tl>
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and the (mngs X mng)-matrix F' can be written as
oms)  [ns)  ohs) .. Ons)

Os)  (ns)

F = oo .. o) |, (3.11)
J(ns)
Fni  Fmo Fom
Fri = QUay_11M) +b,, 1 Ah], (3.12)
Fro = QU)ay, oI™) +b,,_5Ah], (3.13)
Frm = QM)]agI™) 4 byAh), (3.14)
Q) = 1) —p_ AR (3.15)
(3.16)

As an example one of the RBDF methods that have been found, RBDF61, is considered:

Tpt1 = —7153954 hfi+1 + %7—{% - 19611523?k 1+ S—ESL—wk 2 (3.17)
PUTL B9 T 380

Figure 3.3 displays the stability region of RBDF61.

There exist many different ways of assessing the stability domain of implicit methods. One
criteria is the size of the stability region in the left half plane. Since most of the systems
being integrated are stable, this region should be as large as possible. Therefore, the
instability domain shouldn’t extend too far into the left half plane.

By considering the definition of A («)-stability given in chapter 1, the angle « should be
large.

For stiff systems the definition of stiffly stable algorithms might be even more useful. This
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definition of stability is shown once again in figure 3.4.
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Stability region of RBDF61

Figure 3.4: Stiffly stable system

should be as small as possible and ¢ should be as large as possible.
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In this case, the parameter a

It can also be observed that the spurious eigenvalues (discussed in chapter 1) may affect

the shape of the stability region. The stronger this impact is the less smooth the stability

locus becomes. As an example, figure 3.4 shows the stability domain of RBDF69, whose
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formula is given by:

Tyl = %%hfk—i-l + Tm2734$k - %%%—1 - 1T671211 hfr—1 (3.18)
L1007, 985 8TLge L ATL 1910

Figure 3.5 illustrates that the stability locus of (3.18) has some sharp bends which are
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Figure 3.5: Stability locus of RBDF69

caused by the spurious eigenvalues described in chapter 1. As noted previously, they

strongly disturb the behavior of integration algorithms in terms of stability and accuracy.

3.3 Error constant

In [14], the Linear Difference Operator L, associated with the linear m-step method

given in standard form as

m m
itk = hY Biferi (3.19)
i=0

=0
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is defined as

m

Llz(t);h] = > [oua(t+ih) — hBiE(t +ih)],  2(t) € C'la,b]. (3.20)
=0

If z(t) is infinitely differentiable, then z(¢ +ih) and 2(¢ + ih) can be developed in a Taylor

series around t as shown in the following equation
Llz(t);h] = Coz(t) 4+ CrhzM(t) + ... + Ch12D () + ..., (3.21)

where (9 (t) is the ¢** time derivative of z(t)/.

Now the following statement can be made [14]:

Definition 3.3.1 The linear multistep method (3.19) and the associated difference operator

L are said to be of order n if, in (3.21),
Co=C1=...=C,=0; Cpy1#0.

For the constants C; the formulae

Co = Zai

i=0

= (3.22)
Co = (iiqo‘i - —(q—ll)siq_lﬂz‘) . g=2,3,...

=0

hold. Using the equations shown in (3.22), the error constant can be defined as:

Definition 3.3.2 The linear multistep method of order n is said to have the error constant

Cr1 given by (3.22).
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In the first chapter it is shown that the local truncation error T'(x, h) is strongly related to

this error constant by
T(z,h) = Cpprth" 'z (1) + Oh"2). (3.23)

Hence, a multistep method may integrate more accurately than others if the absolute value

of its error constant is smaller.

3.4 Damping plot

Cellier [4] introduces the damping plot as yet another tool to describe the accuracy of
an integration algorithm. In order to derive the damping plot, the standard linear system
i = Az, xz(ty) = zo is considered which has the analytical solution z,,, = eA(t~%)z,.
This solution is true for any value of zj, and any value of ¢t. Therefore, if the time instant

t = tg41 is chosen as well as the initial conditions ty = tx, and zy = z;,, the analytical result

becomes

T = ey (3.24)

A

This discrete system has the analytical F-matrix F,,q =€ h and the eigenvalues

Mis = €ig{Fanal}t = ect9tAth  — eXh =1 n,. (3.25)

The damping of an analytically stable system & = Ax is defined as the smallest magnitude

value of the real parts of its eigenvalues, or

o = min(lo;]) = min(|Re{A}]). (3.26)
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Since the eigenvalues \; are complex, i.e. \; = —o; + jw;, the eigenvalue Ay, can be
rewritten in the form

Aiis = erih  —  p—oihgjwih (3.27)

The damping of the discrete system (3.24) is defined as the largest magnitude value of the
eigenvalues \g;s. Therefore, it follows from equation (3.27) that the damping of the discrete

system can be expressed as

Odis = mlax(e_oih). (3.28)

Thus, in the case of the continuous system & = Az, the damping corresponds to the smallest
distance of the eigenvalues from the imaginary axis in the A-plane, whereas in the case of the
corresponding discrete system z;,; = ez, . the damping refers to the largest distance of
the eigenvalues from the origin in the e*-plane. This is commonly known as the z-domain,

where z = e*. Cellier [4] introduces the discrete damping as
oq = ho. (3.29)

The relationship between o4 and Fy,,q; can be derived from the equations (3.25), (3.27) and

(3.28):
04 = _lOg(m?X‘eig{Fanal}D' (3.30)

In order to come up with an expression for the numerical damping, i.e. the damping of the
numerical integration algorithm applied to the system & = Az, the analytical F,,-matrix
needs to be approximated by the matrix F., of the numerical integration method.

Thus, by substituting Fyna by Frum, equation (3.30) yields

g = —log(mlax|eig{Fnum}D, (3.31)
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where 64 is the discrete damping of the numerical integration algorithm.

Cellier [4] also defines the damping plot as the curve of the function

Ga = 64(04). (3.32)

This curve represents the relationship between the numerical and analytical damping. In
particular, it reveals where these two damping values are approximately the same, and
where they differ. As an example, figure 3.6 shows the damping plot of the BDF6 method.

It can be seen in figure 3.6 that as soon as the analytical damping o4 becomes larger than
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Figure 3.6: Damping plot of BDF6

Odg.crit = 0.13, 04 and the numerical damping 64 start to diverge from each other. The
spurious eigenvalues mentioned in chapter 1 are responsible for this behavior [4].

The value of the damping plot is that it can be used to assess an integration algorithm. If an
integration method has a larger value o4 .-;; than another integration algorithm, then the

first method may integrate accurately in a larger range. The range of accurate integration
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is often referred to as the asymptotic region in the literature.

To illustrate the relationship between the damping plot and the stability domain of the
integration method (sec. 3.2.2), figure 3.7 shows the modified damping plot for the BDF6
technique where the negative numerical damping —&, is a function of the negative analytical

damping —ay. It can be seen in figure 3.7 that the negative numerical damping —d4

Negative num. damping
w
T

- L L
5 0 5 10 15 20 25 30
Negative anal. damping

Figure 3.7: Modified damping plot of the BDF6 method

is zero at —ogy = 0 and —oy = 27.72. These points can also be found in figure 3.8 which
displays the stability domain of the BDF6 technique. There, these points are given by the

intersection points of the stability locus with the real axis.

In order to state anything about the behavior of the numerical damping 64 as
o4 — 00, Cellier [4] proposes to produce a logarithmic damping plot. Figure 3.9 displays

the logarithmic damping plot of the BDF6 method.

Using this technique, if a numerical integration method is at least A(«)-stable and if 64
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goes to infinity as o4 goes to infinity, then it lends itself to integrate a stiff system because
it is capable of damping out the fast transients. Note that it is not required that the
numerical method integrating a stiff system be L-stable since L-stability is only possible if
the integration technique is A-stable. For instance, the A(«)-stable BDF6 method can be

used to integrate a stiff system although it it not L-stable.

3.5 Order star

Before we derive the order star of a numerical method, we make the following definition:

Definition 3.5.1 A function f is called “essentially analytic” if it is analytical in the

complex plane except at a finite set of singularities.

Assuming that an essentially analytic function f is approximated by a rational function R,

the rational function p(z) can be introduced:

z€eC. (3.33)

In [13], the order star (of the first kind) is defined as the locus where p(z) = 1. Thus, a

damping order star can be created by defining z as z = A\h and p(\h) as

p(Ah) = (3.34)

where the numerical damping &4 is an approximation for the analytical damping o4. In
other words, the damping order star is the locus of the points in the complex (Ah)-plane
where 64(A\h) = 04. In figure 3.10 the order star for the BDF6 algorithm is depicted.

Since the damping order star is produced by integrating a system with two complex eigen-

values, the function p(Ah) is complex, too. Recall that the damping plot introduced in
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Figure 3.10: Order star of the BDF6 method

the preceding section is a real function because only systems with real eigenvalues are con-
sidered. Therefore, the real axis in the plot for the damping order star corresponds to
the damping plot. To illustrate this, a modified damping plot for the BDF6 method is
displayed in figure 3.11 where the negative numerical damping —&, is a function of the
negative analytical damping —oy.  Figure 3.11 shows that —64 and —o4 are equal when
—0qg = 0 or —o4 = 2.82. These values can also be found in figure 3.10 by considering the
points where the order star intersects with the real axis.

Furthermore, it can be seen in figure 3.11 that

—64(AR) — oo (3.35)

holds for —o4 = 2.45. In figure 3.10 this point on the real axis is marked by a cross and it

is referred to as the “pole of the order star”.
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Figure 3.11: Modified damping plot of the BDF6 method
An order star may also have zero points where
ga(z) = 0. (3.36)
For a scalar system & = Az the following theorems can be formulated:

Theorem 3.5.1 The only pole of the order star of the m-step integration algorithm

m—1 m—1
Tk+1 = Z A;T—; + Z bihfr_; (3.37)
=0

i=—1

is that point in the complex (Ah)-plane for which

A = (3.38)

1
b_1

holds.
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Proof: The system matrix F' of the discrete system (3.37) can be expressed by

1 0 0
1
F= 0
0 1
Pm—-1 Pm-2 Pm-3 Po
where
po= e g

The eigenvalues of F' are calculated by solving the characteristic equation:

N —F| =

where

A -1 0

0

0 0 A
—Pm—-1 —Pm-2 -

AAAp_3 + Bm_2) + Bm_1

0,
A =1 0 0
0
0
0 0 A -1
—Di —p1 A—Do

, (3.39)
(3.40)
0
0
1 (3.41)
A= Do
, (3.42)




o1

0 -1 0 0
0 A
B, = 0 . (3.43)
0 0 A —1
—pi —Pi—2 * —P1 A—po

The determinants A; and B; may be written as

Ai = M1+ B, (3.44)
0 -1 0 0
0 A
B, = 0
0 . 0 A -1 (3.45)
—pi —Di-3 —Pi—4 ‘ —P1 A—Do

= —Di

Hence it follows from (3.44) that

Ai = M1+ B

= MM;_2+ Bi_1)+ B;

(3.46)
= )\ZAO + )\i_lBl =+ )\i_zBQ + ...+ )\Bz'—l + B;
By applying (3.45), equation (3.46) can be formulated as
Ap = N(Ag—> pia7d). (3.47)

Jj=1
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Since Ay = A — po, equation (3.47) yields
Ai = NA=D_ pia). (3.48)
j=0

With (3.45) and (3.48), equation (3.41) results in

m—3
ML= F| = MA"2(A= > pjA™) = pm—a] — pm—1
=0
m—]3 '
= )\mil()\ — ij)\ij) - Apm—Q — Pm—1 (349)
=0
L 0, m > 3.

Because of (3.31) and (3.35), a pole requires that the largest eigenvalue A;q, of F' goes
to infinity. Therefore, relation (3.49) can only be satisfied if p; — oo holds for i = 0 or
t=m-—2or¢t=m— 1.

From (3.40) it follows that this is identical with the requirement that g = b%l Since this

is the only pole, the proof is complete.

Theorem 3.5.2 For the zeros of the order star of the m-step integration method (3.37)

the relation
max [\ = 1, 1=0,1,...,m—1, (3.50)
holds where \; are the eigenvalues of F and can be calculated with (3.49).

Proof: This theorem follows directly from (3.31) and (3.36).

Theorem 3.5.2 means that all the eigenvalues have to be within the unit circle in the

(Ah)-plane while it is required that at least one eigenvalue lies exactly on the unit circle.
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Hence, the more steps the multistep method uses, the larger the F-matrix becomes, and
the less probable it is that this condition can be satisfied.

Note that the unit circle represents the stability locus of a discrete system. Thus, theorem
3.5.2 shows that the zeros of the damping order star correspond to points on the stability
locus.

To be able to use the order star of an integration method to compare one method with
another, the region around the origin is of particular interest. Basically, the order star,

that is the locus of all those points where the error

Aoy = 64— 04 (3.51)

is zero, is not displayed. Instead, the region is determined where

Alogl < Aogiim. (3.52)

Statements about the size of the area can be made where an integration method works
accurately with respect to a given error bound Ao iy, .

Roughly speaking, the larger this area is, the more accurate is the integration method.

3.6 Bode plot

In this section an alternative way of evaluating an integration algorithm will be intro-
duced. This time, the behavior of the integration method is analyzed in the frequency
domain through the use of a Bode plot. To provide a motivation for this approach, the
Bode plot of a first order system is considered as shown in figure 3.12.

Figure 3.12 illustrates that the gain |P(iw)| is 1 at low frequencies, while it goes to smaller

values when the frequency is increased. In other words, this system lets signals of lower
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Figure 3.12: Bode plot of a first order system

frequencies pass through whereas it attenuates signals of higher frequencies. Hence, this
system is called a low-pass filter.

When integrating a system whose input signal includes high frequency noise, an integration
method might fail to control the step-size. Instead, the step-size control would follow the
high frequencies such that the step-size would be reduced to an excessively small value.
This effect can be avoided if the integration method is able to damp out high frequencies
(i.e. functions as a low-pass filter).

To look for this property in a RBDF method, a Bode plot is used.

A key result of section 3.2.2 is that the general RBDF method which is formulated as

m—1 m—1
Lpp1 = Z a;xy._; + Z blhik—z (3.53)
1=0

i=—1
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can be considered as a discrete system

Zpy1 = Fz, (3.54)
or more generally as
Zr1 = Fz+ Gy, (3.55)
T, = Hz,+ Tuy,

where u;, = u(t) is a given input variable.
This system has a transfer function which is called the pulse transfer function (PTF) in the
discrete case.

For Single-Input Single-Output (SISO) systems, the pulse transfer function P results in

p) = 29 (3.56)

u(¢)

where ¢ = e™hs

(h = step-size of the discrete system). This function describes how an
input value u is propagated to the output.

Equation (3.56) can be transformed from the {-domain to the frequency domain where the
transfer function P(iw) corresponds to P((¢). Figure 3.13 illustrates how an integration
algorithm can be regarded as a discrete system, and it gives an idea of what P(iw) =
z(iw) /u(iw) means.

By displaying both |P(iw)| and arg{P(iw)} over a logarithmically scaled frequency axis a
Bode plot is obtained.

Three linear test systems — stable, marginally stable, unstable — described by & = Az, are
chosen that keep their stability properties when being integrated by the considered RBDF

algorithm.

This means that if this system is integrated by the method ® using the step-size h then
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dx/dt = AX + Bu

- state space model

f P Xpa

Integrator

Figure 3.13: Integration method regarded as a discrete system
the eigenvalues \; = eig{ A} should satisfy
Re{h\} <0 = \heS(®)
Re{\} =0 = \h e M(®) (3.57)
Re{\} >0 — \heT(®),

where

S = stability domain of method ® in the (Ah)-plane,
M = stability locus of ® in the (\h)-plane,
Z = instability domain of ® in the (\h)-plane

After the integration algorithm has been chosen such that the conditions (3.57) are satisfied,
the integration technique is described as a discrete system as shown in (3.55). Then the
Bode plot can be produced by using the MATLAB-command “DBODE.” As an example,

figure 3.6 shows the Bode plot when the stable system & = Az is integrated by the BDF6
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Figure 3.14: Bode plot of a stable system integrated by BDF6
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CHAPTER 4

Implementation of RBDF

4.1 Startup problem

An m-step integration method needs m initial values of the state variable in order to
get started. These starting values needn’t be accurate as has been described in chapter 1.
Gear [10] proposes to use Runge-Kutta methods for startup purposes. This is specified
more in detail by Cellier [4] who applies n — 1 steps with fixed step-size of a n'® order
Runge-Kutta. Thus, the step-size should only be determined once at the beginning of the
simulation. In order to calculate the initial step-size h quickly a binary search technique is
employed that starts at a steplength hg. This starting value of Ay must guarantee a stable
integration of a system with known eigenvalues by a Runge-Kutta algorithm of n* order.

At each step of the binary search, an estimate of the relative error, €,.¢;, is made where,

|71 — 32
= . 4.1
el maw(bﬁ‘? |.I'2‘,5) ( )

Hence, z is the value of the state variable x calculated by a n'" order RK-algorithm and
T is the value of the state variable x calculated by a (n — 1)** order RK-algorithm. This
result shown in equation (4.1) can be compared to a given error bound tolerance denoted
as tolyer:

If 0.9t0l,¢c; < €1 < tolye, then the binary search is stopped; otherwise, either h is increased
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(if €101 < 0.9t0l,.¢) or h is decreased before the step is calculated again. If the initial values
vanish (2(0) = 0, f(0) = 0) then the startup with RK-methods fails to compute the initial

values for the multistep technique. In this case, a general RK-method described as

!
Tepr = zR+hy B, (4.2)
=1

P,

where £7-1 are the predictors given by

il = fafit, + ai1h), (4.3)

will always yield the result x = 0. Therefore, relation (4.1) results in €., = 0, such that
the step-size is never changed. Since the algorithm has been started at the maximum value
of the steplength hg this might give rise to instability.

This problem can be solved by running one step with an RK-method of n** order to modify
the initial conditions. The time is set back to ¢ = £y and one step of the startup is executed
to determine the initial step-size hg. By using hg and the original initial conditions of the

system, the startup procedure is started again at t = tg.

4.2 Step-size control

4.2.1 Introduction

Most of the integration methods can only be applied efficiently if the step-size is adjusted
according to accuracy requirements. For example, when integrating stiff systems without
step-size control a very small steplength would be applied during the whole integration (cf.
chapter 1). Thus, the simulation would last excessively long.

Before the step-size control with multistep methods will be discussed, a mathematical tool,
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the so-called Newton-Gregory polynomials, is introduced.

Afterwards, it will be shown how this tool is used to calculate Nordsieck vectors of different
order.

Finally, the algorithm for step-size control will be derived that applies the Nordsieck vector
to update the state history vector if the step-size h is changed. This vector contains m

earlier state variables x.

4.2.2 Newton-Gregory polynomials

To make the following calculations more convenient the forward difference operator A is

introduced:

Ago = g1 — 9o,
Agi = g2—g1,
(4.4)
Agi = gi+1— Gis
where g; denotes the value of a continuous function g(t) at the point of time ¢;.
By recursively applying the operator A, higher-order forward difference operators are ob-

tained which, in the general case, are given by [4]

1
Agf = Git+p—1 — Gitp—2 T Gi+p-3

(4.5)



61

where p is the number of earlier data points.

After having defined the backward difference operator V as

Vgi = 9i — gi—1, (4.6)

we get the higher-order backward difference operators accordingly:

. p—1 p—1 p—1
VP™rg = 9i — gi—1 + gi—2
0 1 2
(4.7)
p—1
+...+ Gi—p+1-
p—1

The task is to find a vector polynomial, i.e. a polynomial with scalar argument and vector
coefficients, which interpolates the p distinct data points. This interpolant takes a particu-
larly simple form when the time points ¢;, where the function values are taken, are equally

spaced [14], i.e.
th—j = tr—jh, j=0,1,2,...,p (h=const.). (4.8)

At this point an auxiliary variable s is introduced as defined in [4],

t—to
= . 4.9
s ; (4.9)

Hence, the interpolation polynomial can be depicted either as

9(s) = got+ -+ AP~ gy,
0 b1 (4.10)
(p = number of data points)

or

s s+1 s+p—2
9(s) ~ go + Vo + Vg + ...+ VP g (4.11)

1 2 p—1
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The expression in (4.10) is called the Newton-Gregory forward polynomial whereas (4.11)
is known as the Newton-Gregory backward polynomial (see [4] for the derivation of (4.10)
and (4.11)).

Note that the Newton-Gregory polynomials are only valid if the data points are evenly
spaced, otherwise interpolating polynomials, such as the ones derived by Lagrange [14],
have to be used.

The Newton-Gregory backward polynomial can be employed in a multistep integration by
setting ¢ = top and s = 1.0. Furthermore, the back values need to be substituted by the
corresponding function values x(tg), x(tg—1),. .. etc..

Thus, equation (4.11) automatically calculates an estimate x(tx4+1) = g1 which is the un-

known of the multistep algorithm.

4.2.3 Calculation of the Nordsieck vector

In the following it is assumed for convenience that the system being integrated is scalar,
that is: ng = 1.
With the results of the preceding subsection, the Newton-Gregory backward polynomial
for x(t) can be written as

2 s 9 3 82 s 3
o) = aptsVaot | S +5 | Vot g+ 5 +5 | Vit (412)

This equation is differentiated with respect to time which yields

1 2 1
[V + (s + =)V2x + (> + s+ ) V32 + .. ]. (4.13)

) = 2 2 3

S

The higher order derivatives are determined by recursively differentiating (4.13). By trun-

cating the resulting expressions after the ngh term (ngy = order of the Nordsieck vector)
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and expanding the V-operator according to (4.4) and evaluating for ¢t = t; (s = 0.0), the

expression

g = Ts, (4.14)

is obtained where
Tk

LT—1

Tk—m+1
is the state history vector that contains m state variables of m earlier time instants, 7" is a

[(ng + 1) x m] transformation matrix, and

T
hay,
g =
h"e _(ng)
gk
9
is the (ng + 1)-vector which is similar to the Nordsieck vector N = (zy, hig, . . ., h"gx,(cng))

of ntgh—order (cf. [4]). However, for convenience we refer to g as the Nordsieck vector in this
section.

In the appendix some transformation matrices are shown for different values of n, and m
if the system being integrated is one-dimensional (ns = 1).

One might get the idea of using the given value hij as additional information in the state

history vector s. This would require one to substitute the expressions for the last element



of s by the expressions dependent on Zj. These expressions can be derived by solving

T = ...t Ck—m+1Tk—m+1

for xx_m+1. Hence, the last element of s can be rewritten as

Themt+l = aTp+bhip+crp—1+...,

where the constants a, b, ¢, ... need to be determined.
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However, multiple simulations which implemented the described step-size control have

shown that the use of hij is not advantageous. The following quickly describes two key

results:

1. The integration process becomes slower. One reason for this is that the transformation
matrix 7', which has to be inverted to calculate the new state history vector after
a change of the step-size, becomes larger. This is explained by the fact that the
formula of the integration algorithm contains the last element of the state history
vector s. Therefore, this element has to be calculated and can only be substituted by
an expression of # when the Nordsieck vector is computed.
Furthermore, it can be observed that the Nordsieck vector is calculated less accurately:
An error is introduced by replacing @ by @;. Therefore, the integration algorithm must

use smaller steplengths to satisfy the accuracy requirements.

2. Although one might think that the integration would become more accurate by using
additional information about the state space model within each integration step, this

is not true. Simulations have proven without any exception that the remaining global
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error becomes larger as soon as hij is used.

If ng +1 = m then T is quadratic and nonsingular and can be quickly inverted. However,
if the integration algorithm uses more than n, + 1 steps, the vector s would have more
elements than the Nordsieck vector g. Therefore, T" isn’t quadratic any more. In the
following section it will be shown how the step-size can be controlled in this case.

When the integration algorithm uses one step more than necessary (m = ng + 2), then
the latter technique needn’t be used. Instead, T' is still a quadratic matrix which yields a

Nordsieck vector that seems to have one element too much at first glance. However, it will

be shown in the following section that this is not the case.

4.2.4 Step-size control algorithm

The idea is to calculate an estimate for the local error produced at each step and to
compare it to a given error bound tol. Depending on the result of the comparison the
steplength h will be changed.

The following shows how an estimate for the relative local error €,.,; can be obtained:

The last element g, of the Nordsieck vector

Tl 90
hay, g1
g = = (4.15)
h™e x(”g)

Ng- k Ing
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is given by

h"s ¢ (ng)

9ng = nig! . (4.16)

According to [10], the change Agy, of g,, is an estimate of

Agn, = hngtz(,%m (4.17)
which can be shown by:
2\9) (@g)
e M
_ %h (L ;mk—l) , (4.18)
(D)

As shown in chapter 1, the local truncation error can be estimated by
T = Coh™z"™™ 1 omt?), (4.19)

Only the principal term is considered, and that needs to be smaller than the given error

bound tol:
Cryprh" 12" < ol (4.20)
By choosing ngy = n, the equations (4.18) and (4.20) can be combined to formulate
Crpr1n!Ag, < tol. (4.21)

As Gear [10] proposes, relation (4.21) should be tested first. If the test succeeds, the step
is accepted; otherwise it is rejected.

The new step-size is calculated by

hnew = Oéhold, (4.22)



67

where
Cn+1n!oe”+1Agn = tol. (4.23)

This can be shown by plugging (4.22) into (4.17) which yields

oL (x(nJrl))T _

Agnnew nl A

(4.24)
= anJrlAgn,old-

By plugging relation (4.24) into (4.21) and treating (4.21) as an equality, equation (4.23)

is obtained.

Since Ag,, usually is not constant, a slightly smaller step-size is used in order that (4.21)

can be expected to be satisfied. Thus « is determined by

1
1 tol 1
= ———"-+— . 4.25

1.2 (C’n+1n!Agn> ( )

However, calculating @ and changing the step-size at each step, the integration algorithm

would be very slow. Therefore, some of the advises given in [11] should be considered:
1. Values for « are only accepted between 0.5 and 2.0.
2. If 1 < a <1.1, the new step-size is chosen to be A,y = 0.9h14-
3. When the step has failed, the step-size is halved.

As soon as the step-size is changed the state history vector s will have to be adjusted
accordingly. Otherwise the integration method would proceed with wrong initial values.
The adjustment can easily be done by the Nordsieck technique:

The new Nordsieck vector is computed by

(4.26)

Inew — Zold’
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where

1 0 0
0 «
H = o a2 . (4.27)
0
0 0 a™

In order to obtain the new state history vector s equation (4.26) is plugged into the

new?

relation

Snew = Tﬁlg ) (428)

new

where T is the transformation matrix introduced in (4.14).

So far the only case which has been regarded is where ny, = n. This means that the state
history vector s has n + 1 elements if T is quadratic. Therefore, the integration method
uses m =n + 1 steps.

If m = n + 2 steps are applied, then the [(ny + 1) x m] transformation matrix 7' is still

quadratic. Thus, the last element of the Nordsieck vector becomes

hhe ng hn+1 (n41)

— = — 4.29
ngl "k CEE LA (429)

and it can be directly used in (4.20) without making the approximation (4.17). This saves
computation time.

If the integration algorithm employs more than n + 2 steps then there are two options:

1. The transformation matrix 7" used in
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can still be quadratic. However, the Nordsieck vector will have too many elements
since only the (ng + 1) element of g has to be determined (g,,). The state history

vector might be updated after a change of the steplength by applying the relation

T 'g. (4.30)

[V
Il

2. The (n + 2)-Nordsieck vector g keeps its size. Therefore, g can still be computed by

where s is the state history vector containing m components (m > n + 2).

However, to get the new vector s after a change of the step-size, which results in

new

a change of g, an overdetermined system has to be solved. As in chapter 2 this sys-

tem is solved in a least-squares sense by calculating the Penrose-Moore Pseudoinverse:

s = (TTTY1 T7g. (4.31)

In order to decide which of the two options is better the number of applied scalar multipli-
cations (sms) is estimated. To investigate the efficiency of the first option relation (4.14)
has to be solved first where T is a (m x m)-matrix (m > n + 2). This can be done with
q1 = m? multiplications. For the solution of the inverse problem (4.30) after the change of
the step-size, it is assumed that the computation of the inverse of the asymmetric matrix

T corresponds to go multiplications. Therefore

3 = m+q (4.32)
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multiplications are needed to determine s. Thus, after a change of the step-size

o1 = q1+4q3
(4.33)
= 2m’+ ¢
multiplications have to be executed when choosing the first option.
When choosing the second option, the [(n+2) x m]-matrix T' (m > n+2) in equation (4.14)

isn’t quadratic any more. Therefore, equation (4.14) can be calculated with g4 = m(n + 2)

multiplications. Since the matrix
" = T'T (4.34)

is a (m x m)-matrix, the calculation of its inverse corresponds to ¢, multiplications again.

Hence, the inverse problem (4.28) is solved by

¢ = q+2m2(n+2)+m(n+2) (4.35)

multiplications. Thus, by choosing the second option, the calculation of new vectors g and

s corresponds to

Go2 = 44 + g5
(4.36)
= qo+2m(n+2) +2m?(n+2)
multiplications.
Since m > n + 2, it follows from (4.33) and (4.36) that
qo,2 > do,1, (437)

that is, the first option is faster.
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4.3 Integration of nonlinear systems

4.3.1 Startup problem

In section 4.1 it has been described how a multistep integration method can be started
quickly by using a binary search technique and RK methods.
In order to search in a binary fashion for the initial step-size h, a starting value hg is
required. This value can be obtained by determining the largest magnitude |Ayq.| of the

eigenvalues of the system and using the condition
|)\mam‘h0 = To, (438)

where rg is the radius of the largest semicircle around the origin that fits completely into
the part of the stability domain, of the applied n*"-order RK-method (n > 2), which is in
the left half plane.

The eigenvalues can be calculated if the system being integrated is linear. However, in
the nonlinear case the eigenvalues of the Jacobian of the system may be determined. The

column vectors J; can be computed as shown in equation (4.39) [4].

(5i idev — i

where f is the state derivative vector of the nominal state variables and the vector f "is
the state derivative vector which results from the perturbation of the state variable x; by
Ax;. Note that all of the other state variables are kept unchanged.

By determining the maximum eigenvalue A4, of the Jacobian J and using relation (4.38)
we obtain the initial step-size hg. The value rg should be chosen slightly smaller since the

Jacobian can only be approximated and a stable integration has to be ensured in any case.
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In this thesis only implicit linear multistep integration methods are of interest. They

are given by

L1 = Zazﬂﬁk it Z bihf, ;-

=—1

In the case of a linear homogeneous system

equation (4.40) results in

m— 1
2:0

(4.40)

(4.41)

(4.42)

However, the matrix inversion cannot be applied to a nonlinear problem. Cellier [4] proposes

to rewrite (4.40) in the form

m—1

F(zppr) = boahf(@pirsterr) —2ppr + Y (@i +bikf, ) = 0

=0

which can be solved by Newton iteration,
I+1 l -1zl
—I:H = L1 — [H] [F]’
where the Hessian H is given by:

H = b_Jh— 1),

(4.43)

(4.44)

(4.45)

In order to save computation time the Jacobian and the Hessian are only computed if it is

necessary, e.g. when the state variables change drastically. This is discussed in more detail

in [4].
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4.4 Readout problem

At the end of a simulation the results of the simulation need to be displayed. Note that
the points xj calculated by the integration algorithm are most likely not evenly spaced
because the step-size control always changes the step-size.

The problem is that the person who runs the simulation desires values at defined points
called communication points. It is assumed for convenience that these points are equally
spaced.

Within the startup period it is integrated right past the communication point, which is
characterized by the time instant ¢ = t.,,,. Then an interpolation is made between the

calculated values to obtain the value of z

Zeom at teom.

As soon as the multistep integration algorithm is applied, the Nordsieck technique is used
again: After having integrated right past t..m,, a negative step-size is applied to reach the
communication point. By calculating the Nordsieck vector g at f.om and adding up the

components of g, which represent terms in a Taylor series expansion, an estimate for

Leom — l(tcom) .

is obtained (see [4] for more details).
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CHAPTER 5

RBDF of 6" order (RBDF6)

5.1 Derivation of the algorithms

In this chapter RBDF techniques will be derived that are 6!-order accurate (RBDF6
methods).
The order of 6 is chosen because this is the largest order for which a conventional stable
BDF method can be found. Thus, it is possible to compare the performance of the RBDF6
methods with that of the BDF6 algorithm. The probability of finding RBDF methods in-
creases with the accuracy order of the method due to the increased number of interpolation
points available in the search. However, since there are more possible candidates, the search
also takes longer.
The search method mentioned at the end of chapter 2 is applied to find RBDF6 algorithms
that satisfy minimum stability requirements. In chapter 2 it is discussed that “minimum
stability requirements” means that the stability locus doesn’t intersect with the negative
real axis of the complex (Ah)-plane.
Table 5.1 displays the numbers of 6/"-order RBDF algorithms that have been found for
different numbers of applied data points. Note that the data points are always given within

the time interval [tg_,_o, tki1].



Number of | Number of
data points RBDF6
algorithms
8 71
9 45
10 15
11 3
12 -

Table 5.1: Number of 6/ order RBDF al-
gorithms satisfying minimum stability re-
quirements
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The stability domain of these methods is considered and compared to the stability do-

main of BDF6 depicted in figure 5.1.

Out of the 134 RBDF techniques, only 18 algorithms are found whose

Im

look similar to the one of BDF6.

'10’
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stability domains
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Figure 5.1: Stability domain of BDF6

30

The next step is to analyze the damping plots of the new methods and compare them with
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the damping plot of BDF6 that is shown in figure 5.2.

Figure 5.2 illustrates that as soon as the magnitude of the analytical damping o4 exceeds

0.5
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Figure 5.2: Damping plot of BDF6

Odcrit = 0.13, then the numerical damping 64 of BDF6 starts to deviate from og.

Only those methods which have a greater or at least only slightly smaller value o4 i than
BDF6 are discussed in this section.

Regarding the damping plot shown in figure 5.3, one of the new methods can be seen to
have poor damping qualities as expressed by the small value o4y = 0.001. This can
be explained by the spurious eigenvalues which have a negative impact on the damping
properties of a multistep technique (cf. chapter 3). They can also influence the numerical
stability properties which can be observed in figure 5.4 where the stability domain of the
considered RBDF method is depicted.

Figure 5.4 shows that the stability domain of the “bad” RBDF method has some sharp
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Figure 5.3: Damping plot of a “bad” Figure 5.4: Stability domain of the “bad”
RBDF RBDF

bends which are due to the spurious eigenvalues.

By comparing the damping plots of the RBDF6 methods to the damping plot of the
BDF6 algorithm, the number of possible candidates is further reduced. Only 11 methods
are left over by now.

Since it is required that the numerical damping &4 goes to infinity as the analytical damping
o4 goes to infinity (cf. chapter 3), the logarithmic damping plot also needs to be analyzed.
As a result of this analysis it is found that only one method satisfies this condition. This
method will be referred to as RBDF61. All the other techniques have logarithmic damping
plots where the magnitude of the numerical damping 7, reaches a constant value 4, as
the analytical damping o4 goes to infinity. Those methods with a small value for 64 1, are
eliminated.

Finally, there are eight methods left. They are listed in table 5.2. This table tabulates the
number of applied data points, the RBDF formula and the error constant for each method

by method name. Figures 5.5 and 5.6 show the corresponding stability domains, and figures
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5.7 and 5.8 depict the damping plots.
The logarithmic damping plots are illustrated in figures 5.9 and 5.10.
Figures 5.11 and 5.12 depict the order stars of the methods. In order to make a comparison,

the corresponding plots of BDF6 have been added to the figures.

Name Number Formula Error
of constant
data points Corr
1%
— 504 977 . 1612
Trtr = psrhfrrr + 5T — 95 Th-1 + 9439516 2
RBDF61 8 -0.1350
1171 3199 257 389
+131o k-3 84%21217C 2;1)7‘5" 592951C 5 — 5370Tk—6
Th41 1331 D e + 302Lk — 1733Tk-1 — 2075hfk 1
RBDF62 8 -0.1435
504 987
"‘503“' k-3 _07%0823% 430"‘ 2608951C 5+ 14014 hfi—6
Tk+1 = 327hfk+1 + gglxk - 2493719 1 — 2707hfk 1
RBDF63 8 -0.1117
717 649 159
g b g - ssioh s s
Tk+1 @hkarl + AT T — 635xk‘ 1+ 842'7;]6‘ 3
RBDF64 8 -0.1612
1278 955 418
+4789hfk 3 4%919)9“ 49‘5’)‘85445351f 6+ 5011hfk*6
Th+1 = 1231 i/ fr + 2033Lk — 509Tk—-1 — 3222hfk 1
RBDF65 8 -0.1443
1543 326 402
o037 %k—2 — 533 %k—5 t 17473% 6+ 4430hfk 6
— 731 1733 4758
Tht1 = 1692hfk+1 + 780 Tk — 2779 Tk—1 — 2605hfk 1
1070 65
RBDF66 9 +1169xk 2+ 942$k 3 — Tie3¥lk—a t+ 31963:’4 5 -0.1258
596
LTk—6
5993
— b fory 4 20, — 1808, — 310,
= 1385 265 1137 3077
Tp41 k+1 k k—1 k—1
247 591 943
RBDF67 9 +1539Tk—2 976$k 3~ 77 Lk—4 + 3367 Tk—5 -0.1433
+1§§§1hfk 6
— 3743 2T
Tht1 2253hfk+1 + 1623%k — 64 Th—1 — 5230hfk 1
604 87 , )
RBDF68 9 +859xk’ 2+ 3989hfk 3 — 2536hfk 5 — 39951'}:—6 0.1125
180
+10001hfk—6

Table 5.2:

RBDF6 methods
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Name Number Formula Error constant
Of Cerr
data points
_ 20 120 150 400
BDF6 . Tpy1 = qhfe+1 + 49 Tk — Fo -1+ 717 Tk—2 0.0583

—49%k-3 t 21%3%74 - %)71’1675

Table 5.3: BDF6 method

5.2 Analysis

The RBDF methods were already analyzed while they were being derived to make sure
that they are good candidates. However, their properties are now discussed in more detail
in order to assess their characteristics.

After applying the definition of stiffly stable systems (see figure 1.3) to the stability domain
of BDF6 and RBDF6 it can be seen that only RBDF61, RBDF62, RBDF65, RBDF66 and
RBDF67 can compete against BDFG6, i.e. they have a smaller value a and a larger value c.
The damping plots of all eight RBDF6 methods look better than the one of BDF6. However,
the logarithmic damping plot is always worse. Only for the BDF6 method and the RBDF61
technique, 64 — oo holds as 04 — oco. Thus, the other RBDF methods cannot dampen fast
transients of a system sufficiently well, which might give rise to longer integration runs.
Table 5.2 shows that the error constant of every RBDF6 algorithm is larger in magnitude
than the error constant of BDF6 (cf. table 5.3). This might cause higher computation cost
since the step-size control will suggest smaller step sizes to be used.

The order stars of the new methods look very similar to the order star of BDF6. However,
no conclusions can be drawn from this since the order star itself doesn’t tell us much about

numerical stability and accuracy (cf. chapter 3). Therefore, the region is considered where
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the absolute damping error

Aoy = [64— a4 (5.1)

is smaller than a given absolute error bound Aoy ip,. Since a 6t"-order integration technique
is used it makes sense to choose Aoy iy, = 1E — 6.

The accuracy properties of the integration method are determined by the area close to the
origin. Therefore, this origin-close region should be regarded in detail as shown in figure
5.13 where the accuracy regions for BDF6, RBDF61 and RBDF66 are displayed.

Figure 5.13 shows that the accuracy regions of BDF6, RBDF61 and RBDF66 are almost

-6

x 10
15
1k |
RBDF61,RBDF66

0.5F |
E of 4
-0.5F g
1k 4

.15 I I I I I I
6 5 -4 3 2 1 0 1
Re x 107

Figure 5.13: Accuracy region of BDF6, RBDF61 and RBDF66

identical in the left half plane. However, near the real axis, the border of the accuracy
region of BDF6 is slightly closer to the origin than the ones of RBDF61 and RBDFG66.

Therefore, RBDF61 and RBDF66 can use a slightly larger step-size than BDF6 when a
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stable system with real eigenvalues is integrated and a given accuracy condition has to be

satisfied.

5.3 Simulation results and comparison of the RBDF6 methods with BDF6

In this section RBDF6 methods will be used to integrate some stiff systems. The re-
sults will be compared to those obtained when integrating the same systems with BDF6.
Although seven stiff systems have been simulated, the results of only two of these systems
are discussed here since they are representative of the others. One of the two systems is

linear, the other one is nonlinear:

e System 1 (taken from [6]):

0 1
T = z, (5.2)
—1000 —1001
1
z(0) = (5.3)
-1
(5.4)
Figenvalues: A\; = —1000; Ay = —1
Analytical solution:
ri(t) = et
(5.5)
1o(t) = —et

e System 2:

i3
Z+x+0.01 (a'c— §> = 0, (5.6)
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z(0) = 0.01, (5.7)
#(0) = —4.999875E — 5. (5.8)
Analytical solution:
z(t) = a(t)cost, (5.9)
where
alt) = 0.017%> . (5.10)

(1 +0.000025 (™01 — 1))%
Note that system 2 is a special case of the famous Rayleigh-equation and its analytical
solution has been derived by using the Krylov-Bogoliubov-Formulae [?].
All of the eight RBDF6 methods displayed in table 5.1 are tested using these two systems.
Although all of these algorithms perform fairly well in simulating these systems, only the
results of RBDF61 and RBDF66 will be shown. These two algorithms yield the best results
overall. This might be explained by the better damping properties of the two methods (see
chapter 3). Therefore, RBDF61 and RBDF66 are the best RBDF6 methods to compete
against BDF6.
The relative error bound for the step-size control is chosen to be tol,,; = 0.001. Hence, the
relative local truncation error (LTE) is compared to this value of tol,.; and, the result of
this comparison determines the need for step-size change.
Of course the value of tol,¢ is chosen to be much smaller in a real simulation —
e.g. tol.e; = 1EF — 6. However, to be able to more easily compare the different integration
methods, the error is made larger.

In order to assess the simulation results the time functions of the numerical solution = and
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the global error € =  — Zgnai, Will be recorded where x,,4; is the analytical solution of the
system. Furthermore, the time behavior of the step-size h will be displayed.

Eventually, the number of floating-point operations (fop) will be considered to compare the
efficiency of the integration techniques.

At first, system 1 is integrated by BDF6. The simulation results are shown in figure 5.14.
The MATLAB-simulation over 5 time units with BDF6 takes 59026 floating point opera-
tions (fops). Recall that system 1 is stable — both eigenvalues have negative real parts.
Figure 5.14 shows that the integration by BDF6 is stable, too, since the global error is
decreasing with time. This seems to be clear because both eigenvalues being multiplied
with an arbitrary step-size h still lie within the stability domain of BDF6.

Now the same system is simulated with RBDF61 and RBDF66. Figures 5.15 and 5.16

display the results.
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When integrating system 1 with RBDF61 over 5 time units 68441 fops are needed,
whereas RBDF66 only needs 48634 fops.
By comparing the results displayed in figures 5.15 and 5.16 it can be seen that RBDF66
integrates much more accurately than RBDF61 and BDF6. Moreover, RBDF66 needs 20%

- 30% less floating point operations than its competitors.

The nonlinear Rayleigh-equation (system 2) is integrated with BDF6, RBDF61 and

RBDF66 which yields the results depicted in figures 5.17 through 5.19.
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This time BDF6 needs 139229 fops, RBDF61 uses 142983 fops and RBDF66 applies
131570 fops. It can be seen that RBDF66 is less accurate than the other two methods but
it is still the fastest one of the three integrators.

These results might be explained by the better stability properties of RBDF61 and RBDFG66
in comparison with BDF6 since in terms of all the other properties — e.g. damping, error
constant — the two RBDF6 methods are worse. However, the following chapter will show
that this assumption doesn’t hold.

In figures 5.17 through 5.19 it can be seen that the integration is slightly unstable. This is
due to the fact that the step-size in this implementation is usually changed only after each
(n + 1) step, where n is the order of the integration method — recall that this has been
done to save computation time. In addition, the bound tol,.,; for the relative error has been
chosen to be rather large.

Thus, the phenomenon of instability is a problem of the implementation, rather than a
problem of the integration algorithm itself. The unstable behavior can easily be removed

by choosing a smaller value for tol,..; and by changing the step-size more frequently.

Finally, the three methods are analyzed in the frequency domain by means of the Bode
plot. As mentioned in chapter 3, three test systems (stable, marginally stable, unstable) of
the kind £ = Az are chosen that don’t change their stability properties when integrated by

the three methods.
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The system matrix of the stable system is chosen to be

A = : (5.11)

where the eigenvalues are A1 o = —10.

The marginally stable system has the system matrix

A = , (5.12)

which corresponds to the eigenvalues A\ = —i, Ao = 1.

The unstable system is characterized by the system matrix

A = (5.13)

with the eigenvalues A1 2 = 10.

The stable system is integrated with the step-size h = 1. Note that \;h = —10 lies within
the stability region of BDF6, RBDF61 and RBDFG66.

Figure 5.20 shows the Bode plots that correspond to this stable integration. They have
been produced using the MATLAB-command “DBODE.”

Figure 5.20 shows that RBDF66 is better than RBDF61 with respect to low-pass filter
characteristics and that RBDF61 is still better than BDF6.

The step-size h = 0.01 is chosen when simulating the marginally stable system. Figure 5.21
displays the corresponding Bode plots.

It can be seen in figure 5.21 that the gain has its maximum at the frequency w = 1 which
is known as the resonance frequency.

Concerning filter properties this plot doesn’t allow us to make clear statements.
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Finally, the unstable system is integrated with the step-size h = 0.1 which results in the
Bode plots depicted in figure 5.22.

In this case BDF6 and RBDF61 behave like high-pass filters, i.e. they rather let high fre-
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Figure 5.22: Bode plot of an unstable system integrated by BDF6, RBDF61 and RBDF66.

quent signals pass. RBDF66 still shows low-pass filter characteristics.

To sum this discussion up, the RBDF6 methods may lend themselves better to integrate
systems with input noise than BDF6 since they show stronger low-pass filter behavior.
Since inaccuracies (numerical errors) can be interpreted as high frequency noise, they shall

be filtered out better by the RBDF6 methods.
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CHAPTER 6

RBDF of 7" order (RBDF7)

6.1 Derivation of the algorithms

The procedure described in section 5.1 is applied to find 7% order RBDF methods. Once
again, the first step is to determine those algorithms that satisfy “minimum stability re-
quirements.”

Table 6.1 shows the number of RBDF7 methods that can be found for different numbers
of applied data points.

Note that there are many more RBDF7 methods with the mentioned requirements than
RBDF6 algorithms (cf. table 5.1).

Unlike the preceding chapter where BDF6 was the competitor, we don’t have any compari-

7th order range since BDF7 is unstable. Again, only those RBDF7 methods

son within the
are accepted that are stiffly stable according to Gear’s definition 1.3.3. 174 RBDF7 were
determined that possess this property.

In chapter 5 it has been shown that it is more restrictive to require the numerical damping
o4 to go to infinity as o4 goes to infinity than to require a large critical damping g cri-
Therefore, the logarithmic damping plot is regarded first and the RBDF methods with the

7th

best damping curves are extracted. This results in 15 RBDF algorithms of order whose
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Number of | Number of
data points RBDFT7
algorithms

9 268

10 278

11 189

12 77

13 14

14 -

Table 6.1: Number of 7" order RBDF al-
gorithms satisfying minimum stability re-
quirements

damping plots are displayed in figures 6.5 and 6.6.
The tables 6.2 and 6.3 tabulate these algorithms, their formulae and error constants.

The corresponding stability domains are depicted in figures 6.1 and 6.2, and the damping
plots can be found in figures 6.3 and 6.4.

Figures 6.5 and 6.6 show the logarithmic damping plots.

6.2 Analysis

By considering again the definition of stiffly stable systems (figure 1.3) the values for a
and c¢ are measured for each RBDF7 algorithm. Moreover, we determine the value g ¢4t
in the damping plot, where the numerical damping 6,4 starts to deviate from the analytical
damping o4, and 6)j(= 64(0q4 = 1E+6)) in the logarithmic damping plot and list all these
values in table 6.4, together with the error constant Cp,,.

A good method would have a small value a, a large value ¢, both 04y and o would be

large and |Ce,r| would be small.
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Name Number Formula Error
of constant
data points Coerr
Tpy1 = 22{,7hfk+1 + 3o Tk — 164873 Tp—1+ S5 Tp_o
RBDF71 9 b Tkos — 32T a + ek T5 — T | -0.1765
+138213$k 2 3340
Tyl = 369 hfk+1 + 284:% BB Th1 + oo T2
RBDFT72 9 +6481:k 3 — 715»’1% 4+ 555%k—6 — §aog Th—T -0.2249
1?;§2165xk_9 1022 1165
Te4+1 = 3123hfk+1 + % 9 Lk — 733 Tp—1+ 446 T—2
RBDF73 9 +1%xk 35— Tk 5+ s1oTh_6 — 150472xk,7 -0.2851
+10830"Ek 9
Th+l = 344hfk+1 + goﬁxk - 1623965$k 1+ 647xk 2
RBDF74 9 ?ggmk 4= B s+ By g — HLay ;| -0.2433
16820xk 9
Th+l = 305hf k+1 T+ 323“ - 182(;)8995/f 1+ 11439”’c 3
RBDF75 9 — B kg — 1992 xy 5 + 2By g — Ba, | -0.2780
+4§g4xk 9
Tht1 = %hfkﬂ + 14590k ﬁmﬂclk 1+ 11429§k 2
RBDE76 9 +1 4337k 3 — R34 Lk— 4+ 5719Lk—5 — 3718 Lk—8 -0.2052
+55é1xk 9
Th+l = 14%§hfk+1 + 3 9%% ST — g%gxk 1+ 19835357C 2
RBDF77 9 +11 Th—3 — 1511xk 4+ 75 Th—6 — g1 Th—8 -0.2608
+2065$k 9
Th+l = 1ogghfk+1+72621xk gg?f’; 11— 24%92xk—2
RBDFT78 9 +778$k 3 — %25 Lk—5 T 1849Lk—6 — o5 Lk—8 -0.3424
+48515xk—9

Table 6.2: RBDF7 methods — 1. part
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Name Number Formula Error
of constant
data points Cerr
Thi1 & h i + 11659237k — 200 1+ 125wy
RBDF79 9 — 2 my g — P Tp5+ DTk — o Th—g | -0.3288
+11507$k 9
Th+1 1132 hfkﬂ + %1)25 18044491;19 1 1240081 Tk—2
RBDF710 9 + 2wy — 522wy + ooty _g — 22807, ¢ | -0.4700
11303 %k—9
Th+1 1630418 hfr1 + 1502%7 1835101 Tp—1+ 685xk 2
RBDF711 9 +1§501xk_4 — a2y + 28y — 10890 5 | -0.4504
+ 137 Tk—9
Tr4+1 Qlizhfk—l-l + iglﬂfk - 19227071% 1+ 2381% 3
RBDF712 9 — T4 — 8‘1?2:% 6+ so0xy_7 — 2 ap_g | -0.4221
+3119023xk 9
LTh+1 751hfk+1 + 14?7136 gg?l’k 1+ 713“ 2
RBDF713 9 bl Ty — S+ B2y g — 32, o | -0.3424
+ 15199 Lk—9
Tk+1 nglélghfk—l-l + Zg%ﬂfk - %Zg%xk 1+ 146§$k 3
RBDF714 9 —ﬁxk_g) — mx _¢+ Sloxk 7 — 1347xk ] -0.3993
?0558581% 2 857 2192
Th+1 11g4hfk+1 + 3%k — 137 Tk—1 T 222f1k754
RBDF715 9 —ESQE)ka_g) — 1867 Tk—6 T 357 Tk—7 — 3509 Lk—8 -0.5153
"‘35185'3’4—9

Table 6.3: RBDF7 methods — 2. part
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Figure 6.6: Logarithmic damping plots of RBDF7 — 2. part (RBDF79 through RBDF715)



Name H a | c ‘ Od,crit ‘ o | Cerr ‘
RBDFT71 1.90 [ 0.81 | 0.04 | 1.83 | -0.1765
RBDF72 1.94 | 0.73 | 0.04 | 1.74 | -0.2249
RBDF73 | 1.82 | 0.72 | 0.04 | 1.68 | -0.2851
RBDF74 | 1.64 | 0.78 | 0.05 | 1.70 | -0.2433
RBDF75 1.59 [ 0.72 | 0.04 | 1.69 | -0.2780
RBDF76 | 1.90 | 0.73 | 0.05 | 1.72 | -0.2052
RBDF77 | 1.67 | 0.72 | 0.05 | 1.67 | -0.2608
RBDF78 | 1.59 | 0.65 | 0.04 | 1.60 | -0.3424
RBDF79 | 1.43 | 0.65 | 0.04 | 1.62 | -0.3288
RBDF710 || 1.31 | 0.63 | 0.04 | 1.45 | -0.4700
RBDF711 || 1.37 | 0.63 | 0.05 | 1.45 | -0.4504
RBDF712 || 1.20 | 0.63 | 0.05 | 1.47 | -0.4221
RBDF713 || 1.14 | 0.59 | 0.07 | 1.49 | -0.3424
RBDF714 || 1.06 | 0.63 | 0.05 | 1.50 | -0.3993
RBDF715 || 1.14 | 0.63 | 0.04 | 1.45 | -0.5153

Table 6.4: Data of RBDF7 algorithms
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No RBDF7 method stands out from the others with respect to stability and to accuracy.

However, two methods are chosen that are better than the other techniques:

For RBDFT71, the values c and 67; are largest and |Ce,,| is smallest.

RBDF713 is the best method among those that have good values for a and ¢ because o crit

is largest for RBDF713, while ¢ and |Ce,,| still have decent values.

6.3 Simulation results

The systems 1 and 2 introduced in chapter 5 are integrated with RBDF71 and RBDF713.

To save computation time, the relative error tol,..; used for step-size control is assigned a

value of 0.05.

Figures 6.7 and 6.8 display the results of the simulation of system 1 with RBDF71 and

RBDFT713.
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It can be seen in these figures that RBDF71 integrates system 1 more accurately than
RBDF713 does.
Moreover, RBDFT71 integrates system 1 faster since it only uses 249355 fops during the
simulation while RBDF713 needs to execute 278368 fops.
In figures 6.9 and 6.10 the results of the integration of the nonlinear system 2 are illustrated.
Again, these results show that RBDF71 behaves better than RBDF713, both with respect
to accuracy and to efficiency — RBDF71 needs 599412 fops and RBDF713 uses 672005 fops.
One might be tempted to think that the values 6); and C,;, are responsible for this behavior
since RBDF71 has better values 6 and C,,, than RBDF713 whereas the values a and o ¢yt
are worse (see table 6.4).
However, the results of chapter 5 don’t confirm this assumption. Thus, only by considering
all of the properties of a numerical integration method it can be stated that this method is

better than another technique.
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Figure 6.7: Integration of system 1 by RBDF71
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CHAPTER 7

Conclusions

In chapter 3, two new analysis methods for assessing numerical integration algorithms

have been introduced:

1. Order star — accuracy region analysis

2. Bode plot analysis

The RBDF6 techniques presented in chapter 5 can compete with BDF6 in integrating stiff
systems, a fact that has been verified in numerous simulations. In most of the cases con-
sidered in this thesis, the two algorithms RBDF61 and RBDF66 outperform BDF6, and
because of the better shape of their Bode plot it may be concluded that they would do
better than BDF6 when integrating a stiff system with noise input. However, this hasn’t

been proven so far and might be a topic of further research.

As seen in chapter 6, the RBDF7 methods offer a way to integrate stiff systems of
ordinary differential equations with an accuracy order of 7 based on backward difference
formulae. This hasn’t been possible so far since there don’t exist stable BDF methods of

order higher than 6.
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The regression approach introduced in this thesis to find stiffly stable integration algo-
rithms of accuracy order seven, could be used to identify new stiffly stable RBDF methods

of even higher accuracy orders.

Such methods would be of much interest for use in celestial dynamics where highly

accurate integration of ordinary differential equations is required.
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Appendix A

Nordsieck transformation matrices of different order

Appendix A contains transformation matrices T of different order that are used to

calculate the Nordsieck vector.

1. m=2, ny,=1:

1 0
T:
1 -1
2.m=3,ng=2:
1 0 0
=| 3 1
T 2 —2 3
1 1
7 —1 3
3. m=4,nyg=23:
1 0 0 O
11 3 1
un _3 3 _1
T — 6 2 3
5 1
11 1 _1
6 2 2 6
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4. m=5,nyg =4

1 0 0 0 0
25 4 1
7 4 3 -3 1
T=| 3 _138 19 _7 1
24 3 4 3 24
5 3 7 1
7 3 2 6 1
111 11
24 6 4 6 24

5. m =06, ng =>5:

1 0 0 0 0 0
137 10 5 1
% ° 5 -3 1 5
15 _77 107 _13 6l _5
8 12 12 2 24 12
T =
1771 59 _49 41 _ T
24 24 12 12 24 24
11y o _1
8 12 12 24 12
11 1 _1 o1 _1
120 24 12 12 24 120
6. m=17, ng=6:
1 0 0 0 0 0 0
9 _g L _20 15 _6 1
20 2 3 4 5 6
203 _s8T 17 _127 33 _21 137
90 10 8 9 4 10 360
T=| 49 _20 461 _31 300 _13 1
48 6 48 3 48 6 48
85 _31 137 _121 107 _19 1T
144 24 48 36 48 24 144
71 19 1 1w _2 1
240 6 48 2 48 15 48
1 1 1 11 1

1
720 120 48 36 48 120 720
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7. m=8,ng="1:

1 0 0 0 0o 0 0 0
33 o 20 _35 3 _2a 1 _1
140 2 3 4 5 6 7
469 203 8T9 949 41 _201 1019 _ T
180 20 40 36 2 20 360 20
967 319 3929 389 2545 134 1849 29
720 45 240 18 144 15 720 90
T =
7117 1219 22 185 41 _ 7
18 48 12 144 3 48 36 48
28 59 9 _247 13 _69 19 _ 5
360 144 8 144 72 80 72 144
1 .3 13 _2 1 _2 11 _ 1
180 80 120 144 6 240 360 240
111 1 1 1 1 _ 1
5040 720 240 144 144 240 720 5040
8. m=29, ng=28:

1 0 0 0 0 0 0 0 0
761 56 35 56 14 8 1
w —° ¥ -3 3 -5 3 —7 3

29531 481 621 2003 691 141 2143 103 363
10080 35 20 45 16 5 180 35 1120
267 349 18353 2391 1457 4891 561 527 469
160 36 720 60 36 180 48 180 1440
T = 1069 329 15289 268 10993 1193 2803 67 967
1920 90 1440 15 576 90 480 45 5760
9 15 179 _213 179 _281 13 _ 61 T
80 144 72 48 36 720 8 144 144
13 _ 73 239 149 209 _391 61 _ 49 23
960 720 720 240 288 720 240 720 2880

1 1 119 231 1 217 1 29 1
1120 144 5040 5040 18 5040 48 5040 1440

1 1 1 1 11 1 1 1

40320 ~ 5040 1440 720 576 720 1440 ~ 5040 40320



1 0 0 0 0 0
7129 63 126
2520 -9 18 —28 2 5
6515 4609 5869 6289 6499 265
2016 280 140 90 80 4
4523 14139 20837 _ 72569 6519 3273
2268 1120 560 1080 80 48
95 _ 7667 24901 4013 122249 5273
128 1440 1440 120 2880 144
3013 _ 7807 6787 13873 36769 32773

17280 5760 1440 1440 2880 2880
5 _ 17 563 _ 401 3313 _ 305
192 360 720 240 1440 144
29 413 7 31 353 67
12096 20160 90 180 1440 288
1 11 43 @ _ T _41 _1
8064 10080 10080 720 2880 72
1 __1 1 __1 _1 __1
362880 40320 10080 4320 2880 2880

14

6709
180

84307

2160

10279
480

9823
1440

313
240

53
360

91
10080

1
4320
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0 0 0
_36 9 _1
7 3 9
967 3407 761
70 1120 2520
4101 1823 29531
280 560 90720
2939 10579 89
360 5760 430
_ 3817 3487 1069
1440 5760 17280
_ 373 347 _1
720 2880 30
_ 151 287 91
2520 20160 60480
19 37 1
5040 40320 10080
1 1 1
10080 40320 362880
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Appendix B

Implementation of RBDF61 in MATLAB to integrate (non-)linear

ordinary differential equations of first order

Appendix B contains a complete listing of the MATLAB program ”INT” that represents
the implementation of the RBDF61 method .
By slightly modifying this program, other RBDF techniques introduced in this thesis can

be implemented as well.

B.1 Main program INT

% Program to integrate ordinary differential equations of

% first order

%

flops(0)

define

% order of the integration algorithm

order = 6

steps = order + 1 % number of steps that we go backwards within the state
% history vector

all_points = 15
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algor = 3

load searchmethod7

pick = picks(algor,:)

%
Ms=[0123456;1000000;0100000;1-11-11-11;01-23-45-6;1-24
-816-3264;01-412-3280-192; 1-39-27 81 -243 729; 0 1 -6 27 -108 405 -1458; 1 -4 16
-64 256 -1024 4096; 0 1 -8 48 -256 1280 -6144; 1 -5 25 -125 625 -3125 15625; 0 1 -10 75 -500
3125 -18750; 1 -6 36 -216 1296 -7776 46656; 0 1 -12 108 -864 6480 -46656; 0 1 -12 108 -864
6480 -46656; 1 -7 49 -343 2401 -16807 117649; 0 1 -14 147 -1372 12005 -100842 |

M = Ms(pick,:)

if rank(M) == order+1

% Penrose-Moore-Pseudoinverse

Minv = inv(M*M)*M’

s = Minv(1,:)

for k=2:order+1

s = s + Minv(k,:)

end

ss = zeros(1,all_points)

ss(pick) = s

end

startup

[xvec,tvec,hvec] = mult(xvec,tvec,hvec,t,tsim,tcom,h,A,B,u,order,...

s,ss,all_points,xhist,tolrel,deltat,...



delta,pick,found,steps)

fop = flops % number of floating point operations
acc = exp(-tvec)

epsvec = xvec(:,1) — xacc

save 703mol xvec tvec hvec fop xacc epsvec

B.2 Procedure DEFINE

tolrelruku = 1E-6 % tolerance for the relative error produced by

% the Runge Kutta startup algorithm

tolrel = 1E-3 % tolerance of the relative error of the multistep algorithm
% stability domain of Ruku 5th order

stab_limit = 2.6

deltat = 0.05 % Length of communication interval

tsim = 5.0 % Simulation time

t=20

tcom = 0

% Definition of the system

A =[ 0 1; -1000 -1001]

B = [0;0]
C=0
D=0

max_eig = max(abs(eig(A)))
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% Initial state vector x(0)

x = [1; -1]

n = size(x,1)

delta = ones(1,n)*1E-10

ECHO =1

xvec = x’

tvec = tcom

hvec = 0

xcom = x’ % state vector that is depicted graphically

xhist = x % whole state history matrix

B.3 Procedure STARTUP

bin_search_h0

if found ==

tcom = 0
if t >= tcom + deltat
% communication

comin
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end
xhist = [x, xhist]
% order—1 times Runge Kutta 6th order with fixed step-size

for i=1:order—1

t=t+h
ruku6
X = x2

xhist = [x, xhist]

if t >= tcom + deltat
comm

end

end

end

B.4 Procedure BIN_.SEARCH_HO

% This program calculates the initial step-size h for the
% multistep algorithm by means of a binary search
%

deltas = delta

ts=1t
XS = X
hmin = 0

hmax = stab_limit/max_eig



maxcount = 30 % maximal number of steps of the binary search
count = 0

found = 0 % =1: Initial step-size h is found
% =0: Initial step-size h can’t be found

xlast = x

terminate= -1

% Is hmax the step-size we are searching for?
h = hmax

rukud

ruku6

epsl = abs((x1 —x2)")

v = [x1";x2;delta]

epsrel= max(epsl ./ max(abs(v)))

if epsrel < tolrelruku*1E-6 % too accurate —> change the initial values!

% First step with ruku6 to reevaluate the initial conditions
t =t + 0.5*(hmax+hmin)

ruku6

X = x2

delta = delta*1E-10

else

if epsrel <= tolrelruku

terminate = 1

found =1
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end

end

while terminate < 0

h = 0.5*%(hmin + hmax)
rukud

ruku6

epsl = abs((x1 — x2)")

v = [x1";x2%;delta]

epsrel= max(epsl ./ max(abs(v)))

if epsrel > tolrelruku

hmax = h
else
hmin =h

if epsrel >= 0.9*tolrelruku
terminate = 1

found = 1

else

if count > maxcount
terminate = 1

else

count = count + 1

end

end
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end
end
if delta < deltas

t = ts

ruku6

end

B.5 Procedure RUKUS5

% This program executes one step of a Runge Kutta 5th order
%

K1 = h*func(x,t,u)

K2 = h*func(x+0.125*K1,t,u)

K3 = h*func(x+0.25%K2,t,u)

K4 = h*func(x+0.5*K1-K2+K3,t,u)

K5 = h*func(x+0.1875*K140.5625%K4,t,u)

K6 = h*func(x+(-5*K14+4*K2+12*K3-12*K4+8*K5) /7,t,u)

x1 = x + (T*K1 + 32*K3 + 12*K4 + 32*K5 + 7*K6)/90
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B.6 Procedure RUKU®6

% This program executes one step of a Runge Kutta 6th order

%

K1 = h*func(x,t,u)

K2 = h*func(x+K1/9,t,u)

K3 = h*func(x+(K14+3*K2)/24,t,u)

K4 = h*func(x+(K1-3*K2+4*K3)/6,t,u)

K5 = h*func(x—0.625*K1+3.375*K2-3.0*K3+6.0*K4,t,u)

K6 = h*func(x+(221*K1-981*K2+4-867*K3-102*K4+K5)/9,t,u)

K7 = h*func(x+(-783*K1+678*K2-472*K3-66*K4+80*K5+3*K6) /48,t,u)

K8 = h*func(x+(761*K1-2079*K2+1002*K3+-834*K4-454*K5-9*K6+72*K7) /82,t,u)

x2 = x + (41*K1 + 216*K2 4 27*K4 + 272*K5 + 27*K6 + 216*K7 + 41*K8)/840

B.7 Procedure COMM

% This procedure calculates the communication state vector that is
% used further to depict the state vector equidistantly

%

ncom = (t — tcom)/deltat — rem(t — tcom,deltat)

deltatl = tcom + deltat —t + h

% Note that deltatl > epscom is fulfilled!

deltax = (x—xlast)*deltatl/h
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xcom = xlast 4+ deltax
xvec = [xvec; xcom]
tcom = tcom + deltat
tvec = [tvec; tcom]
hvec = [hvec; h]

if ncom > 1

ncom = ncom — 1
deltax = (x — xcom)*deltat/h
for i = l:ncom

xcom = xcom + deltax
tcom = tcom + deltat
xvec = [xvec; xcom]
tvec = [tvec; tcom]
hvec = [hvec; h]

end

end

B.8 Function FUNC

% Implementation of system 3 (Rayleigh equation)
%
function [fu] = func(x,t,u)

%
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w=1-x(1)*x(1) — x(2)*x(2)
ful = 0.01*x(2) — x(1)*w
fu2 = -0.01*x(1) — x(2)*w

fu = [ful;fu2]

B.9 Function MULT

% Multistep algorithm

%

% xhist is now a (n x m) matrix

%

function [xvec,tvec,hvec] = mult(xvec,tvec,hvec,t,tsim,tcom,h,u,n,order,...
s,ss,all_points,xhist,tolrel,deltat,...

delta,pick,found,steps)

%

I = eye(n)

toldelta = 0.1 % maximal value of the relative error that keeps the Jacobian unchanged
%

% Factorial of ”order”:

ordfac =1

for i = l:order

ordfac = ordfac*i

end
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%

% Calculation of the error constant C_err
%

Bl1=0

pl = size(pick)pl = p1(2)

A1l = [zeros(1,pl)]

B1 = [zeros(1,pl)]

for k=pl:-1:1

kk = pick(k)

if (0.5*%kk-0.5) == fix(0.5*kk)
B1(steps—0.5*kk+1.5) = s(k)
else

Al(steps—0.5%kk+1)= -s(k)
end

end

Al(steps+1) =1

Cerr =0

for k = 1:pl,

kl = k-1

Ak = A1(1L,k)

Bk = B1(1,k)

C_err = C_err + (k1™ 7)*Ak/5040 — (k1" 6)*Bk/720

end
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%

factor = 1/1.2

p = 1/(order + 1)

if found ==

% The first step of the multistep algorithm uses the old step-size

%

% Transformation matrix T to calculate the Nordsieck vector

%

T=[1000000; 245 -6 7.5 -20/3 3.75 -1.2 1/6; 20.3/9 -8.7 117/8 -127/9 33/4 -
2.7 137/360; 49/48 -29/6 461/48 -31/3 307/48 -13/6 5/16; 35/144 -31/24 137/48 -121/36
107/48 -19/24 17/144; 7/240 -1/6 19/48 -0.5 17/48 -2/15 1/48; 1/720 -1/120 1/48 -1/36
1/48 -1/120 1/720]

% Note: This matrix T is only valid for the order = 6!

if det(T”) == 0

else

Tinv = inv(T)

%

stepcount = 0

alpha = 1

N_old = T*xhist’

n_old = N_old(order+1,:)

hold =h

chg_jacob = 1 % Jacobian is reevaluated
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epsmultold = delta

x = xhist(:,1) % initial value of x_ k+1 is x_k!
first_time = 1

while t < tsim

t=t+h

stepcount = stepcount + 1
finish_step = -1

errcount = 0

chgstep = 0

while finish_step < 0

one_mul = -1

while one_mul < 0

f = func(x,t,u)

if chg_jacob > 0

% reevaluation of the Jacobian
jacob = jac(x,t,u,fn)
chg_jacob = 0

hess = ss(1)*h*jacob — I % Hesse matrix
inv_hess = inv(hess)

else

if chgstep > 0

chgstep = 0

hess = ss(1)*h*jacob — I
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inv_hess = inv(hess)

end

end

% Modified Newton-Raphson iteration

[x,conver] = newton(all_points,x,t,u,inv_hess,h,conver,delta, ss,...
xhist,0.1*tolrel)

if conver > 0

% convergence of Newton-Raphson

xhist = [x, xhist]

xhist = xhist(:,1:order+1)

%

% Estimation of the relative error

N = T*xhist” % We have to take the transposed history matrix!
epsmult = C_err*ordfac*(N(order+1,:)-n_old*alpha” order)
epsmult = abs(epsmult)

v = [abs(x"); delta]

xmax = max(v)

epsmultrel = max(epsmult ./ xmax)

deltaeps = (epsmultrel — epsmultold)/epsmultold
epsmultold = epsmultrel

if deltaeps > toldelta

if first_time ==

first_time = 0



one_mul =1

else

chg_jacob =1

end

else

one_mul =1

end

else

x = xhist(:,1)

one_mul =1

finish_step = 1

t = tsim

end % of if conver > 0
end % of while one_mul
if conver > 0

% Newton iteration worked fine
if epsmultrel < tolrel
finish_step = 1

else

% maybe change of the step-size
errcount = errcount + 1
if errcount >= 3

alpha = 0.5
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stepcount = 0

chgstep =1

hold =h

else

stepcount = order + 1
end

end

if stepcount >= order + 1

stepcount = 0

alpha = factor®(tolrel/epsmultrel)"p

if alpha >=1

if alpha > 1.1
chgstep =1

alpha = min(2,alpha)
else

% step-size is not changed

chgstep = 0
end
else
chgstep = 1

if alpha > 0.9
alpha = 0.9

else
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alpha = max(alpha,0.5)

end

end % of if alpha >=1

end % of if stepcount >= order+1

if chgstep > 0

% change of the step-size

chgstep = 0

h = alpha*h_old

%Adjustment of the state history matrix
H=[1000000;0alpha00000;00alpha~20000; 000 alpha®3000;0000
alpha” 400; 00000 alpha” 50; 0000 0 0 alpha” 6]
if epsmultrel < tolrel

N = H*N % Nordsieck matrix

else

N = H*N_old

end

xhist = Tinv*N

xhist = xhist” % We have to transpose the matrix again
end % of if chgstep

end % of if conver > 0

end % of while finish_step ..

N.oold =N

n_old = N_old(order+1,:)
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hoold =h

if t >= tcom + deltat

% communication point

[xvec,tvec,tcom,hvec] = comm_mult(tcom,deltat,t,N,order,h,xvec,...
tvec,hvec,tsim)

end

end % of while t < tsim

end end

B.10 Function NEWTON

% Modified Newton iteration to solve the implicit equation of the

% integration algorithm

%

function [x,conver] = newton(all_points,x,t,u,inv_hess,h,conver,delta,ss,...

xhist,tolnewton)

%
finish = -1
count = 0

maxcount = 30

conver = 0

while finish < 0

x.old = x



F = imp_func(all_points,ss,xhist,x,t,u,h)
X = x — inv_hess*F

epsx = abs((x — x_old)’)

v = [abs(x’);delta]

xmax = max(v)

epsrel = max(epsx ./ xmax)
if epsrel > tolnewton

if count > maxcount

conver = 0

finish =1

else

count = count + 1

end

else

finish = 1

conver = 1

end

end

B.11 Function IMP_FUNC

%This function calculates the implicit function of the integration algorithm

function [F] = imp_func(all_points,ss,xhist,x,t,u,h)
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F=0

for i = 2:all_points % all points = size(ss)
if ss(i) == 0

else

if 0.5%i-0.5 == fix(0.5%)

F = F + ss(i)*h*func(xhist(:,0.5*1-0.5),t,u)
else

F = F + ss(i)*xhist(:,0.5%)

end

end

end

F = F + ss(1)*h*func(x,t,u) — x

B.12 Function JAC

% This program calculates the Jacobian matrix for the Newton iteration

%

function [J] = jac(x,t,u,fn)
%

for i = 1:n % columns

Xxnew — x

if x(i) ==
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deltax = 1E-10

else

deltax = x(i)*1E-7

end

xnew(i) = xnew(i) + deltax
fnew = func(xnew,t,u)
J(:,1) = (fnew — f)/deltax

end

B.13 Function COMM_MULT

% This function calculates the communication state vector if a

% multistep integration algorithm is used

%

function [xvec,tvec,tcom,hvec] = comm_mult(tcom,deltat,t,N,order,...

h,xvec,tvec,hvec,tsim)

finish = -1

while finish < 0

if tcom + deltat <=1

tcom = tcom + deltat % update tcom
if tcom > tsim

finish = 1

else
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d = tcom — t % negative step-size!
N1 =N

for i = 2:order+1

N1(,) = ((d/h)" (- 1)) * N1
end

xcom = N1(1,)

for i = 2:order+1

xcom = xcom + N1(i,:)

end

xvec = [xvec; xcom]

tvec = [tvec; tcom]

hvec = [hvec; h]

end

else

finish = 1

end

end
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